
Unfooling Perturbation-Based Post Hoc Explainers

Zachariah Carmichael, Walter J. Scheirer
University of Notre Dame

zcarmich@nd.edu, walter.scheirer@nd.edu

Abstract

Monumental advancements in artificial intelligence (AI) have
lured the interest of doctors, lenders, judges, and other pro-
fessionals. While these high-stakes decision-makers are op-
timistic about the technology, those familiar with AI sys-
tems are wary about the lack of transparency of its decision-
making processes. Perturbation-based post hoc explainers of-
fer a model agnostic means of interpreting these systems
while only requiring query-level access. However, recent
work demonstrates that these explainers can be fooled ad-
versarially. This discovery has adverse implications for au-
ditors, regulators, and other sentinels. With this in mind, sev-
eral natural questions arise – how can we audit these black
box systems? And how can we ascertain that the auditee
is complying with the audit in good faith? In this work,
we rigorously formalize this problem and devise a defense
against adversarial attacks on perturbation-based explainers.
We propose algorithms for the detection (CAD-Detect)
and defense (CAD-Defend) of these attacks, which are
aided by our novel conditional anomaly detection approach,
KNN-CAD. We demonstrate that our approach successfully
detects whether a black box system adversarially conceals its
decision-making process and mitigates the adversarial attack
on real-world data for the prevalent explainers, LIME and
SHAP. The code for this work is available at https://github.
com/craymichael/unfooling.

Introduction
As a result of the many recent advancements in artificial
intelligence (AI), a significant interest in the technology
has developed from high-stakes decision-makers in indus-
tries such as medicine, finance, and the legal system (Lip-
ton 2018; Miller and Brown 2018; Rudin 2019). However,
many modern AI systems are black boxes, obscuring unde-
sirable biases and hiding their deficiencies (Szegedy et al.
2014; Hendrycks et al. 2021; Lipton 2018). This has re-
sulted in unexpected consequences when these systems are
deployed in the real world (O’Neil 2016; Buolamwini and
Gebru 2018; McGregor 2021). Accordingly, regulatory and
legal ordinance has been proposed and implemented (EU
and Parliament 2016; U.S.-EU TTC 2022; European Com-
mission 2021).
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All of this naturally leads to the question: how can we
audit opaque algorithms? Post hoc explanation methods of-
fer a way of understanding black box decision-making pro-
cesses by estimating the influence of each variable on the de-
cision value. Unfortunately, there is a medley of incentives
that may motivate an organization to withhold this informa-
tion, whether it is financial, political, personal, or otherwise.
Indeed, these explainers are demonstrably deceivable (Slack
et al. 2020; Baniecki 2022) — if an organization is aware
that its algorithms are under scrutiny, it is capable of falsi-
fying how its algorithms operate. This begs the question —
how do we know that the auditee is complying faithfully?

In this work, we explore the problem of employing
perturbation-based post hoc explainers to audit black box
algorithms. To the best of our knowledge, this is the first
paper to address the aforementioned questions and provide
a solution. We explore a multi-faceted problem setting in
which the auditor needs to ascertain that the algorithms of
an organization: 1) do not violate regulations or laws in their
decision-making processes and 2) do not adversarially mask
said processes. Our contributions are as follows:
• We formalize real-world adversarial attack and defense

models for the auditing of black box algorithms with
perturbation-based post hoc explainers. We then formal-
ize the general defense problem against adversarial at-
tacks on explainers, as well as against the pragmatic
scaffolding-based adversarial attack on explainers (Slack
et al. 2020).

• We propose a novel unsupervised conditional anomaly de-
tection algorithm based on k-nearest neighbors: KNN-CAD.

• We propose adversarial detection and defense algorithms
for perturbation-based explainers based on any condi-
tional anomaly detector: CAD-Detect and CAD-Defend,
respectively.

• Our approach is evaluated on several high-stakes real-
world data sets for the popular perturbation-based ex-
plainers, LIME (Ribeiro, Singh, and Guestrin 2016) and
SHAP (Lundberg and Lee 2017). We demonstrate that the
detection and defense approaches using KNN-CAD are ca-
pable of detecting whether black box models are adversar-
ially concealing the features used in their decision-making
processes. Furthermore, we show that our method exposes
the features that the adversaries attempted to mask, miti-
gating the scaffolding-based attack.
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• We introduce several new metrics to evaluate the fidelity
of attacks and defenses with respect to explanations and
the black box model.

• We conduct analyses of the explanation fidelity, hyperpa-
rameters, and sample-efficiency of our approach.

Background
Local Black Box Post Hoc Explainers Of particular rele-
vance to auditing an algorithm is in understanding individual
decisions. Explainable AI (XAI) approaches afford trans-
parency of otherwise uninterpretable algorithms (Barredo
Arrieta et al. 2020) and are conducive to auditing (Akpinar
et al. 2022; Zhang, Cho, and Vasarhelyi 2022). Local post
hoc explainers, notably LIME and SHAP, do so by estimat-
ing the contribution of each feature to a decision value.
These particular explainers are classified as model agnos-
tic and black box, which satisfies the conditions of an au-
dit — the auditor has no a priori knowledge of the model
class and has only query-level access. Both approaches pro-
duce explanations by fitting linear models to a dataset gen-
erated by perturbing the neighborhood about a sample. Let
D = (X ×Y) = {(x1, y1), (x2, y2), . . . , (xN , yN )} be the
data set where each data sample xi ∈ RF has F features
and each label yi ∈ N0 represents one of C classes encoded
as an integer in the range [0..C). We denote the black box
classifier as f : X → Y and the explainer as g. The gen-
eral problem these explainers solve in order to explain an
instance xi is given by Eq. (1)

argmin
gxi

∈G

∑
x
(g)
j ∈X (g)

i

(
f(x

(g)
j )− gxi

(x
(g)
j )

)2

πxi
(x

(g)
j )+Ω(gxi

)

(1)
The minimization objective is a function of the linear model
gxi

from the set of all linear models G, the neighborhood
function πxi

, and the regularization function Ω. With a slight
abuse of notation, πxi

both generates the neighborhood of
xi (X (g)

i ) and gives the proximity of each x(g)
j to xi. The lat-

ter two functions are defined using game-theoretic means
for SHAP and empirical means for LIME. Both explainers
produce explanations as a set of feature contributions Ei =
{aij}Fj=1 that describes the contribution, or importance, of
each feature to the decision value yi. In our notation, aij
indicates the explained contribution of the jth feature to yi.

Adversarial Attacks on Explainers Szegedy et al. were
the first to discover the phenomena of adversarial examples
(Szegedy et al. 2014) — human-indistinguishable manipu-
lation of the input space that results in misclassification. It is
worth noting that naturally-occurring adversarial examples
have been shown to exist (Hendrycks et al. 2021), though the
focus of this work concerns human adversaries. In contrast
to the literature on neural network adversarial attacks (Ren
et al. 2020), attacks on explainers are comparatively less
explored, especially those that are perturbation-based (Ban-
iecki 2022). Slack et al. were the first to propose an adver-
sarial attack on black box post hoc explainers (Slack et al.
2020). The motivation for the attack arose from the obser-
vation that explainer perturbations are often off of the data

manifold. In the attack, the adversary aims to detect whether
some xi originates from X or from the explainer-generated
samples, X (g), using a scaffolding classifier. X (g) is gener-
ated by perturbing each xi ∈ X , creating a set of new in-
stances X (g)

i . The union of each X (g)
i yields the complete

set, i.e., X (g) =
⋃

i X
(g)
i . If the adversary determines that the

query originates from an explainer, then it can elect to pre-
dict using an unbiased model. In effect, the adversary lies to
the explainer about how it uses the features. Formally, given
a biased predictor fbiased and an unbiased predictor funbiased,
the adversary can toggle between predictors using an out-of-
distribution (ood) detector d according to Eq. (2).

f(xi) =

{
fbiased(xi) if d(xi) = 1

funbiased(xi) otherwise
(2)

The detector d is trained on the samples X ∪ X (g) with a
corresponding label of ‘0’ if the sample is ood (from X (g))
and ‘1’ otherwise (from X ). Put simply, the detector d de-
termines if the input sample originated from real data or is
an explainer-generated perturbation. If the sample origin is
predicted to be an explainer, the unbiased predictor funbiased
makes predictions in an innocuous manner, e.g., indepen-
dent of sensitive features such as race. The authors demon-
strate that the attack obscures the biased use of features,
such as making predictions based on race, from LIME and
SHAP while maintaining near-perfect prediction fidelity on
in-distribution samples.

In related but tangential works, attacks have been de-
veloped on the model and explainer simultaneously. Ab-
dukhamidov et al. introduce a gradient-free black box attack
on XAI systems that manipulates model predictions without
significantly altering the explanations by post hoc explain-
ers (Abdukhamidov et al. 2022). Closely related, Zhan et al.
develop a joint attack with the same implications (Zhan et al.
2022). Both works consider explainers that require gradient-
level access to the model and are unsuitable for auditing.
Noppel et al. propose a trigger-based neural backdoor attack
on XAI systems that simultaneously manipulates the predic-
tion and explanation of gradient-based explainers (Noppel,
Peter, and Wressnegger 2022). Again, the attack scenario in
our work deviates from this model.

Adversarial Defense for Explainers In a similar fash-
ion, defense against adversarial attacks is well explored
in the literature (Ren et al. 2020). However, there is rel-
atively scarce work in defending against adversarial at-
tacks on explainers. Ghalebikesabi et al. address the prob-
lems with the locality of generated samples by perturbation-
based post hoc explainers (Ghalebikesabi et al. 2021a).
They propose two variants of SHAP, the most relevant being
NeighborhoodSHAP which considers local reference pop-
ulations to improve on-manifold sampling. Their approach
is able to mitigate the scaffolding attack (Slack et al. 2020).
While this is a notable achievement, it is unclear how the ap-
proach compares to baseline SHAP with respect to quantita-
tive and qualitative measures of explanation quality, whether
it still upholds the properties of SHAP explanations, and
other concerns (Ghalebikesabi et al. 2021b). Also related
is a constraint-driven variant of LIME, CLIME (Shrotri et al.
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2022). CLIME has been demonstrated to mitigate the scaf-
folding attack, but requires hand-crafted constraints based
on domain expert knowledge and for data to be discrete.

A step forward in explainer defense, Schneider et al.
propose two approaches to detect manipulated Grad-CAM
explanations (Schneider, Meske, and Vlachos 2022). The
first is a supervised approach that determines if there is
(in)consistency between the explanations of an ensemble of
models and explanations that are labeled as manipulated or
not. The second is an unsupervised approach that determines
if the explanations of f are as sufficient to reproduce its pre-
dictions as those from an ensemble of models. They con-
clude that detection without domain knowledge is difficult.
Aside from the deviant attack model in their work, we do not
require that deceptive explanations be labeled (an expensive
and error-prone process) and we require that only a single
model be learned (the authors use 35 CNNs as the ensemble
in experiments).

Recently, a perturbation-based explainer coined EMaP
was introduced that also helps to mitigate the scaf-
folding attack (Vu, Mai, and Thai 2022). Similar to
NeighborhoodSHAP, it improves upon its perturbation
strategy to create more in-distribution samples. This is ac-
complished by perturbing along orthogonal directions of the
input manifold, which is demonstrated to maintain the data
topology more faithfully.

Conditional Anomaly Detection Vanilla anomaly detec-
tion aims to discover observations that deviate from a notion
of normality, typically in an unsupervised paradigm (Ruff
et al. 2021). Of interest in this work is conditional, also
referred to as contextual, anomaly detection. This type of
anomaly is an observation that is abnormal in a particular
context, e.g., in time or space. Formally, a set of conditional
anomalies A is given by Eq. (3)

A = {(xi,yi) ∈ (X ×Y) | P(yi | xi) ≤ τ}, τ ≥ 0 (3)

where P is the probability measure of some probability den-
sity function (pdf) that characterizes normality and τ is
a low-probability threshold separating normal and abnor-
mal observations. Following the terminology in (Song et al.
2007), X is the set of environmental variables that the set of
observed variables Y is conditioned on.

Song et al. proposed the first conditional anomaly detec-
tor using Gaussian mixture models — two sets of Gaus-
sians model the environmental and observed variables, re-
spectively, while a learned probability mapping function de-
termines how the Gaussians in each set map to one an-
other (Song et al. 2007). Since, several approaches have been
proposed based on classical and deep learning techniques
— we point to this comprehensive survey for further read-
ing (Ruff et al. 2021). In this work, we propose a new con-
ditional anomaly detection method as 1) the deep learning
techniques are data-hungry and 2) most techniques do not
consider or fair well with categorical data, which is plentiful
in real-world high-stakes data: credit scoring (FICO 2018),
recidivism risk scoring (Angwin et al. 2016), etc.

ACME

Defense

Naive
Queries

Non-Adversarial
Results

Defended
Queries

High-Stakes
Decisions

Figure 1: An overview of the adversarial attack and defense
scenario. The top panel mirrors the bottom panel formalism
on a higher level. Our defense approach provides defense to
auditors from potential adversarial behavior of the auditee,
ACME. Given the explainer g-generated samples X (g) and
reference samples X , the defense h queries the black box f .
With the results, h gives the auditor the defended explana-
tions E and a measure of adversarial behavior D(·, ·).

The Problem and a Solution
The Attack and Defense Models In the attack scenario,
an organization algorithmically makes decisions on behalf
of users (customers, patients, employees, etc.) using a black
box predictor f . Note that f can be a black box due to it
being either uninterpretable or proprietary (or both) (Rudin
2019). We will refer to the organization as the ACME (Cor-
poration) for the remainder of the paper. We recommend re-
ferring back to Figure 1 as a guide on how elements of the
scenario relate. The attacker only provides query-level ac-
cess to f , e.g., via an API, a web form, or even a social
media app facial filter. In the case of f being a classifier,
only the final decision value is available, not the class-wise
probabilities. Moreover, the class of model that f belongs
to is assumed to be unknown. Thus, to ensure that ACME
meets legal or regulatory compliance, an auditor uses a local
post hoc explainer, g, to determine how features are used to
make individual decisions. Due to a variety of incentives (fi-
nancial, political, personal, etc.), an adversary within ACME
desires to conceal the behavior of f . The adversary does not
know what explainer is employed but may exploit weak-
nesses that are shared among common black box post hoc
explanation algorithms. Furthermore, the adversary is un-
aware of when the audit occurs and is only aware of the
information contained within the queries made to f . The
general attack objective is to minimize the multi-objective
problem given by Eq. (4)

min
xi∈X (g)∪X

(
Lf (f(xi), yi) , |{j | aij∈E sensitive

i ,

r(E−
i , aij)<r(E−

i , aik), ∀aik∈Eharmless
i }|,

max(E sensitive
i )

) (4)

where E−
i =E sensitive

i ∪ Eharmless
i =g(xi; f) is an ordered set of

feature contributions for the ith sample, E sensitive
i and Eharmless

i
are the contributions for the sensitive and harmless features,
respectively, Lf is some metric that measures the error be-
tween its two scalar arguments, and r gives the index of its
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second argument within its first argument. E−
i is ordered by

decreasing value of the contribution magnitude to the nega-
tive (adverse) outcome. Put simply, the first objective quanti-
fies the error between the predictor and the ground truth, the
second objective is the number of feature contributions for
sensitive features that are greater than those of harmless fea-
tures, and the third objective quantifies the magnitude of the
feature contributions for sensitive features. The advantage of
this formulation is that it applies to any type of attack that
intends to manipulate the attribution of features during an
audit. I.e., it is not tied to just the scaffolding attack.

In this work, the scaffolding attack is employed by ACME
as described in the “Background” section. This attack is
multi-objective and aims to minimize Eq. (4) by finding
some d ∈ Dood that minimizes Eq. (5)

min
(xi,ti)∈(X (g)∪X ,T )

(
Jti=0KLf(fbiased(xi), f(xi)) ,

Jti=1KLa(g(xi; funbiased), g(xi; f))
) (5)

where J·K are Iverson brackets, Dood is the set of all out-of-
distribution detectors, T is a set of flags indicating whether
xi ∈ X (g), and La is some metric that measures the error be-
tween its two scalar arguments. Naturally, there is a trade-off
between prediction fidelity (objective one) and unbiased ex-
planation to an auditor (objective two). The “Experiments”
section describes how fbiased and funbiased are selected.

We now formulate the detection and defense objectives —
here, the goal of detection is to determine whether f is us-
ing the scaffolding attack, whereas the goal of defense is to
ascertain whether the scaffolding attack is used for individ-
ual samples. As we will detail in the next section, the latter
can be used to “unfool” the explainers. Formally, the general
sample-wise defense objective is given by Eq. (6)

argmin
h∈H

Lh (h(xi; f),P (f(xi) | xi)) s.t. xi ∈ X (g)∪X

(6)
where H is the class of conditional distribution estimators, h
is the detector that estimates the conditional pmf p with sup-
port {0, 1}, and P is a probability measure of p1. The pmf p
is the distribution of normality for f . Here, Lh is some met-
ric that measures the error between its two scalar arguments.
The role of h is to determine the likelihood of a prediction
by f given a sample. The threshold-based detection is in turn
used to classify anomalies for individual samples as in Eq.
(3).

To globally detect an attack, the same objective should be
minimized as for defense. However, discriminating an attack
instead is determined by having h estimate Eq. (7)

r
D

(
p(f(xi) | xi), p(f(x

(g)
i ) | x(g)

i )
)
≥ τglobal

z
(7)

where τglobal ≥ 0 is a threshold, x(g)
i ∈X (g), xi∈X , and D

is an asymmetric measure of statistical distance between
the two distributions that is permitted to take on nega-
tive values and maintains the identity of indiscernibles (i.e.,

1To conserve space, we omit random variables of arguments to
the pmf p (and P) and use realizations instead.

D(x, y)=0 iff x=y). With a properly calibrated h and suf-
ficient samples to represent the distribution of normality,
D(·, ·) > 0 if d(xi)=1 (or if f is not adversarial) and
D(·, ·) ≤ 0 otherwise.

Detection, Defense and KNN-CAD In this section, we
describe a non-parametric approach to detect conditional
anomalies based on k-nearest neighbors: k-nearest neighbors
conditional anomaly detector (KNN-CAD). We then describe
general algorithms for the detection (CAD-Detect) and de-
fense (CAD-Defend) of adversarial attacks on g for any
given h. For simplicity, we treat f as a classifier in describ-
ing KNN-CAD — in the case that f is a regressor, we cast it
to a classifier by binning its output. Since f does not return
class-wise probabilities in the problem setting, we exploit
the fact that we have a single discrete observed variable yi.
On a high level, the main idea of KNN-CAD is to compare
the labels of the neighbors of some xi to f(xi) — the dis-
agreement of the labels of its neighbors determines the de-
gree of abnormality. Algorithms 1 (KNN-CAD.fit) and 2
(KNN-CAD.score samples) formalize this process. With
samples representing normality X , the standard k-nearest
neighbors algorithm is fit to the data in KNN-CAD.fit.
These samples are collected by the auditor and are very un-
likely to overlap with data that f (and d, if applicable) were
trained on. After the fit is made, each xi ∈ X is scored by
KNN-CAD.score samples, which gives the scored samples
S (lower is more abnormal). Subsequently, the threshold τ
is set to the percentile ϵ of S . The rounding operator used in
computing the percentile is denoted as round(·).

In KNN-CAD.score samples (Algorithm 2), the pmf
p(f(xi) | xi) is estimated. To do so, the k-nearest neigh-
bors of, and distances from, each xi are computed. For each
xi, the labels of its neighbors are retrieved. For the neigh-
bors belonging to each class, the corresponding distances are
gathered (denoted by, e.g., d0 for each yi = 0) and then ag-
gregated by the function ϕ. The aggregator ϕ estimates the
statistical distance between xi and its neighbors by comput-
ing, e.g., the median, mean, or maximum value. If the vector
argument of ϕ is empty, then the output of the function is
∞. In the final step, we are interested in measuring the dy-
namic range between the aggregate distances corresponding
to the label of the queried sample, dyj , and to the alterna-
tive label(s), d¬yj . The dynamic range is defined as the ratio
between two values on the logarithmic scale as in Eq. (8).

dynamic range(a, b) = log
(a
b

)
(8)

The values given by the dynamic range of such distances are
treated as logits, so we apply the standard logistic function
σ to map the values to probabilities as in Eq. (9)

ζ(d¬yj , dyj ) = σ(dynamic range(d¬yj , dyj ))

=
1

1 + exp(− log
(

d¬yj

dyj

)
)

=
1

1 +
dyj

d¬yj

=
d¬yj

d¬yj
+ dyj

.

(9)
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Algorithm 1: KNN-CAD.fit(f,X , k, ϕ, ϵ)
Input: f , X , k, ϕ, ϵ
Output: h, the KNN-CAD object
// Fit the distribution of normality

1 h← KNN(X );
2 S ← h.score samples(f,X , k, ϕ);
3 S ′ ← sort(S); // sort ascending
4 h.τ ← S ′[round(ϵ · |S ′|)]; // set threshold
5 h.X train ← X ; h.Y train ← f(X );
6 return h

Algorithm 2: KNN-CAD.score samples(h, f,X , k, ϕ)
Input: h, f , X , k, ϕ
Output: S, the scored samples

1 Y ← f(X );
// Get the k-nearest neighbor distances

and indices
2 D, I ← h.neighbors(X , k);
3 S ← new array;
4 for (d, i, yj) ∈ (D, I,Y) do
5 yi ← h.Y train[i]; // Gather neighbor labels
6 d0 ← d[Jyi = 0K]; d1 ← d[Jyi = 1K];
7 d0 ← ϕ(d0); d1 ← ϕ(d1);
8 if yj = 1 then
9 dyj ← d1; d¬yj ← d0;

10 else
11 dyj ← d0; d¬yj ← d1;

12 s← ζ(d¬yj , dyj );
13 S.append(s);
14 return S

We denote this probability mapping function as ζ. The algo-
rithm KNN-CAD.score samples is written for the case of
f being a binary classifier, but it is easily generalizable to
multi-class by taking the expected value of the comparison
of dyj to every other d¬yj , i.e., Ed¬yj

∈d¬yj
[ζ(d¬yj , dyj )].

In Algorithm 3, the procedure for adversarial attack de-
tection, CAD-Detect, is detailed. First, the samples X rep-
resenting normality are partitioned into X train (ntrain sam-
ples) and X test (|X |−ntrain samples). Thereafter, h is fit us-
ing X train and the (hyper-)parameters pertinent to h, Θh.
After X (g)

test is collected, h estimates p(f(xi) | xi) and
p(f(x(g)

i ) | x(g)
i ) for X test and X (g)

test, respectively. The sta-
tistical distance D between these two conditional distribu-
tions is estimated by comparing the areas under the empir-
ical cumulative distributions of Stest and S (g)

test. We denote
these areas as atest and a(g)

test, respectively. In the algorithm,
we denote the empirical cumulative distribution function as
ECDF and the function that computes the area under a curve
using the trapezoidal rule as AUC. Intuitively, a greater dif-
ference between a(g)

test and atest indicates a concentrated re-
gion of low-probability samples (likely adversary behavior
of f ), whereas a smaller difference indicates that an attack
was likely not carried out. In practice, the number of per-
turbed samples generated around each sample, np, is rela-
tively large — fewer samples are necessary to accurately es-

Algorithm 3: CAD-Detect(f, g, h,Θh,X , ntrain, τglobal)
Input: f , g, h, Θh, X , ntrain, τglobal
Output: Whether f is behaving adversarially toward g

1 X train,X test ← X [:ntrain],X [ntrain:];
2 h.fit(f,X train,Θh);
3 Stest ← h.score samples(f,X test,Θh);
4 X (g)

test ← {};
5 for xi ∈ X test do
6 X (g)

test ← X (g)
test ∪ π

(g)
xi (xi);

7 S(g)
test ← h.score samples(f,X (g)

test ,Θh);
8 atest ← AUC(ECDF(Stest));
9 a

(g)
test ← AUC(ECDF(S(g)

test ));
10 return J(a(g)

test − atest) ≥ τglobalK

Algorithm 4: CAD-Defend(f, g, h,xi,Θh, np)
Input: f , g, h, xi, Θh, np

Output: X (g)
i , (more) in-distribution perturbations

1 X (g)
i ← π

(g)
xi (xi);

2 S(g)
i ← h.score samples(f,X (g)

i ,Θh);
// Remove abnormal samples

3 X (g)
i ← X (g)

i [JS(g)
i > h.τK];

4 n′
p ← np − |X (g)

i |;
5 if n′

p ̸= 0 then
6 X ′(g)

i ← CAD-Defend(f, g, h,xi,Θh, n
′
p);

7 X (g)
i ← X (g)

i ∪X ′(g)
i ;

8 return X (g)
i

timate p. We explore the sample-efficiency of h in the “Ex-
periments” section.

The algorithm for defending against adversarial attacks,
CAD-Defend, is detailed in Algorithm 4. The approach is a
fairly straightforward modification to the neighborhood gen-
eration function π(g)

xi
. For each sample xi to be explained by

g, the perturbed samples X (g)
i generated by π(g)

xi
are scored

by h. The samples with scores below the threshold h.τ are
discarded and CAD-Defend recursively builds the remaining
samples until |X (g)

i | = np. In practice, the recursive depth
can be limited with either an explicit limit or by reducing
h.τ . However, an auditor will prioritize faithful scrutiny of
ACME’s algorithms over the speed of the explainer.

On a final note, neither CAD-Detect nor CAD-Defend
is tied to KNN-CAD — rather, they are compatible with any
h ∈ H (any conditional anomaly detector).

Time and Space Complexity The time and space com-
plexity of every introduced algorithm are listed in Ta-
ble 1 and derived in detail in Appendix I. We assume that
KNN-CAD is used as h in Algorithms 3 and 4. Note that
KNN-CAD uses the ball tree algorithm in computing nearest
neighbors. We let Tf (·) and Sf (·) be the functions that give
the time and space complexity of f , respectively, and R be
the number of recursions in Algorithm 4. In practice, the
time and space complexity of each algorithm are dominated
by that of the model to audit, f . Hence, reducing the num-
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Alg. Type Complexity Practical
Complexity

1
Time O(N((F + k) logN + Tf (F ))) O(NTf (F ))

Space O(N(F + k + Sf (F ))) O(NSf (F ))

2
Time O(N(k logN + Tf (F ))) O(NTf (F ))

Space O(N(k + Sf (F ))) O(NSf (F ))

3
Time O(Nnp(k log(Nnp) + Tf (F ))) O(NnpTf (F ))

Space O(Nnp(k + Sf (F ))) O(NnpSf (F ))

4
Time O(Rnp(k log np + Tf (F ))) O(RnpTf (F ))

Space O(np(k + Sf (F ))) O(npSf (F ))

Table 1: The time and space complexity of each algorithm
introduced in this paper: Algorithms 1 (KNN-CAD.fit),
2 (KNN-CAD.score samples), 3 (CAD-Detect), and 4
(CAD-Defend). With practical complexity, it is assumed that
Tf (F ) ≫ (k + F ) logN and Sf (F ) ≫ k + F , e.g., as is
the case with DNNs and most decision trees.

ber of queries is desirable. We explore the sample-efficiency
of our approach in the “Experiments” section. If the queries
are pre-computed, then our algorithms using KNN-CAD take
linearithmic time and linear space.

Experiments
We consider three real-world high-stakes data sets to evalu-
ate our approach:
• The Correctional Offender Management Profiling for Al-

ternative Sanctions (COMPAS) dataset was collected by
ProPublica in 2016 for defendants from Broward County,
Florida (Angwin et al. 2016). The attributes of individuals
are used by the COMPAS algorithm to assign recidivism
risk scores provided to relevant decision-makers.

• The German Credit data set, donated to the University
of California Irvine (UCI) machine learning repository in
1994, comprises a set of attributes for German individuals
and the corresponding lender risk (Dua and Graff 2017).

• The Communities and Crime data set combines socio-
economic US census data (1990), US Law Enforcement
Management and Administrative Statistics (LEMAS) sur-
vey data (1990), and US FBI Uniform Crime Reporting
(UCR) data (1995) (Redmond and Baveja 2002). Covari-
ates describing individual communities are posited to be
predictive of the crime rate.
Each data set contains at least one protected attribute that

should not be used to make a decision in order to meet
regulatory compliance. We follow the attacks as proposed
in (Slack et al. 2020) and recall them here. See Table 2 for
the sensitive features that each fbiased uses and the harmless
features that each funbiased uses to make decisions for each
experiment. As in (Slack et al. 2020), the OOD detector d
is selected to be a random forest. Uncorrelated features are
generated from the discrete uniform distribution U{0, 1},
and two different funbiased are considered for each experi-
ment when uncorrelated features are considered: one with
one uncorrelated feature and another with two uncorrelated

Data Set Sensitive
Feature

Harmless
Feature(s) Target

COMPAS African-
American Uncorrelated High Risk of

Recidivism
German
Credit Gender Income %

Toward Loan Good Customer

CC Count of White
Population Uncorrelated Violent

Crime Rate

Table 2: Data sets on which the attack and defense ap-
proaches are evaluated. The Communities & Crime data set
is abbreviated as CC. In each experiment, fbiased makes de-
cisions based on sensitive features and funbiased makes deci-
sions based on harmless features.

features. The two classifiers, fbiased and funbiased, are rule-
based and return the target listed in Table 2 as a function of
the selected features(s). See Appendix A for further details.

For each task, we consider both cases in which ACME
elects to and not to employ the attack. Each data set contains
a train and test partition, Dtrain and Dtest, respectively —
both are considered to be representative of normality (as de-
fined in “The Problem and a Solution” section). f is trained
on Dtrain and scrutinized by the auditor on Dtest using g. Re-
call that f is a function of both fbiased and funbiased as defined
in Eq. (2). Our defense approach aided by h employs the
algorithms CAD-Detect and CAD-Defend. The defense is
evaluated using Dtest as the auditor does not have access to
Dtrain. The results across all tasks are shown in Table 3. Ap-
pendix B specifies all reproducibility details. In the proceed-
ing sections, we propose and employ several fidelity metrics
to evaluate the quality of both the attack and defense.

How effective is the attack? We evaluate the efficacy of
the attack with several metrics, expanding on its original
evaluation (Slack et al. 2020). The classifier f should be ac-
curate on in-distribution data (fidelityf ) as given by Eq. (10)

fidelityf (X ) =
1

|X |
∑
xi∈X

Jf(xi) = factual(xi)K (10)

where

factual(xi) =

{
fbiased(xi) if attack is deployed
f(xi) otherwise

(11)

When the attack is deployed, we can evaluate the quality of
d (fidelityd) as the balanced accuracy between samples from
X and X (g) as in Eq. (12)

fidelityd(X ∪X (g)) =

1

2

(
1

|X |
∑
xi∈X

Jd(xi)=1K+
1

|X (g)|

∑
xi∈X (g)

Jd(xi)=0K
)
.

(12)

To quantify the degree that g is “fooled,” we compare the
feature contributions to the features used by factual from a
feature-selectivity perspective. The features used by factual
can be split into selected (Fselected) and unselected (F¬selected)
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Figure 2: The top-3 most important features identified by LIME (left) and SHAP (right) with and without the defense on the
COMPAS task. Our defense mitigates the attack and demonstrates that ACME attempted to conceal that race is an important
factor in deciding the risk of recidivism. In the legend, “Other” represents any other COMPAS feature that is not “Race” or an
“Uncorrelated” feature.

features. In turn, we can estimate the fidelity of g as Eq. (13)

fidelityg(X )=
1

F ·|X |
∑
xi∈X

ρ
(
{F−1|j∈Fselected}∪

{0|j∈F¬selected},
{r(E−

i , aij)|j∈F}
) (13)

where F = Fselected ∪ F¬selected, |F|=F , and ρ gives the
Spearman rank correlation coefficient between its two or-
dered arguments. Put simply, the correlation increases when
features in Fselected are ranked higher than those in F¬selected
by an explainer, i.e., explanations are more faithful.

As shown in Table 3, the attack is quite effective —
fidelityf remains high when the attack is active while
fidelityg decreases. This indicates that d successfully tog-
gles between fbiased and funbiased, which is supported by the
fidelityd scores. Figure 2 qualitatively shows the efficacy of
the attack on the COMPAS data set by visualizing the top-3
most frequent features in explanations.

Can we detect the attack? We introduce metrics to eval-
uate h and CAD-Detect in their ability to detect attacks.
Here, dactual is d when a scaffolding attack is deployed and a
dummy function that returns ‘1’ otherwise. The ability of h
to model P(f(xi)|xi) is given by the weighted mean-square-
error of h and dactual (fidelityh) as in Eq. (14)

fidelityh(X∪X (g)) =

1− 1

2

(
1

|X |
∑
xi∈X

(dactual(xi)−h(xi))
2
+

1

|X (g)|

∑
xi∈X (g)

(
dactual(x

(g)
i )−h(x

(g)
i )

)2
) (14)

where h(·) is shorthand for h.score samples({·}). Since
h gives probabilities, the error term is bounded to the range

[0, 1] which we subtract from ‘1’ in order for the score
to be interpreted as fidelity. To evaluate the quality of
CAD-Detect, we compare the areas between the cumulative
distributions of scores derived from X (g) and X as described
in Algorithm 3: ∆cdf := a(g)

test − atest. This score should be
higher if there is an attack deployed and lower otherwise.

Across all experiments, we use KNN-CAD as h. Our ap-
proach is able to detect every attack without false positives
when τglobal ∈ [0.00, 0.12] for SHAP and τglobal ∈ [0.11, 0.12]
for LIME. There is a trade-off in fidelityh and fidelityd —
the more off-manifold the perturbations are, the harder it
is to fit P(f(xi) | xi) (without an attack), whereas it is
harder to fit d when the perturbations are more on-manifold.
The more principled game-theoretic perturbation scheme of
SHAP demonstrably improves on that of LIME, yet it still can
be gamed adversarially. Furthermore, a higher ∆cdf without
an attack deployed is indicative of more perturbed samples
being off-manifold — discriminating attacks using SHAP has
a far greater margin between ∆cdf scores than LIME.

Can we “unfool” explainers? In order for an explainer
to be “unfooled,” it should produce explanations that 1)
agree with its own explanations without an attack present
and 2) agree with the feature selection by the black box al-
gorithm. We propose infidelityCAD-Defend,g to quantify how
well CAD-Defend accomplishes the former goal. This met-
ric measures the disagreement of the explanations when us-
ing CAD-Defend to those only using g as in Eq. (15)

infidelityCAD-Defend,g(X ) =

1

F · |X |
∑
xi∈X

∑
(a

(g)
ij ,a

(h)
ij )∈(E(g)

i ,E(h)
i )

(a
(g)
ij − a

(h)
ij )2 (15)

where E (g)
i is the explanation from g without an attack, E (h)

i
is the explanation when h is used for defense during an at-
tack, and a

(∗)
ij is as defined in the “Background” section.
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Data Set Attack Nhl

g = LIME g = SHAP

Fidelity
CAD-

Detect
CAD-
Defend Fidelity

CAD-
Detect

CAD-
Defend

f d g h ∆cdf infg fidf f d g h ∆cdf infg fidf

COMPAS
✗ – 1.00 – 0.31 0.93 0.11 0.00 0.31 1.00 – 0.29 0.99 -0.02 0.00 0.29
✓ 1 0.99 0.99 0.23 0.81 0.30 0.05 0.30 0.93 0.82 0.24 0.77 0.20 0.02 0.28
✓ 2 0.99 0.99 0.10 0.80 0.30 0.00 0.31 0.91 0.82 0.24 0.77 0.25 0.01 0.26

German
Credit

✗ – 1.00 – 0.27 0.78 0.07 0.00 0.27 1.00 – 0.24 0.86 -0.05 0.00 0.27
✓ 1 1.00 0.99 0.18 0.70 0.18 0.00 0.27 0.83 0.71 0.12 0.61 0.12 0.00 0.27

CC
✗ – 1.00 – 0.21 0.80 0.09 0.00 0.16 1.00 – 0.08 0.85 0.00 0.00 0.20
✓ 1 1.00 0.99 0.16 0.79 0.12 0.01 0.20 0.97 0.85 0.07 0.79 0.13 0.01 0.19
✓ 2 1.00 0.99 0.17 0.79 0.12 0.00 0.31 0.99 0.85 0.07 0.77 0.12 0.00 0.30

Table 3: The (in)fidelity and ∆cdf scores of the attack and defense across the real-world data sets when KNN-CAD is used as
h. Nhl is the number of harmless features used by funbiased and is unspecified when no attack is deployed. See the text for the
differing definitions of fidelity for each algorithm. We abbreviate infidelityCAD-Defend,g as infg and fidelityCAD-Defend,f as fidf .
Our approach successfully detects the scaffolding attack while maintaining explanation fidelity for both explainers.
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Figure 3: Sample-efficiency of KNN-CAD on the COMPAS
data set when using LIME and SHAP as g — fidelityh is plot-
ted as a function of the training proportion of the COMPAS
data (ntrain).

To evaluate against the true feature selection of factual, we
use the same metric definition as fidelityg and refer to it as
fidelityCAD-Defend,f .

The infidelity scores in Table 3 are near-zero across all
tasks, demonstrating that our defense has very little dis-
agreement with the explainer g when g is not under attack.
In addition, the fidelityCAD-Defend,f scores exceed those of
fidelityg for all experiments when an attack is deployed and
are close to fidelityg without an attack. A final piece of evi-
dence that our defense mitigates the attack is shown in Fig-
ure 2 — comparing the top-3 most important features with
and without the defense confirms that the defense is highly
successful. See Appendix E for the same figure with the re-
maining explainers and data sets.

Sample Efficiency We evaluate the training sample-
efficiency of our approach. Figure 3 plots fidelityh as a func-
tion of the training proportion of the COMPAS data when
using LIME and SHAP as g. Because of the strong induc-
tive bias and nonparametric nature of KNN-CAD, the algo-
rithm hardly degrades in performance even when 10% of the
data is in use. This in part indicates the sample-efficiency
of the CAD-Detect and CAD-Defend algorithms when
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Figure 4: Sample-efficiency of CAD-Detect on the COM-
PAS data set when using LIME and SHAP as g — the margin
between the ∆cdf scores with and without an attack is plot-
ted as a function of the number of explainer perturbations
(np).

KNN-CAD is used. We also evaluate the sample-efficiency of
CAD-Detect on the COMPAS data set when using LIME
and SHAP as g. The margin between the ∆cdf scores with
and without an attack is plotted as a function of the num-
ber of explainer perturbations, np. The main benefit of in-
creasing np is to increase the consistency of the detection
score. When np > 1, 000 the variance tapers off for both ex-
plainers, which is just a small percentage of the millions of
explainer-generated perturbations when all test set samples
are explained. These findings are quite notable as the com-
plexity bottleneck is due to querying f as discussed in “The
Problem and a Solution” section.

Additional Analyses We include analyses of the hy-
perparameters of the three core algorithms, KNN-CAD,
CAD-Detect and CAD-Defend, in Appendix F.

Discussion
In this work, we introduced several novel algorithms to de-
fend against adversarial attacks on perturbation-based post

6932



hoc explainers: KNN-CAD for conditional anomaly detection,
CAD-Detect for attack detection, and CAD-Defend to im-
prove the fidelity of explanations when under attack. We rig-
orously formalized the attack and defense models, as well as
introduced new quantitative metrics to evaluate the quality
of the attack and defense. Our approach demonstrably mit-
igated the scaffolding attack across several real-world high-
stakes data sets. The results indicate that it is easier to defend
SHAP than LIME due to its more realistic data perturbations.

A limitation to consider is that the realistic samples used
in the training set for the defense algorithm can be expen-
sive or difficult to collect. Moreover, in realistic scenarios,
an API to a black box may be costly to query with the
perturbed samples generated by explainers. In practice, ex-
plainer queries should be rate-limited so as to not arise sus-
picion from the auditee. On this note, we do not consider
the case when the adversary irregularly deploys the attack.
We point to (Schneider, Meske, and Vlachos 2022) which
characterizes this attack and demonstrates that explanations
that are infrequently manipulated can be difficult to detect.
In addition, we considered the case of an adversary masking
malicious behavior. However, the motivation for such behav-
ior could arise for privacy reasons or to protect intellectual
property from model extraction attacks (Tramèr et al. 2016).

We analyze and alleviate a single shortcoming of post
hoc explainers. However, the explainers we consider have
also been shown to be inconsistent, unfaithful, and in-
tractable (Krishna et al. 2022; Bordt et al. 2022; den Broeck
et al. 2021; Garreau and von Luxburg 2020; Carmichael and
Scheirer 2021a,b). Consequently, a potential source of neg-
ative societal impact in this work arises from practitioners
overtrusting post hoc explainers (Kaur et al. 2020). Never-
theless, our study demonstrates that the explainers backed
with our proposed defense not only detect adversarial behav-
ior but also faithfully identify the most important features in
decisions. Moreover, if an explainer is not to be trusted, our
approach can at least exploit it to identify misbehaving al-
gorithms. In future work, the ramifications of an adversarial
organization caught red-handed should be explored in the
context of existing regulatory guidelines.
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