
Meta-Sketch: A Neural Data Structure
for Estimating Item Frequencies of Data Streams

Yukun Cao , Yuan Feng , Xike Xie*

School of Computer Science and Technology, University of Science and Technology of China
Data Darkness Lab, MIRACLE Center, Suzhou Institute for Advanced Research, USTC

{ykcho, yfung}@mail.ustc.edu.cn, xkxie@ustc.edu.cn

Abstract

To estimate item frequencies of data streams with limited
space, sketches are widely used in real applications, including
real-time web analytics, network monitoring, and self-driving.
Sketches can be viewed as a model which maps the identifier of
a stream item to the corresponding frequency domain. Starting
from the premise, we envision a neural data structure, which
we term the meta-sketch, to go beyond the basic structure of
conventional sketches. The meta-sketch learns basic sketching
abilities from meta-tasks constituted with synthetic datasets
following Zipf distributions in the pre-training phase, and can
be fast adapted to real (skewed) distributions in the adaption
phase. Extensive experiments demonstrate the performance
gains of the meta-sketch and offer insights into our proposals.

Introduction
Estimating item frequency is a basic topic in data stream pro-
cessing, which finds applications in the fields of networking,
databases, and machine learning, such as real-time data ana-
lyzing (Weller 2018; Zhu and Shasha 2002; Tinati et al. 2015;
Irfan and Gordon 2019), network traffic monitoring (Huang,
Lee, and Bao 2018; Madden and Franklin 2002; Wang et al.
2013), natural language processing (Goyal, III, and Cormode
2012) and search ranking (Dzogang et al. 2015). Towards
infinite data streams, a common class of solutions (Cormode
and Muthukrishnan 2005; Charikar, Chen, and Farach-Colton
2002; Estan and Varghese 2002; Roy, Khan, and Alonso 2016;
Zhou et al. 2018; Hsu et al. 2019) use a compact structure tak-
ing sublinear space for counting the number of occurrences
of each stream item, called the sketch.

Under the prevalent evidence of skewed distributions in
data streams, basic sketches achieve the space compactness
by hashing and approximately aggregating stream items. Ba-
sic sketches, including CM-sketch (Cormode and Muthukr-
ishnan 2005), C-sketch (Charikar, Chen, and Farach-Colton
2002) and CU-sketch (Estan and Varghese 2002), use a 2D
array of counters as the core structure. Some varients (Li
et al. 2020; Zhong et al. 2021; Gao et al. 2022; Liu and Xie
2021) broaden application scenarios based on basic sketches.
To optimize the sketching performance, several augmented
sketches (Roy, Khan, and Alonso 2016; Zhou et al. 2018)

*Xike Xie is the corresponding author.
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

were proposed, which attach filters to basic sketches, to cap-
ture the preliminary patterns of skewed distributions (e.g.,
high/low-frequency items). By separately maintaining the
filtered high/low-frequency items, augmented sketches strive
to eliminate the estimation error incurred by hash collisions
between the high- and low-frequency items. Further, learned
augmented sketches (Hsu et al. 2019) improve the filters of
the augmented sketches by memorizing short-term high/low-
frequency items via a pre-trained neural network (NN in
short) classifier. But it is not clear how the pre-trained NN
can be adapted to dynamic streaming scenarios, where the
correspondence between items and frequencies varies. In
a nutshell, sketches are structures compactly summarizing
streams to count item frequencies with limited space budgets.

From the retrospective analysis, an observation can be
drawn that the evolution of sketches conforms with the ex-
ploitation of data distributions. It is thus a natural evolution
to consider a sketch that generally and automatically cap-
tures more distribution patterns with limited space budget.
In this paper, we envision a novel neural sketch, called the
meta-sketch, with techniques of meta-learning and memory-
augmented neural networks. The meta-sketch learns the
sketching abilities from automatically generated meta-tasks.
Depending on the types of meta-tasks, we study two versions
of the meta-sketch, called basic and advanced meta-sketches.

The basic meta-sketch implements the simulation of basic
sketches, through the training process with basic meta-tasks
following Zipf distributions, which are prevalent in the scenes
of real data streams (Kolajo, Daramola, and Adebiyi 2019;
Zeng and Li 2014; Babcock et al. 2002; Cormode et al. 2012;
PhridviRaja and GuruRao 2016). The advanced meta-sketch
extends the basic version to fast adapt to the specific run-
time of stream processing, through the training with adaptive
meta-tasks, which are generated by online sampling of real
data streams. Our work follows a typical setting where the
distribution of item frequencies follows a skewed distribu-
tion, but the correspondence between items and frequencies
varies. For example, in software-defined networks (SDN),
sketches are deployed to programmable switches to collect
per-flow statistics, where IP packets follow heavy-tailed dis-
tributions (Tang, Huang, and Lee 2019; Hsu et al. 2019).
In distributed databases, it gives advances to collect statis-
tics of data shards to optimize data placement and query
caching, where query phrases follow approximate Zipf dis-

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

6916

Store

Query

Figure 1: The Framework of the Meta-Sketch

tributions (Hsu et al. 2019). Given that the item population
follows a specific distribution, the local distributions, i.e.,
item-frequency correspondences on shards or flows, are dif-
ferent. Instead of retraining learned augmented sketches on
each local distribution, the advanced-sketch can be quickly
adapted to different local distributions once trained.

As a member of the neural data structure family (Kraska
et al. 2018; Rae, Bartunov, and Lillicrap 2019; Hsu et al.
2019; Mitzenmacher 2018), the meta-sketch significantly dif-
fers from conventional sketches, in terms of the structure and
working mechanism. The meta-sketch utilizes NN’s powerful
encoding/decoding capabilities to perceive data distributions
and express and compress explicit or implicit information to
retrieve item frequencies with better accuracies. Meanwhile,
the meta-sketch is differentiable to fully perceive frequency
patterns for self-optimization.

Our contributions are as follows. 1) We propose the meta-
sketch, the first neural data structure for the problem of item
frequency estimation, based on meta-learning. 2) The basic
meta-sketch acquires sketching abilities by learning from
synthetic datasets and outperforms basic sketches in real
datasets. The advanced meta-sketch automatically encom-
passes the ability analogous to the auxiliary structures delib-
erately devised in (learned) augmented sketches, yet yields
better accuracies and robustness when adapted to dynamic
scenes. 3) Through extensive empirical studies on real and
synthetic datasets, we evaluate our proposed meta-sketches
and analyze the mechanism of major modules.

Meta-Sketch Structure
Preliminaries
We consider a standard data stream scenario (Cormode et al.
2012). Suppose a stream SN : {e1, ..., eN} withN items and
n distinct items. Each item ei ∈ SN takes a value from the
item domain X = {x1, ..., xn} where xi 6=xj . The frequency
fi is equal to the number of times that item xi appears in SN .

To leverage learning techniques for item frequency esti-
mation, a naïve way is to train a NN model (e.g., MLP/L-
STM) that learns/memorizes the mapping relationship be-
tween items and frequencies with multiple training iterations,
similar to (Kraska et al. 2018; Hsu et al. 2019; Mitzenmacher
2018). However, it violates the typical setting of stream pro-
cessing where item observations are transient and are there-
fore handled in one pass (Babcock et al. 2002). More, the
costly procedure has to be repeated from the scratch for a
new data stream. Inspired by the meta-bloom filter (Rae, Bar-
tunov, and Lillicrap 2019), we consider a case of one-shot
learning (fitting for one-pass stream processing) by using
meta-learning (Hospedales et al. 2020; Santoro et al. 2016)
and memory-augmented networks (Graves, Wayne, and Dani-
helka 2014; Graves et al. 2016). Meta-learning employs sam-

pled meta-tasks to learn the ability to solve a class of domain
tasks rather than memorizing patterns for a specific task. The
memory-augmented networks incorporate external memories
into NN models, significantly enhancing the potentials of
NN models with more learnable parameters. Meanwhile, it
performs efficient and explicit operations (i.e., reading and
writing) for external memories, allowing NN models to pro-
cess information similarly to conventional data structures.

The framework of the meta-sketch consists of 4 functional
modules, Embedding (FE), Sparse addressing (FSa), Com-
pressed storage matrix (M), and Decoding (Fdec), as shown
in Figure 1. Like traditional sketches, the meta-sketch en-
codes and memorizes online stream items in one pass, and
answers queries by decoding corresponding item-frequency
information from the structure.

Thus, we define 2 operations, Store and Query. Specifically,
the Store operation first passes each incoming stream item
to FE for the embedding representation, and then writes the
embedding vector into M , according to the address derived
byFSa. When estimating the frequency of an item, the Query
operation calculates the item’s address in M via FSa, reads
the corresponding information vector from M and decodes
the frequency by Fdec from the retrieved information vector.

Modules
Embedding. The module FE has two purposes: 1) perform-
ing representational transformation for an incoming item
ei and mapping it into a dense embedding vector zi that
holds implicit features about item-frequency distributions
and serves as the basis for identifying stream items; 2) decou-
pling the embedding vector zi to obtain a refined vector ri,
which is used to derive the address for reading/writing on the
compressed storage matrix M .

Accordingly, FE consists of the embedding network gemb
and the address network gadd. We assume that an item
ei ∈ SN is numerically encoded for the unique identification,
following the conventions of stream processing (Babcock
et al. 2002; Cormode et al. 2012). Thus, we have zi, ri ←
FE(ei), where zi ← gemb(ei) and ri ← gadd(zi). Here,
zi ∈ Rlz is an embedding vector of dimension lz , and
ri ∈ Rlr is a refined vector of dimension lr. The vector
zi serves multiple intents: 1) it makes a basis for deriving the
address of an item in FSa; 2) it serves as the compressed vec-
tor of an item written into M ; 3) it works as a partial input of
Fdec for decoding the item frequency; 4) it also plays the role
of perceiving/compressing patterns of a specific frequency
distribution, as discussed in analysis section. In addition, to
enhance the addressing functionality and eliminate other in-
terference factors, we decouple zi to generate a refined vector
ri, instead of using zi directly for the addressing.

Sparse Addressing. The module FSa aims to derive the
address ai for storing the embedding vector zi into the storage
matrix: ai ← FSa(ri). In terms of functionality, FSa is
analogous to the hash functions of traditional sketches, except
that FSa is parameterized and differentiable. Specifically, the
addressing of the meta-sketch is done via a 3D addressing
matrix A of parameters to be learned and a sparse SoftMax
function: ai ← SparseMax(rTi A), where A ∈ Rd1×lr×d2 .

6917

Then, the batch matrix multiplication of A and the transpose
of ri results in the addressing vector ai ∈ Rd1×1×d2 .

The setting of d1 and d2 determines the size of address
space for storing the embedding vectors. Typical addressing
methods (Rae, Bartunov, and Lillicrap 2019; Graves et al.
2016) use a 2D matrix (lr × d2) for recording the mapping
of an embedding vector to a slot (d2 is the number of slots).
In contrast, we add one more dimension d1 to simulate the
multi-hash setting of traditional sketches, in view of that a
2D addressing matrix can reach a differentiable simulation of
a hash function (Rae, Bartunov, and Lillicrap 2019; Mitzen-
macher 2018). Matrix A simulates multiple hash functions,
yielding robust frequency decoding and the rationality of
the learning optimization. Note that each 2D slice A∗ of A
is stacked from d2-unit vectors bi ∈ Rlr by normalizing
the parameters of A at each gradient update of the training
process. Normalized A can avoid overflowing when com-
pressing its size by reducing data precisions and enhancing
the interpretability (see analysis section).

In addition, we utilize sparse SoftMax (Martins and As-
tudillo 2016; Laha et al. 2018) instead of SoftMax to nor-
malize the address ai. It brings the following benefits by
constraining some bits of ai to zero, which 1) promotes quick
derivation during the back-propagation; 2) reduces the over-
head of storage matrix accessing by skipping the slots of M
corresponding to the “0” bits of ai; 3) leads to de-noising
with the vector compression.

Compressed Storage Matrix. We use a matrix M ∈
Rd1×lz×d2 1 to store an embedding vector zi ∈ Rlz in accor-
dance to its address ai ∈ Rd1×1×d2 . The functionality of M
is similar to the 2D array of counters in traditional sketches,
yet yields better storage compression. Traditional sketches
store item counts. Differently, M stores embedding vectors,
which have richer information compression capabilities, due
to the diversity of value change on different bits.

Decoding. Given a query item xi, the module Fdec, con-
sisting of one NN component gdec, decodes the information
corresponding to xi, to obtain the estimated frequency f̂i. The
vector fed into gdec is the concatenation of vector {M 	 ai},
vector zi, and the current number of items (i.e., N) recorded
in a counter, f̂i ← gdec({M 	 ai}, zi, N). The operator 	
refers to the reading operation for the storage matrix. The ba-
sic form of	 gives the operation asM	ai = MaTi

2 (Graves,
Wayne, and Danihelka 2014; Graves et al. 2016). We con-
sider two optimized forms of 	, inspired by the “count-min”
mechanism of the CM-sketch. The first one gives the mini-
mum value of each row in MaTi , aiming to remove the noise
of other items. The second one gives the minimum value of
each row in MaTi ◦ 1

zi
, a normalized form of MaTi . Here,

◦ denotes the Hadamard product, and zi requires broadcast
operations to comply with its requirements. So, {M 	 ai}
refers to the concatenation of vectors generated by the basic
form and the two optimized forms.

Operations
Operation Store is performed by feeding an incoming item

1In this paper, we control lr : lz ≈ 1 : 5 to compress A.
2aTi means transpose operation for dim 1 and d2

Algorithm 1: Operations
1 Operation Store(ei, M):
2 zi, ri ← FE(ei); ai ← FSa(ri); M ←M + ziai;
3 Operation Query(xi,M ,N):
4 zi, ri ← FE(xi); ai ← FSa(ri);
5 return f̂i ← Fdec({M 	 ai}, zi, N);

Algorithm 2: Training Framework
Data: Learnable parameters θ of Meta-Sketch, Sampler R;

1 while i not reach max training steps do
2 Sample a meta-task ti : {si, qi} ∼ R and count N ;
3 for e(i)j ∈ si do Store(e(i)j , M); end
4 for x(i)j , f

(i)
j ∈ qi do f̂ (i)

j ← Query(x(i)j , M ,N);

L+=LossFun(f (i)
j , f̂

(i)
j);

5 Backprop through: dL/dθ and update parameters θ
6 Normalize A and Clear M ;
7 end

ei to FE and FSa to obtain embedding vector zi and ad-
dress ai, and then additively writing zi to M , weighted by ai:
M ←M + ziai. Here, other writing types (Graves, Wayne,
and Danihelka 2014; Graves et al. 2016; Rae, Bartunov, and
Lillicrap 2019; Santoro et al. 2016) can also be employed, but
simple additive writing is more efficient and allows to com-
pute gradients in parallel (Rae, Bartunov, and Lillicrap 2019).
In addition, additive writing also allows to define Delete
operation for meta-sketch (see the supplement materials3).

Operation Query estimates the frequency of a given query
item xi. First, zi and ai are obtained, similar to that of oper-
ation Store. Then, the vectors {M 	 ai} are retrieved from
M and N can be easily obtained by a small counter. Finally,
{M 	 ai}, zi and N are jointly fed into gdec to get the es-
timated frequency f̂i of xi as the returned value. The two
operations are shown in Algorithm 1.

Meta-Sketch Training
Training Framework
The meta-sketch employs an efficient one-shot meta-training
method (Vinyals et al. 2016). The training process thus con-
tains two phases, pre-training and adaption phases. In the
pre-training phase, the meta-sketch learns an initial set of
module parameters, including gemb, gadd, A, and gdec. The
pre-training goes offline across training units, i.e., basic meta-
tasks, to acquire the ability of stream frequency estimation.
Then, in the adaption phase, the pre-trained meta-sketch goes
fast across a set of light-weighted training units, i.e., adaptive
meta-tasks, to quickly acquire the task-specific knowledge.

The training units, i.e., meta-tasks, are crucial for both
phases. The training process of the meta-sketch on a sin-
gle meta-task is equivalent to simulating storing and query-
ing a data stream instance while computing the error to
optimize the learnable parameters. Thus, a meta-task ti
consists of a store set si (also called a support set) and

3https://github.com/FFY0/meta-sketch/blob/main/Sup_ms.pdf

6918

a query set qi. The store set si can be viewed as an in-
stance of data streams, si:{e(i)1 , ..., e

(i)
Ni
}, where Ni is the

number of stream items. The query set qi can be represented
by a set of items with paired frequencies in si, formally,
qi:{(x(i)1 :f

(i)
1), ..., (x

(i)
ni :f

(i)
ni)}, where ni is the number of

distinct items in si. In this work, we define two types of meta-
tasks, basic and adaptive meta-tasks, corresponding to the
pre-training and adaption phases, respectively.

The two training phases, that are based on different types of
meta-tasks, follow the same training framework, as shown in
Algorithm 2, except for the sampler and initial parameters. To
reduce both absolute and relative errors,i.e.AAE and ARE,4,
we devise an adaptive hybrid loss function (Kendall, Gal, and
Cipolla 2018) for the meta-sketch: 1

2σ2
1
(fi− f̂i)2 + 1

2σ2
2
|fi−

f̂i|/fi + logσ1σ2, where σ1 and σ2 are learned parameters.

Basic Meta-Task Generation
In the pre-training phase, basic meta-tasks should make the
meta-sketch to simulate traditional sketches and preserve
certain generality without relying too much on the patterns
of specific distributions. Therefore, we generate meta-tasks
based on the Zipf distribution, which is found to be prevalent
in real scenes of data streams (Kolajo, Daramola, and Ade-
biyi 2019; Zeng and Li 2014; Babcock et al. 2002; Cormode
et al. 2012; PhridviRaja and GuruRao 2016). A meta-task is
essentially a data stream instance with item size n, which can
be determined by the total number of items N and the rela-
tive frequency distribution p. We can generate meta-tasks by
presupposing different n, f̄ and p, where f̄ is the frequency
mean, since N=f̄×n. Thus, basic meta-task generation is
based on a sampler R : {I, L, P}, as follows.

An item pool I is a subset of item domain X. If the item
domain is known a-priori, it can be directly taken as the
item pool. Otherwise, if the item domain is only partially
known or even unknown, the item pool can be constructed
by sampling from historical records. Even if the item pool
does not completely cover the item domain, the “missing”
item can still be identified, due to the homogeneity of the
domain-specific embedding space, given that the number of
distinct items is less than the item pool capacity |I|.

A frequency mean range L is the range for the frequency
mean f̄ . One can get the value of f̄ by statistics of sampled
stream instances and extract the min and max f̄s to build L.

A distribution pool P consists of many instances gener-
ated according to different parameters of relative frequency
distributions. In this paper, we consider a family of Zipf distri-
butions (Adamic 2000) with varied parameter α, as the base
for constructing P . α can be selected from a wide range to
have a good coverage of different distributions.

Notice that the meta-tasks are for the meta-sketch to learn
the sketching ability, instead of spoon-feeding the meta-
sketch to mechanically memorize the parameters of R. It
means that the trained meta-sketch has the generalization
ability to handle the case not covered in R. The generation of
a meta-task ti can be done based on sampler R, as follows.

4AAE = 1
n

∑n
i=1 |fi − f̂i|; ARE = 1

n

∑n
i=1

|fi−f̂i|
fi

.

We first randomly sample a subset of ni items from I , and
a frequency mean f̄i ∈ L. Then, we sample a distribution
instance pi ∈ P and make the ni items’ frequencies conform
to pi and f̄i. For example, the frequencies of ni items can be
set as ni×f̄i×pi, where pi∼Zipf(α) is a random variable.
The above steps are repeated until the si and qi are built.

Adaptive Meta-Task Generation
While processing real data streams, we can get the item set Ir
and its distribution pr by online sampling. Ir and pr are then
used for generating the set of adaptive meta-tasks. For each
adaptive meta-task, an item subset is sampled from Ir, and
the relative frequency corresponding to each item is sampled
from pr. The process is similar to the generation of basic
meta-tasks. The only difference from basic meta-task gener-
ation is that there is no distribution pool anymore because
the real data stream is unique. Also, we intentionally random-
ize the correspondence between an item and its real relative
frequency on the original data records. It is equivalent to
constructing meta-tasks where the item frequencies dynami-
cally change. For example, the frequency of an item may first
increase, then suddenly drop (Tang, Huang, and Lee 2019).
With adaptive meta-tasks, the meta-sketch learns to quickly
adapt to the distribution pr, while being flexible against the
item frequency change. The detailed algorithms of generating
meta-tasks are shown in supplement materials3.

Experiments
Basic Setup
Dataset. For fair comparison with all competitors, we choose
two widely used real datasets in data stream field. Word-query
(Wq) is a streaming records of search queries, where each
query contains multiple words (e.g., “News today”) (Hsu
et al. 2019). IP-trace (It) consists of IP packets, where
each packet is identified by a unique IP address pair (e.g.,
192.168.1.1/12.13.41.4) (Tang, Huang, and Lee 2019). IP-
trace follows heavy-tailed distributions and the Word-query
follows Zipfian distributions. All items in the two datasets
are numerically encoded, similar to (Hsu et al. 2019).

Baseline. We hereby evaluate the basic and advanced meta-
sketches (BMS and AMS). CM-sketch (CMS) and C-sketch
(CS) are the basis for other sketch variants and the commonly
accepted baselines. So we choose them as competitors to
basic MS (after the pre-training phase). We compare the
advanced MS (after the adaptation phase) with two variants of
CM/C sketches, learned augmented sketch (LS) and cold filter
(CF), which leverage auxiliary structures and both are the
state-of-the-art in their own category. According to the default
setting (Cormode and Muthukrishnan 2005; Charikar, Chen,
and Farach-Colton 2002), the number of hash functions for all
sketches is 3. We adopt two standard metrics for evaluating
the accuracies of frequency estimation, AAE and ARE4.

Parameters. We implement gemb or gadd in MLP with
2-layers of sizes 128 and 48, followed by batch normaliza-
tion, and gdec in a MLP with 3-layers of 256 with residual
connections. We use the relu function for layer connections.
The space budget B is spent on storing M , the same as the
setting in neural data structures (Rae, Bartunov, and Lillicrap

6919

n 5K 10K 20K 40K
B 9KB 11KB 13KB 15KB

BMS
(Wq)

ARE 12.30 14.74 10.98 13.79
AAE 31.54 38.54 40.63 53.67

CS
(Wq)

ARE 32.94 57.97 98.01 162.43
AAE 57.54 101.44 172.44 282.59

CMS
(Wq)

ARE 21.34 48.33 111.82 239.11
AAE 38.04 84.62 195.61 416.01

BMS
(It)

ARE 3.00 1.51 2.97 1.13
AAE 5.57 5.01 6.94 5.56

CS
(It)

ARE 6.08 9.94 15.57 24.49
AAE 10.42 16.82 26.46 41.91

CMS
(It)

ARE 8.12 16.07 32.77 65.19
AAE 13.67 27.39 55.29 110.65

Table 1: Results of Basic Meta-Sketch (Tr)

5k 9k 13k 17k
Space_budget

0
10
20
30
40
50
60

A
R

E

Basic MS
CMS
CS

(a) ARE w.r.t. B

1000 2000 3000 4000 5000
Item_size

0
5

10
15
20
25
30

A
R

E

Basic MS
CMS
CS

(b) ARE w.r.t. n

Figure 2: Basic Meta-Sketch w.r.t. Space Budget/Item Size

2019). Other modules, like hashing libraries, are commonly
accepted as reusable and amortizable resources for multi-
deployment of sketches (Rae, Bartunov, and Lillicrap 2019;
Tang, Huang, and Lee 2019). Note that due to space limita-
tions, the details and methods of parameter settings of M (A),
the ablation experiments and some parameter discussions are
shown in the supplement materials3.

Basic Meta-Sketch
Settings. For each dataset, we train the basic MSs under 4
item pools with {5K, 10K, 20K, 40K} different items, re-
spectively. The meta-task samplers are with Zipf distributions.
We build the distribution pools set with α ∈ [0.8, 1.3] and set
frequency mean range L = [50, 500]. For basic meta-sketch
training, the default maximum number of training steps φ is 5
million, the learning rate is 0.0001, and the Adam optimizer
is used. For evaluation, we consider two types of tasks, Tr
and Ts. Tr are directly obtained by random sampling on two
real data streams with different values of n, i.e., the number
of distinct items. Note that frequency distributions of Tr are
not necessarily obey Zipf distributions. Ts are the synthetic
tasks, where the frequency follows the Zipf distribution with
α ∈ {0.5, 1.1, 1.5}. To evaluate the generability and stability
of basic MS, both Ts(0.5) and Ts(1.5)’s distributions are not
covered by the distribution pool of the meta-task samplers.

Performance. Table 1 shows the performance of all com-
petitors based on real dataset Tr. It shows that the basic MS
outperforms traditional basic sketches, i.e., CMS and CS, on
all testing cases. For example, the results on IP-trace show
that, when n=40K, B=15KB, the ARE of basic MS is 1.13,
while AREs of CMS and CS are 65.19 and 24.49, respectively.
The advantage of meta-sketch is significant when testing on
Ts with different αs, as shown in Table 2. Note that we use
random choices to simulate the ideal hash functions for tradi-

0% 20% 40% 60% 80%100%
New_item_ratio

4

12

20

28

36

44

M
et

ri
cs

ARE
AAE

(a) New Items

5e+65e+55e+45e+35e+2
True_mean

5e+6
5e+5
5e+4
5e+3
5e+2Es

ti
m

at
e

5e+65e+55e+45e+35e+2
True_mean

2
6

10
14
18

A
R

E

(b) New Means

Figure 3: Generalization

0.0 0.2 0.4 0.6 0.8 1.0
Shuffle_ratio

20

30

40

50

60

70

A
A

E

Advanced MS
LCMS
LCS

Figure 4: LS/MS

0 1 2 3 4 5
Train_step 1e5

0
10
20
30
40
50
60

N
or

m

|r|
|z|

0 1 2 3 4 5
Train_step 1e5

1

5

9

13

17

Sp
ar

si
ty

 o
f

a

Figure 5: |r|, |z| w.r.t. Sparsity of a

tional sketches (Hsu et al. 2019), so that CS and CMS have
the same result with the same α in both datasets.

We show the trend of ARE w.r.t. the space budget, in
Figure 2 (a) (Tr, n=5K, Wq). Compared to the dramatic per-
formance degrading of traditional sketches, basic MS holds
stable performance. We show that the trend of ARE w.r.t.
the number of distinct items in Figure 2 (b) (Tr, B=9KB,
Wq). Compared to traditional sketches, the ARE of basic
MS increases sub-linearly w.r.t. the value of n. The AAE has
similar results, see the supplement materials3.

Generalization. We test the generality of basic MS to
new items that are not in the item pool of the meta-task
sampler in Figure 3 (a). We make the experiments (n=5K,
B=9KB, Wq) by replacing some items in Tr with new items,
and vary the fraction of new items to observe the trend of
the performance. It shows that the ARE/AAE moderately
increases w.r.t. the ratio of new items. The performance is
acceptable considering the fact that the item domain is of-
ten stable in practical applications. We then test the gener-
ality of meta-sketches to varied frequency means that are
not in range L of the meta-task sampler, as shown in Fig-
ure 3 (b). The experiment (n=5K, B=9KB, Wq) is done
by sampling a series of Ts tasks with frequency means in
{500, 5K, 50K, 500K, 5000K}. It shows that as the mean
of the true frequencies increases, the estimated frequencies of
meta-sketch increase linearly, so that the ARE keeps stable.

Advanced Meta-Sketch
Settings. The generation of adaptive meta-tasks is similar to
that of basic meta-tasks, except that each item pool reads real
frequency distributions for the adaption as described in the
adaptive meta-task generation section. In the adaption phase,
the maximum number of training steps is 0.002 ∗ φ.

Performance. Table 3 compares the performance of ad-
vanced MS with traditional sketches and their variants, LS
and CF, on real dataset Tr. We implement two LSs accord-
ing to (Hsu et al. 2019), learned CM-sketch (LCMS) and
learned C-sketch (LCS), following the default setting that
(top 1%) high-frequency items are separately stored. For CF,
we follow the parameter setting in (Zhou et al. 2018), and use
CF40, CF70, and CF90 for setting the filter percentages to

6920

n=5K B=9KB n=10K B=11KB n=20K B=13KB n=40K B=15KB
0.5 1.1 1.5 0.5 1.1 1.5 0.5 1.1 1.5 0.5 1.1 1.5

BMS
(Wq)

ARE 0.43 1.05 2.63 0.73 3.25 3.14 0.47 1.67 1.35 0.43 2.58 9.65
AAE 24.70 17.72 8.93 31.24 27.02 9.41 27.29 22.19 9.20 25.04 26.95 19.87

BMS
(It)

ARE 0.59 2.27 9.38 0.73 0.86 1.02 0.72 1.73 7.52 0.73 0.79 2.33
AAE 26.45 21.49 14.73 38.33 19.32 7.95 35.48 22.28 15.74 39.57 21.75 14.06

CS ARE 1.98 6.72 10.99 2.70 12.12 16.90 3.73 20.80 27.46 5.17 37.96 43.76
AAE 74.96 47.98 15.89 102.05 75.83 23.80 140.65 118.29 38.70 194.32 198.40 59.96

CMS ARE 4.96 7.52 5.47 9.27 15.85 9.44 17.29 32.70 16.38 32.24 66.35 27.89
AAE 187.52 53.81 8.17 350.08 99.82 13.58 651.63 185.54 22.88 1213.38 347.32 38.18

Table 2: Results of Basic Meta-Sketch (Ts)

n 5K 10K 20K 40K
B 9KB 11KB 13KB 15KB

AMS
(Wq)

ARE 3.05 2.83 4.06 5.20
AAE 21.42 26.11 35.00 43.81

CF 90
(Wq)

ARE 3.58 14.53 141.70 1127.11
AAE 21.13 59.18 381.63 2217.28

CF 70
(Wq)

ARE 7.95 29.02 139.87 541.37
AAE 29.02 76.58 295.63 970.94

CF 40
(Wq)

ARE 91.16 138.64 244.24 407.83
AAE 174.86 252.22 421.85 693.47

LCMS
(Wq)

ARE 20.52 48.69 111.85 266.50
AAE 37.80 81.93 194.15 451.28

LCS
(Wq)

ARE 25.53 40.84 67.21 104.54
AAE 44.53 78.17 122.57 180.56

AMS
(It)

ARE 0.87 0.89 1.38 2.29
AAE 3.77 4.46 5.13 6.55

CF 90
(It)

ARE 0.85 2.74 4.20 16.71
AAE 1.32 3.01 7.71 31.20

CF 70
(It)

ARE 1.51 3.10 8.95 46.79
AAE 2.57 5.51 16.83 82.84

CF 40
(It)

ARE 12.62 33.50 103.76 155.61
AAE 24.16 60.79 175.14 279.72

LCMS
(It)

ARE 8.34 17.09 35.22 77.79
AAE 13.72 28.39 59.10 129.86

LCS
(It)

ARE 5.20 7.80 11.33 17.12
AAE 8.78 13.10 18.97 28.38

Table 3: Results of Advanced Meta-Sketch

40%, 70%, and 90%, respectively. It shows that the advanced
MS achieves a better performance than LSs and CFs. Also,
AAE/ARE of advanced MS increases more moderately w.r.t.
the number of distinct items n, compared to its competitors.

Next, we compare the performance of the advanced MS
and the LS under dynamic streaming scenarios, as shown in
Figure 4. We select a set of Tr (n=5K, B=9KB, Wq), and
gradually shuffle the correspondence between items and fre-
quencies. It shows that the AAE of advanced MS only slightly
fluctuates between 21.28 and 21.68. In contrast, AAEs of LC-
S/LCMS starts above 37, and increase significantly w.r.t. the
increase of the shuffle ratio. Actually, the classifier of LS
tends to incur more errors due to the gradual shift of high-
/low-frequency items, resulting in an increased number of
hash collisions, thus deteriorating the estimation accuracy.

Analysis
The meta-sketch is trained based on meta-tasks, consisting of
various stream distributions. We expected that meta-sketch
can learn the ability to sketch item frequencies. Somehow, it
is unavoidable that meta-sketch’s ability is limited by patterns

1000 3000 5000
Item_size

5
15
25
35
45
55
65

A
A

E

Advanced MS
K-means MS
Random MS

(a) AAE

Advanced K-means Random
Addressing_matrices

0

20

40

60

80

100

S.
D

.

(b) Standard Deviations

Figure 6: Three Addressing Matrices

0.0 0.5 1.0 1.5 2.0 2.5
Train_step 1e6

8

12

16

20

24

Sp
ar

si
ty

level1
level2
level3
level4

(a) Zipf

0.0 0.5 1.0 1.5 2.0 2.5
Train_step 1e6

8

12

16

20

24

Sp
ar

si
ty

level1
level2
level3
level4

(b) Triangular

0.0 0.5 1.0 1.5 2.0 2.5
Train_step 1e6

8

12

16

20

24

Sp
ar

si
ty

level1
level2
level3
level4

(c) Uniform

Figure 7: The Sparsity of Embedding Vectors

of given meta-tasks. Thus, the two training phases benefit
the balance of the trade-offs. In pre-training, we select rep-
resentative Zipf distributions for basic meta-tasks, making
the meta-sketch adaptable to a wide range of data streams.
In adaptation, we sample meta-tasks from raw data streams
to make the meta-sketch more specialized. Next, we analyze
the working mechanism of the modules of the meta-sketch
as well as their roles in acquiring the two abilities.

Sparse Addressing. We take a 2D slice A∗ (size is lr×d2)
of the A to analyze the process of a refined vector r getting
addressing a. Since A∗ is formed by stacking unit vectors
bi, we have SparseMax(rTA∗)=SparseMax(|r|c). Here,
c=(cosθ1, ..., cosθd2) and θi is the angle between r and bi.
We then continue to transform the form to obtain address-
ing a←Sparsegen(c; u; |r|−1|r|) as described in (Laha et al.
2018), where u is a component-wise transformation function
applied on c, and we set u(c)=c.

Based on the principle of Sparsegen (Laha et al. 2018),
|r| mainly affects the sparsity (i.e., the proportion of non-
zero bits in the vector) of a, while c determines the positions
and values of non-sparse bits. The Figure 5 shows a strong
correlation between the average |r| and the sparsity of a
during training from scratch (n=5K, B=9KB, Wq, BMS).
Since the embedding vector z does not directly participate
in the addressing process, the average |z| remains stable.
Further, we observe that the sparsity of a will eventually
converge to around 1, which means that each item is generally
stored in a slot corresponding to the refined vector r and the
unit vector in A∗ with the maximum cosine similarity.

6921

1000 3000 5000
Item_size

8

16

24

32

40

A
A

E

Advanced MS
No frozen gdec
Frozen gdec

(a) Item Size

5e+65e+45e+2
True_mean

1
2
3
4
5
6

A
R

E

Advanced MS
No frozen gdec
Frozen gdec

(b) Frequency Mean

Figure 8: Generality w.r.t. Decoding

Thus, the role of A∗ is to map refined vectors to the ad-
dressing vectors. The d2 unit vectors in A∗ are the reference
standard for mapping, which is equivalent to the mutually ex-
clusive d2 -divisions of the refined vector space. Follow this
point, we build two matrices K∗ and R∗ of the same size as
A∗. The d2 unit vectors in K∗ come from the cluster centers
of the sampled refined vectors. To achieve mutually exclusive
division, we perform K-means clustering with K=d2 and
Cosine similarity criterion. Then, we normalize the resulting
d2 cluster centers and stack them as K∗. In contrast, the unit
vectors in R∗ are entirely randomly generated.

Figure 6 (a) shows the results of replacing A∗ on the
trained meta-sketch with K∗ and R∗. The meta-sketch with
R∗ shows the worst performance, but the performance of
meta-sketch with K∗ is close to original A∗. Furthermore,
we count the number of items mapped in every slot of A∗,
K∗, R∗ and show their standard deviation in Figure 6 (b).
The standard deviation ofR∗ is much higher thanA∗ andK∗,
and a better meta-sketch tends to store items more evenly in
each slot. Thus, the addressing module simulates the tradi-
tional sketch mechanism. Its principal function is to store the
embedding vectors of items as evenly as possible in multiple
memory slots, and an item is written to only one slot.

Embedding. The major source of conflicts in the meta-
sketch is the stacking of different embedding vectors in a sin-
gle slot. Thus, the sparsity of the embedding vector becomes
an important indicator to determine the degree of conflicts.
Figure 7 shows the relation between the sparsity of embed-
ding vectors and the stream distributions (n=5K, B=9KB,
Wq, AMS). We select the meta-tasks under Zipf, Triangu-
lar, and Uniform distributions with different skewness levels
(see supplement materials3 for detailed setup). The results
show that the sparsity of the embedding vector is positively
proportional to the skewness of a distribution. Therefore, we
speculate that the meta-sketch memorizes the pattern infor-
mation of the distribution being adapted by self-tuning the
sparsity of embedding vectors.

Decoding. The decoding module, as the deepest NNs in
the meta-sketch, integrates various information to predict the
item frequency and achieves generalization ability. To verify
this, we adapt the advanced MS (n=5K, B=9KB, Wq) to a
special adaptive meta-task. The meta-task was sampled from
the real data stream but with a fixed item size (5000) and
frequency mean (250). Meanwhile, we do not change the
correspondence between items and frequencies. Such meta-
task forces the meta-sketch to pay more attention to the fixed
patterns and thus limit its generalization.

Thus, we train the advanced MS with (or without) freez-
ing the decoding module parameters based on the above

0 10 20 30 40
Unstable_memory_slot

0.0

0.5

1.0

0 10 20 30 40
Stable_memory_slot

0.0

0.5

1.0

(a) Multiple Slots

0 20 40 60 80 100
Sort_of_frequency

8

9

10

11

Sp
ar

si
ty

Unstable
Stable

(b) A Single Slot

Figure 9: Unstable Case vs. Stable Case

meta-task. Figure 8 (a) shows the performance changes of
the three models (advanced MS as baseline) on the evalu-
ation tasks (Tr) of different item sizes. Without the frozen
decoding module, the meta-sketch loses generalization abil-
ity at extended item sizes other than 5000. On the contrary,
the meta-sketch with the frozen decoding module still re-
tains the generalization ability and further utilizes the data
stream pattern compared to the advanced MS, achieving the
best performance. Similarly, as shown in Figure 8 (b), the
meta-sketch without the frozen decoding module also loses a
certain generalization ability in terms of frequency mean.

Actually, the above meta-task (termed as stable case) can
be viewed as a special case of an ordinary adaptive meta-task
(termed as unstable case), and augmented sketches utilize
frequency patterns similar to the stable case. For example,
the learned augmented sketch memorizes (relatively) stable
correspondence between items and frequencies, for filtering
high-frequency items. To understand the meta-sketch’s self-
optimizing mechanism from the unstable case to the stable
case, we analyze the storage of high/low-frequency items
between multiple slots and a single slot in the memory. In
Figure 9 (a), we show density heat-maps of low-frequency
(below the top 20% high frequencies) items, stored by meta-
sketches of stable and unstable cases on a 2D slice of the
M , where the x-axis is the index of slots. The two heat-maps
show that the meta-sketch under the stable case can store the
low-frequency items concentratedly in some slots to avoid
conflicts with high-frequency items. Interestingly, the meta-
sketch does not intentionally do this like augmented sketches.
Instead, it is achieved by self-optimization during the train-
ing. Furthermore, Figure 9 (b) shows the relation between the
sparsity of the embedding vector of items stored in a single
slot and the frequency order, where the x-axis represents the
frequencies in the ascending order. We speculate that the
meta-sketch autonomously adjusts the sparsity of the embed-
ding vector within a single slot in the stable case, so that the
high/low-frequency items are automatically separated.

Conclusion
In this paper, we propose a neural data structure: meta-sketch,
for estimating item frequencies in data streams. Unlike tra-
ditional sketches, the meta-sketch utilizes meta-learning and
memory-augmented neural networks. The meta-sketch is pre-
trained with Zipf distributions and can be fast adapted to
specific runtime streams. We study a series of techniques for
constructing the meta-sketch. Extensive empirical studies on
real datasets are done to evaluate our proposals. In the future,
it is interesting to extend our proposal to other sketching tasks
that are supported by traditional sketches.

6922

Acknowledgements
This work is supported by NSFC (No.61772492, 62072428),
the CAS Pioneer Hundred Talents Program.

References
Adamic, L. A. 2000. Zipf, power-laws, and pareto-a ranking
tutorial. Xerox Palo Alto Research Center, Palo Alto, CA,
http://ginger. hpl. hp. com/shl/papers/ranking/ranking. html.
Babcock, B.; Babu, S.; Datar, M.; Motwani, R.; and Widom,
J. 2002. Models and Issues in Data Stream Systems. In
PODS, 1–16.
Charikar, M.; Chen, K. C.; and Farach-Colton, M. 2002. Find-
ing Frequent Items in Data Streams. In ICALP, 693–703.
Cormode, G.; Garofalakis, M. N.; Haas, P. J.; and Jermaine,
C. 2012. Synopses for Massive Data: Samples, Histograms,
Wavelets, Sketches. Found. Trends Databases, 4(1-3): 1–294.
Cormode, G.; and Muthukrishnan, S. 2005. An improved data
stream summary: the count-min sketch and its applications.
J. Algorithms, 55(1): 58–75.
Dzogang, F.; Lansdall-Welfare, T.; Sudhahar, S.; and Cris-
tianini, N. 2015. Scalable Preference Learning from Data
Streams. In WWW 2015, Florence, Italy, May 18-22, 2015 -
Companion Volume, 885–890. ACM.
Estan, C.; and Varghese, G. 2002. New directions in traffic
measurement and accounting. In SIGCOMM, 323–336.
Gao, R.; Xie, X.; Zou, K.; and Pedersen, T. B. 2022. Multi-
dimensional Probabilistic Regression over Imprecise Data
Streams. In WWW ’22: The ACM Web Conference 2022,
Virtual Event, Lyon, France, April 25 - 29, 2022, 3317–3326.
ACM.
Goyal, A.; III, H. D.; and Cormode, G. 2012. Sketch Al-
gorithms for Estimating Point Queries in NLP. In EMNLP-
CoNLL 2012, July 12-14, 2012, Jeju Island, Korea, 1093–
1103. ACL.
Graves, A.; Wayne, G.; and Danihelka, I. 2014. Neural turing
machines. arXiv preprint arXiv:1410.5401.
Graves, A.; Wayne, G.; Reynolds, M.; Harley, T.; Danihelka,
I.; Grabska-Barwińska, A.; Colmenarejo, S. G.; Grefenstette,
E.; Ramalho, T.; Agapiou, J.; et al. 2016. Hybrid comput-
ing using a neural network with dynamic external memory.
Nature, 538(7626): 471–476.
Hospedales, T. M.; Antoniou, A.; Micaelli, P.; and Storkey,
A. J. 2020. Meta-Learning in Neural Networks: A Survey.
CoRR, abs/2004.05439.
Hsu, C.-Y.; Indyk, P.; Katabi, D.; and Vakilian, A. 2019.
Learning-Based Frequency Estimation Algorithms. In ICLR.
Huang, Q.; Lee, P. P. C.; and Bao, Y. 2018. Sketchlearn:
relieving user burdens in approximate measurement with
automated statistical inference. In SIGCOMM, 576–590.
Irfan, M. T.; and Gordon, T. 2019. The Power of Context in
Networks: Ideal Point Models with Social Interactions. In
IJCAI, 6176–6180.
Kendall, A.; Gal, Y.; and Cipolla, R. 2018. Multi-task learn-
ing using uncertainty to weigh losses for scene geometry and
semantics. In CVPR, 7482–7491.

Kolajo, T.; Daramola, O. J.; and Adebiyi, A. A. 2019. Big
data stream analysis: a systematic literature review. J. Big
Data, 6: 47.
Kraska, T.; Beutel, A.; Chi, E. H.; Dean, J.; and Polyzotis, N.
2018. The case for learned index structures. In SIGMOD,
489–504.
Laha, A.; Chemmengath, S. A.; Agrawal, P.; Khapra, M.;
Sankaranarayanan, K.; and Ramaswamy, H. G. 2018. On
controllable sparse alternatives to softmax. NIPS, 31.
Li, J.; Li, Z.; Xu, Y.; Jiang, S.; Yang, T.; Cui, B.; Dai, Y.; and
Zhang, G. 2020. Wavingsketch: An unbiased and generic
sketch for finding top-k items in data streams. In Proceed-
ings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 1574–1584.
Liu, Y.; and Xie, X. 2021. XY-Sketch: on Sketching Data
Streams at Web Scale. In WWW ’21: The Web Conference
2021, Virtual Event / Ljubljana, Slovenia, April 19-23, 2021,
1169–1180. ACM / IW3C2.
Madden, S.; and Franklin, M. J. 2002. Fjording the Stream:
An Architecture for Queries Over Streaming Sensor Data. In
ICDE, 555–566.
Martins, A.; and Astudillo, R. 2016. From softmax to sparse-
max: A sparse model of attention and multi-label classifica-
tion. In ICML, 1614–1623. PMLR.
Mitzenmacher, M. 2018. A model for learned bloom filters
and related structures. arXiv preprint arXiv:1802.00884.
PhridviRaja, M. S. B.; and GuruRao, C. V. 2016. Data mining
: past present and future - a typical survey on data streams.
CoRR, abs/1605.01429.
Rae, J.; Bartunov, S.; and Lillicrap, T. 2019. Meta-learning
neural bloom filters. In ICML, 5271–5280. PMLR.
Roy, P.; Khan, A.; and Alonso, G. 2016. Augmented Sketch:
Faster and More Accurate Stream Processing. In SIGMOD,
1449–1463.
Santoro, A.; Bartunov, S.; Botvinick, M.; Wierstra, D.; and
Lillicrap, T. 2016. Meta-learning with memory-augmented
neural networks. In ICML, 1842–1850. PMLR.
Tang, L.; Huang, Q.; and Lee, P. P. C. 2019. MV-Sketch: A
Fast and Compact Invertible Sketch for Heavy Flow Detec-
tion in Network Data Streams. In INFOCOM, 2026–2034.
IEEE.
Tinati, R.; Wang, X.; Brown, I. C.; Tiropanis, T.; and Hall, W.
2015. A Streaming Real-Time Web Observatory Architecture
for Monitoring the Health of Social Machines. In WWW,
1149–1154.
Vinyals, O.; Blundell, C.; Lillicrap, T.; Kavukcuoglu, K.;
and Wierstra, D. 2016. Matching Networks for One Shot
Learning. In Lee, D. D.; Sugiyama, M.; von Luxburg, U.;
Guyon, I.; and Garnett, R., eds., NIPS, 3630–3638.
Wang, L.; Luo, G.; Yi, K.; and Cormode, G. 2013. Quantiles
over data streams: an experimental study. In SIGMOD.
Weller, T. 2018. Compromised Account Detection Based on
Clickstream Data. In WWW, 819–823.
Zeng, X.-Q.; and Li, G.-Z. 2014. Incremental partial least
squares analysis of big streaming data. Pattern Recognition,
47(11): 3726–3735.

6923

Zhong, Z.; Yan, S.; Li, Z.; Tan, D.; Yang, T.; and Cui, B. 2021.
BurstSketch: Finding bursts in data streams. In Proceedings
of the 2021 International Conference on Management of
Data, 2375–2383.
Zhou, Y.; Yang, T.; Jiang, J.; Cui, B.; Yu, M.; Li, X.; and
Uhlig, S. 2018. Cold Filter: A Meta-Framework for Faster
and More Accurate Stream Processing. In SIGMOD, 741–
756.
Zhu, Y.; and Shasha, D. E. 2002. StatStream: Statistical
Monitoring of Thousands of Data Streams in Real Time. In
VLDB, 358–369.

6924

