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Abstract

Long-term time series forecasting (LTSF) provides substan-
tial benefits for numerous real-world applications, whereas
places essential demands on the model capacity to capture
long-range dependencies. Recent Transformer-based models
have significantly improved LTSF performance. It is worth
noting that Transformer with the self-attention mechanism
was originally proposed to model language sequences whose
tokens (i.e., words) are discrete and highly semantic. How-
ever, unlike language sequences, most time series are sequen-
tial and continuous numeric points. Time steps with tem-
poral redundancy are weakly semantic, and only leveraging
time-domain tokens is hard to depict the overall properties
of time series (e.g., the overall trend and periodic variations).
To address these problems, we propose a novel Transformer-
based forecasting model named InParformer with an Inter-
active Parallel Attention (InPar Attention) mechanism. The
InPar Attention is proposed to learn long-range dependen-
cies comprehensively in both frequency and time domains.
To improve its learning capacity and efficiency, we further
design several mechanisms, including query selection, key-
value pair compression, and recombination. Moreover, InPar-
former is constructed with evolutionary seasonal-trend de-
composition modules to enhance intricate temporal pattern
extraction. Extensive experiments on six real-world bench-
marks show that InParformer outperforms the state-of-the-art
forecasting Transformers.

Introduction
As time series is increasingly complex and pervasive in the
era of big data, time series forecasting (TSF) has become an
integral part of numerous real-world applications in energy,
economics, traffic, weather, etc. Compared to ordinary TSF,
long-term time series forecasting (LTSF) offers stronger
assistance for long-term planning (e.g., in power systems
(Lindberg et al. 2019)) and early warning, but brings more
challenges. Typically, it requires a higher model capacity to
discover longer temporal dependencies and model tougher
nonlinear dynamics. Although RNN-based TSF models (Lai
et al. 2018; Rangapuram et al. 2018; Salinas et al. 2020)
have made notable strides, these iterated multi-step (IMS)
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(Shi and Yeung 2018) approaches suffer from error accu-
mulation (Bengio et al. 2015), inefficient inference, and
tricky parallelization (Vaswani et al. 2017). CNNs or tem-
poral convolutional networks (TCNs) have shown effective-
ness in sequence modeling (Bai, Kolter, and Koltun 2018;
Sen, Yu, and Dhillon 2019), but are still limited by local
receptive fields. Similar to breakthroughs in NLP (Vaswani
et al. 2017; Devlin et al. 2018) and CV (Dosovitskiy et al.
2022; Liu et al. 2021) fields, LTSF has recently benefited
from the Transformer (Vaswani et al. 2017) architecture.
With the self-attention mechanism, Transformer-based mod-
els achieve superiority in capturing long-term dependen-
cies, which is essential for LTSF. The canonical Transformer
with self-attention has quadratic computational and mem-
ory costs. Recent forecasting Transformers (Li et al. 2019;
Kitaev, Kaiser, and Levskaya 2020; Zhou et al. 2021) are
mainly committed to using a sparse scheme to improve the
efficiency of self-attention.

It is worth noting that the standard attention mechanism
was originally proposed to model human-generated lan-
guage sequences. Each step token (i.e., word) is discrete and
highly semantic. Standard point-wise alignment schemes
(including their sparse versions) are reasonable when captur-
ing semantic dependencies. However, most time series are
sequential and continuous numeric points, extremely dissim-
ilar to sequences like language sentences. When the Trans-
former architecture is adopted for time series, there are three
key challenges:

1. Time series contain several steps with information redun-
dancy (e.g., missing values can be obtained by interpola-
tion in some cases). This indicates that performing full-
length queries is computationally redundant. Typically,
Informer (Zhou et al. 2021) proposes the ProbSparse at-
tention which selects top-u dominant queries based on
query sparsity measurement. But this will limit the over-
all representation of time series. Moreover, compressing
the length of key-value pairs is also worth considering.
For example, a memory compressed attention (Liu et al.
2018) reduces the length by using a strided convolution
to process long texts. On the other hand, periodic time
series may have similar sub-processes. Autoformer (Wu
et al. 2021) develops an Auto-Correlation mechanism
that calculates series autocorrelation and selects top-k
possible time delays to conduct a sub-series level aggre-
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gation.
2. The semantic density of time series is low. The inherent

characteristics of time series are difficult to depict with
local or a small number of time-domain steps. However,
many attention mechanisms for TSF (Li et al. 2019; Ki-
taev, Kaiser, and Levskaya 2020; Zhou et al. 2021) are
time-domain sparse. Performing a time-to-frequency do-
main transformation is widely used in time series analy-
sis and can be a suitable solution. After transformation,
each token in the frequency domain becomes highly ”se-
mantic” because it reflects a frequency feature of time se-
ries. FEDformer (Zhou et al. 2022) selects a random sub-
set of frequency components and multiplies them with
learnable complex-number parameters to learn a sparse
representation of time series. It selects a small constant-
length subset for any time series, so this sparse scheme
easily leads to global information loss (e.g., patterns re-
lated to frequency).

3. Real-world time series are often composed of intricate
temporal patterns and entangled with noise. Time se-
ries decomposition is a common strategy to tackle these
knotted patterns (Hyndman and Athanasopoulos 2021).
Besides pattern extraction, an effective decomposition
method can reduce noise. Traditionally, decomposition
is applied as a feature engineering technique during the
preprocessing phase. Autoformer (Wu et al. 2021) intro-
duces the idea of seasonal-trend decomposition (Robert,
William, and Irma 1990) into Transformer by utilizing a
fixed-window moving average. FEDformer (Zhou et al.
2022) replaces a fixed window with a set of ones. How-
ever, the detrended part (as the seasonal component) in
these works relies on predefined average filters.

Motivated by the above, we propose InParformer, an evo-
lutionary decomposition Transformer with interactive par-
allel attention for LTSF. We provide the following solu-
tions to the listed challenges: (1) For redundant time steps,
we employ query selection and key-value pair compression.
Query selection provides two random subsets of queries to
the parallel attention module, reducing the time/space cost
significantly. It also acts as a generalization mechanism on
time steps like a dropout. Key-value pair compression is im-
plemented by an interactive partitioned convolution module
that learns compact multi-resolution temporal partitions. (2)
Considering the limitation of time-domain tokens and the
advantages of frequency-domain ones, we create a parallel
attention module with two sub-attention mechanisms that
work in the frequency and time domains separately. Further-
more, we add global context information to the recombined
outputs of two sub-attention mechanisms. (3) To ease intri-
cate temporal pattern extraction, we follow the decomposi-
tion architecture designed by Autoformer (Wu et al. 2021).
But we use the proposed evolutionary seasonal-trend de-
composition module and deploy fewer ones. With the pro-
posed binary decomposition algorithm, the module can ob-
tain the seasonal component without predefined fixed aver-
age filters. The key contributions are summarized as follows:

• We propose a novel forecasting Transformer named In-
Parformer. It introduces evolutionary seasonal-trend de-

composition (EvoSTD) modules to enhance its ability to
extract intricate temporal patterns.

• We propose an interactive parallel attention (InPar At-
tention) mechanism with frequency-aware attention and
time-aware attention to learn long-range dependencies
comprehensively.

• To improve the learning capacity and computation ef-
ficiency of InPar Attention, we design several mecha-
nisms, including query selection, key-value pair com-
pression (via an interactive partitioned convolution mod-
ule), and recombination.

• Extensive experiments on six popular real-world bench-
marks across multiple domains show that InParformer
achieves better performance than the state-of-the-art
methods under the long-term multivariate and univariate
forecasting settings.

Related Work
Time Series Forecasting As a long-standing and valu-
able research topic, TSF has undergone substantial devel-
opment. Traditional TSF methods mainly focus on statisti-
cal approaches such as ARIMA (Box and Jenkins 1968) and
exponential smoothing (Gardner Jr 1985), which have dif-
ficulty in modeling non-linear temporal dynamics. To solve
this defect, classical machine learning models are introduced
for TSF, such as support vector regression (SVR) (Smola
and Schölkopf 2004) and gradient boosted trees (Chen and
Guestrin 2016). Nevertheless, their performance relies heav-
ily on feature engineering.

Recently, with the thrilling success of deep learning in
many fields, various deep neural networks with powerful
learning capabilities have been developed for TSF. Due to
the strength in sequence modeling, RNNs, including LSTM
(Hochreiter and Schmidhuber 1997) and GRU (Cho et al.
2014), are widely used to capture temporal dependencies.
DeepAR (Salinas et al. 2020) combines RNNs with autore-
gressive methods to predict a probabilistic distribution of
time series. However, due to the recurrent structure, RNN-
based models easily suffer from error accumulation (Bengio
et al. 2015) and have trouble with parallelization (Vaswani
et al. 2017). In addition, CNNs have also found their abilities
in learning temporal representation, such as temporal convo-
lution networks (TCNs) (Bai, Kolter, and Koltun 2018; Sen,
Yu, and Dhillon 2019), but are still limited by the local re-
ceptive fields.

Transformer-Based Models Similar to remarkable pro-
gresses in NLP (Vaswani et al. 2017; Devlin et al. 2018) and
CV (Dosovitskiy et al. 2022; Liu et al. 2021) fields, TSF,
especially long-term TSF, has recently benefited from the
Transformer (Vaswani et al. 2017) architecture. As the cen-
terpiece of Transformer, the self-attention mechanism has
O(1) maximum path length of signals traveling, which is
advantageous for long-range modeling. However, the canon-
ical Transformer has quadratic computation complexity due
to the self-attention mechanism. Numerous sparse strate-
gies are proposed to improve the efficiency of self-attention
(Lin et al. 2021). LogTrans (Li et al. 2019) proposes the
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Figure 1: InParformer architecture. The interactive parallel attention (InPar Attention) is used to perform dependency discovery
in both frequency and time domains. The evolutionary seasonal-trend decomposition (EvoSTD) is used to extract intricate
temporal patterns.

LogSparse attention that each step only attends to previ-
ous steps with exponential intervals to break the memory
bottleneck. Reformer (Kitaev, Kaiser, and Levskaya 2020)
separates tokens into several buckets using locality-sensitive
hashing (LSH) and conducts attention within each bucket.
Informer (Zhou et al. 2021) proposes the ProbSparse atten-
tion which only calculates top-u dominant queries based on
the measured query sparsity. Note that the sparse schemes
developed by these works still follow the standard point-
wise alignment. Autoformer (Wu et al. 2021) proposes
an Auto-Correlation mechanism to conduct a sub-series
level aggregation for the inherent periodicity of time se-
ries. FEDformer (Zhou et al. 2022) learns a sparse tem-
poral representation using frequency enhanced block/atten-
tion based on a random subset of frequency components
and learnable complex-number parameters. Besides, these
two Transformer-based models incorporate seasonal-trend
decomposition blocks to learn temporal patterns. Neverthe-
less, the decomposition blocks are based on single or multi-
ple predefined fixed-window average filters.

Methodology
Preliminary
Given historical data with input length Lx, time series fore-
casting is to predict future horizon with output length Ly .
For LTSF, the output length Ly is larger, i.e., long-term pre-
diction. The data dimension in the model is denoted as D.

Model Architecture
The overall framework of InParformer is shown in Fig-
ure 1. It is a Transformer-based decomposition architec-
ture consisting of interactive parallel attention (InPar Atten-
tion) modules and evolutionary seasonal-trend decomposi-
tion (EvoSTD) modules. The details of these modules will
be described in subsequent sections.

Encoder The encoder is designed to learn the historical
seasonal information and stacked with Nen encoder layers.
As shown in Figure 1, each encoder layer has one InPar At-

tention module and one EvoSTD module. Given the embed-
ded input of encoder X0

en ∈ RLx×D, the details in l-th en-
coder layer are:

Sl
en, = EvoSTD(InParAttn(Xl−1

en ) +Xl−1
en ), (1)

where Xl
en = Sl

en ∈ RLx×D is the seasonal part and is used
as the input of l-th encoder layer; l ∈ {1, . . . , Nen}. The
process is summarized as: Xl

en = Encoder(Xl−1
en ).

Decoder The decoder is used to output the prediction and
contains Nde decoder layers. As shown in Figure 1, each
decoder layer has two InPar Attention modules (the sec-
ond is used as cross-attention) and two EvoSTD modules.
The initialization of the decoder’s inputs is similar to that of
Autoformer (Wu et al. 2021) except for the decomposition
method (using binary decomposition). Given the decoder’s
embedded inputs X0

de,T
0
de ∈ R(Lx

2 +Ly)×D, the details in
l-th decoder layer are:

Sl,1
de ,T

l,1
de = EvoSTD(InParAttn(Xl−1

de ) +Xl−1
de ),

Sl,2
de ,T

l,2
de = EvoSTD(InParAttn(Sl,1

de ,X
Nen
en ) + Sl,1

de ),

Tl
de = Tl−1

de +Wl,1 ∗Tl,1
de +Wl,2 ∗Tl,2

de ,
(2)

where Sl,i
de and Tl,i

de (i ∈ {1, 2}) denote the seasonal and
trend parts; Xl

de = Sl,2
de ; Wl,i (i ∈ {1, 2}) represents the

projector for the trend part Tl,i
de . The process is summarized

as: Xl
de = Decoder(Xl−1

de ,XNen
en ).

The prediction result is the sum of two parts: WS ∗XNde
de +

TNde
de , where WS is to project the seasonal part XNde

de to the
target dimension.

Interactive Parallel Attention
As shown in Figure 2, the InPar Attention is proposed to
learn long-range dependencies from two perspectives: fre-
quency domain and time domain. To improve its learning ca-
pacity and computation efficiency, several mechanisms are
employed, including query selection, key-value pair com-
pression (by an interactive partitioned convolution), and re-
combination.
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Figure 2: Interactive parallel attention (InPar Attention). Two subsets of queries are selected and fed into the parallel attention
module. Benefiting from query selection, the parallel attention can be considered as a single attention. Furthermore, an interac-
tive partitioned convolution (IPConv) is employed to compress the key-value pairs to a smaller length.

Query Selection for Parallel Attention Module For par-
allel attention, it is intuitive to reserve full queries for each,
but this yields twice computational complexity and mem-
ory usage compared to single attention. Previous analyses
show both theoretically and experimentally that the self-
attention matrix is often low rank (Wang et al. 2020; Guo
et al. 2019) and sparse (Child et al. 2019). Numerous sparse
strategies are proposed to avoid computing full (single) at-
tention (Lin et al. 2021). Considering that time series contain
redundant time steps, we select two subsets from full queries
Q ∈ RL×D for two sub-attention mechanisms:

iF, iT = SplitIndex(L,LF, LT),

QF = Q[iF],

QT = Q[iT],

(3)

where SplitIndex(·) is to get two subsets of index randomly
which may have overlaps (random selection is to avoid in-
troducing bias of structural information) ; QF ∈ RLF×D and
QT ∈ RLT×D are the subsets of queries selected by iF and
iT, respectively. For the multi-head version, SplitIndex(·)
gets different iF and iT for each head, which expands the
sampling space of queries and reduces information loss. In
this work, we select LF = L − ⌊c × logL⌋ and LT =
⌊c×logL⌋ queries randomly for each subspace (head) where
c is a sampling factor. We will describe the processing for
insufficient output length caused by incomplete queries in
subsection Recombination.

Interactive Partitioned Convolution Unlike human-
generated language sequences which are information-dense,
most natural signals are not highly semantic (He et al. 2021).
Inspired by the memory-compressed attention (Liu et al.
2018) and the pyramid structures in computer vision tasks
(Chen et al. 2017; Zhao et al. 2017), we propose an inter-
active partitioned convolution (IPConv) to learn a compact
temporal representation at multiple resolutions. As shown
in Figure 3, multiple parallel convolution branches with dif-
ferent settings are applied to capture multi-resolution infor-
mation. Additional padding, convolution, and pooling oper-
ations can be used in some branches to make all branches

output the same length.
For parallel attention module, IPConv is used to provide

a smaller length of key-value pairs and its parameters are
shared between the keys and values processing:

K = IPConv(K),

V = IPConv(V),
(4)

where K,V ∈ RL×D; K,V ∈ RL′×D. The output length
are reduced to L′ = 1

4L. In practice, two convolution
branches are employed. For branch 1, there is a 1-D con-
volution with kernel size = 4, stride = 4. For branch 2,
there are two 1-D convolutions with kernel size = (6, 2),
stride = (2, 2), and a padding operation before the convo-
lutions. Due to the out channels = D1 = D2 = D/2 for
each convolution, the total cost of computation and memory
is similar to that of a single out channels = D convolution.
After concatenation, we do not perform fusion operations
like kernel size = 1 convolution. Besides the considera-
tion of computational cost, this makes multi-head key-value
pairs with multiple resolutions, depending on the convolu-
tion branch they belong to.

Conv1

ConvN
(Opt.)

Conv21 Conv22 Concat

𝐿!×𝐷"

𝐿!×𝐷#

𝐿!×𝐷$

𝐗

Multi-resolution Partitions

Pad

…

𝐗
𝐿×𝐷 𝐿!×𝐷

Figure 3: Interactive partitioned convolution (IPConv) as
a context and compression module. Multiple convolution
branches work with different settings and output reduced di-
mensions. The multi-resolution partitions from the convolu-
tion branches are concatenated.

Frequency-Aware Attention Given the projected queries
Q ∈ RLQ×DK , keys K ∈ RLK×DK , and values V ∈
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RLK×DV , frequency-aware attention (FAA) performs a
scaled dot-product attention in the frequency domain:

FAA(Q,K,V) = F−1(softmax(
F(Q)F(K)⊤√

DK

)F(V)),

(5)
where F ,F−1 denote the Fast Fourier Transform (FFT) and
its inverse (IFFT). In practice, since the input is real, the out-
put of FFT is Hermitian-symmetric (Oppenheim 1999) and
the negative frequencies are redundant. Therefore, with the
real FFT (RFFT) which only computes the positive frequen-
cies, the dot-product operation in FAA is performed with the
half-length queries, keys, and values in the frequency do-
main. Finally, the inverse RFFT transforms the result to the
time domain with the original length. The formulation of
multi-head version is similar to the canonical one and omit-
ted.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16Pad Pad

Receptive Fields

1

2

3 42

1 3 4

21 3 4

1 2 3 4
1 2 3 4

1 2 3 4

… … … …1 16…

IPConv𝐗 𝐗

Conv1

Conv2

ConvN
(Opt.)

…

Figure 4: Illustration of multi-resolution partitioning by IP-
Conv for a simple sequence. The result is the concatenation
of partitions by multiple convolution branches with different
receptive fields. The length is reduced from 16 to 4.

When as a sub-attention in InPar Attention, its input is the
subset of queries QF ∈ RLF×D and the compressed key-
value pairs, K,V ∈ RL′×D. The process is summarized as
follows:

ZF = FAA(QF,K,V), (6)
where ZF ∈ RLF×D. Compared to canonical attention with
full input, FAA for InPar Attention performs dependency
discovery in the frequency domain and greatly reduces the
computational cost of the dot product through query selec-
tion, key-value pair compression, and RFFT.

Time-Aware Attention Given the projected queries Q ∈
RLQ×DK , keys K ∈ RLK×DK , and values V ∈ RLK×DV ,
time-aware attention (TAA) performs additive attention
(Bahdanau, Cho, and Bengio 2014) which contains learn-
able parameters for scoring (in the time domain):

TAA(Q,K,V) = softmax(tanh(Q+∗ K)wv)V, (7)

where +∗ denotes the addition with broadcasting; wv ∈
RDK is a learnable weight vector. The formulation of multi-
head version is similar to the canonical one and omitted.

When as a sub-attention in InPar Attention, its key-value
pairs K,V ∈ RL′×D are shared with FAA while the queries
are QT ∈ RLT×D. It can be written as:

ZT = TAA(QT,K,V), (8)

where ZT ∈ RLT×D. Besides the compressed key-value
pairs, we set the query length LT = ⌊c× logL⌋ (c is a small
constant factor) in practice, reducing the cost and achieving
O(L logL) complexity.

Recombination From the parallel attention module, we
get ZF and ZT for the queries with indices iF and iT (from
Eq.(3)). ZF and ZT will be recombined together based on the
indices iF and iT. Since there are unselected indices, the total
output length is insufficient. To address this problem, we ob-
tain the global context information by value aggregation and
incorporate it into the recombination result (as the values
of unselected indices). Especially for the multi-head version
(each head has different unselected indices), this processing
can be considered as the concatenation between the feature
maps of global context and those of the parallel attention
module. The recombination process is as follows:

Z = Aggregate(V),

Z[iF] = ZF,

Z[iT] = ZT,

(9)

where Z ∈ RL×D is the recombination result and initialized
with the global context information by value aggregation. In
practice, the aggregation is performed by sum(·)/L.

Linearh

Linearl

𝐒!

𝐒"
𝐒

Feed
Fusion 𝐒#$%

𝐓
𝐗 Binary

Decomp

Figure 5: Evolutionary seasonal-trend decomposition
(EvoSTD) module. The binary decomposition yields the
seasonal and trend components. The high and low-frequency
information Sh,Sl of seasonal component are yielded by
the specific linear layers. They are further combined with
the seasonal component by a special Feed-Forward layer,
i.e., FeedFusion.

Evolutionary Seasonal-Trend Decomposition
As shown in Figure 5, we propose an evolutionary seasonal-
trend decomposition (EvoSTD) module to learn entangled
temporal patterns. In EvoSTD, the seasonal and trend parts
are first yielded by the binary decomposition. Since the sea-
sonal part contains rich frequency information, two linear
layers initialized with the wavelet coefficients are adopted
to extract high and low-frequency information. Then the sea-
sonal part is combined with the frequency information and
transformed by FeedFusion for an evolution. The details can
be formalized as:

S,T = BinaryDecomp(X),

Sevo = FeedFusion(Concat[S,WhS,WlS])
(10)

where X ∈ RL×D is the input series; Wh,Wl ∈ RL×L

are the specific linear layers; FeedFusion is a special Feed-
Forward layer with in channels = 3D; Sevo,T ∈ RL×D

are the evolutionary seasonal part and trend. The process can
be summarized as: Sevo,T = EvoSTD(X).
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Models InParformer FEDformer Autoformer Informer LogTrans Reformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
E

T
T

m
2 96 0.198 0.288 0.203 0.287 0.255 0.339 0.365 0.453 0.768 0.642 0.658 0.619

192 0.260 0.323 0.269 0.328 0.281 0.340 0.533 0.563 0.989 0.757 1.078 0.827
336 0.319 0.365 0.325 0.366 0.339 0.372 1.363 0.887 1.334 0.872 1.549 0.972
720 0.420 0.417 0.421 0.415 0.422 0.419 3.379 1.338 3.048 1.328 2.631 1.242

E
le

ct
r. 96 0.184 0.296 0.193 0.308 0.201 0.317 0.274 0.368 0.258 0.357 0.312 0.402

192 0.186 0.298 0.201 0.315 0.222 0.334 0.296 0.386 0.266 0.368 0.348 0.433
336 0.202 0.314 0.214 0.329 0.231 0.338 0.300 0.394 0.280 0.380 0.350 0.433
720 0.228 0.335 0.246 0.355 0.254 0.361 0.373 0.439 0.283 0.376 0.340 0.420

E
xc

ha
ng

e 96 0.120 0.252 0.148 0.278 0.197 0.323 0.847 0.752 0.968 0.812 1.065 0.829
192 0.230 0.354 0.271 0.308 0.300 0.369 1.204 0.895 1.040 0.851 1.188 0.906
336 0.427 0.482 0.460 0.500 0.509 0.524 1.672 1.036 1.659 1.081 1.357 0.976
720 1.106 0.813 1.195 0.841 1.447 0.941 2.478 1.310 1.941 1.127 1.510 1.016

Tr
af

fic

96 0.557 0.340 0.587 0.366 0.613 0.388 0.719 0.391 0.684 0.384 0.732 0.423
192 0.577 0.349 0.604 0.373 0.616 0.382 0.696 0.379 0.685 0.390 0.733 0.420
336 0.597 0.359 0.621 0.383 0.622 0.337 0.777 0.420 0.733 0.408 0.742 0.420
720 0.612 0.364 0.626 0.382 0.660 0.408 0.864 0.472 0.717 0.396 0.755 0.423

W
ea

th
er 96 0.212 0.286 0.217 0.296 0.266 0.336 0.300 0.384 0.458 0.490 0.689 0.596

192 0.259 0.322 0.276 0.336 0.307 0.367 0.598 0.544 0.658 0.589 0.752 0.638
336 0.317 0.358 0.339 0.380 0.359 0.395 0.578 0.523 0.797 0.652 0.639 0.596
720 0.395 0.409 0.403 0.428 0.419 0.428 1.059 0.741 0.869 0.675 1.130 0.792

IL
I

24 2.934 1.107 3.228 1.260 3.483 1.287 5.764 1.677 4.480 1.444 4.400 1.382
36 3.049 1.069 2.679 1.080 3.103 1.148 4.755 1.467 4.799 1.467 4.783 1.448
48 3.067 1.088 2.622 1.078 2.669 1.085 4.763 1.469 4.800 1.468 4.832 1.465
60 3.043 1.116 2.857 1.157 2.770 1.125 5.264 1.564 5.278 1.560 4.882 1.483

Table 1: Multivariate results with different prediction lengths Ly ∈ {96, 192, 336, 720} and fixed input length Lx = 96 (For
ILI, Ly ∈ {24, 36, 48, 60}, Lx = 36). Electr. is short for the Electricity dataset.

Algorithm 1: Binary Decomposition

Input: Series X with length L.
1: Initialization: seasonal component S = X; trend com-

ponent T = 0; current segment is X
2: while length of a current segment ≥ 2 do
3: let M: average of each current segment
4: update S: subtract M
5: update T: add M
6: update current segments: split in half
7: end while
8: update T: smooth T by moving average
9: return S, T

Binary Decomposition For the intricate seasonal patterns
in real-world data, we design a binary decomposition algo-
rithm based on the divide-and-conquer paradigm, which ex-
tracts seasonality without predefined fixed-window average
filters. The pseudo-code for binary decomposition is pre-
sented in Algorithm 1.

Complexity Analysis
In this work, the theoretical complexities of FAA and TAA
are O(L′L) and O(L′ logL), respectively (L′ is the com-

pressed length by IPConv). However, the query lengths of
FAA and TAA mainly depend on query selection, so they are
adjustable. Moreover, IPConv and RFFT further reduce the
computational cost. Concretely, the attention matrix of TAA
is c logL × L′, while that of FAA is L−c logL

2 × L′

2 , where
’ 12 ’ is caused by RFFT. Although InPar Attention contains
parallel attention modules, it is efficient.

Experiment
To evaluate the proposed InParformer, we perform exten-
sive experiments on six popular real-world benchmarks, in-
cluding energy, traffic, economics, weather, and disease do-
mains. More detailed experimental information is provided
in the Appendices.

Datasets (1) ETT (Zhou et al. 2021) contains load and oil
temperature collected from electricity transformers. It has
four sub-datasets as ETTh1, ETTh2, ETTm1, and ETTm2 in
two resolutions (1 hour and 15 minutes). (2) Electricity1 in-
cludes the hourly electricity consumption of 321 clients. (3)
Exchange (Lai et al. 2018) collects daily exchange rates for

1https://archive.ics.uci.edu/ml/datasets/
ElectricityLoadDiagrams20112014
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Models InParformer FEDformer Autoformer Informer LogTrans Reformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
W

ea
th

er 96 0.0022 0.036 0.0062 0.062 0.0110 0.081 0.004 0.044 0.0046 0.052 0.012 0.087
192 0.0038 0.048 0.0060 0.062 0.0075 0.067 0.002 0.040 0.0060 0.060 0.010 0.044
336 0.0033 0.045 0.0041 0.050 0.0063 0.062 0.004 0.049 0.0060 0.054 0.013 0.100
720 0.0030 0.042 0.0055 0.059 0.0085 0.070 0.003 0.042 0.0070 0.059 0.011 0.083

E
T

T
h2

96 0.117 0.264 0.128 0.271 0.153 0.306 0.213 0.373 0.217 0.379 1.411 0.838
192 0.169 0.319 0.185 0.330 0.204 0.351 0.227 0.387 0.281 0.429 5.658 1.671
336 0.225 0.373 0.231 0.378 0.246 0.389 0.242 0.401 0.293 0.437 4.777 1.582
720 0.241 0.399 0.278 0.420 0.268 0.409 0.291 0.439 0.218 0.387 2.042 1.039

E
xc

ha
ng

e 96 0.105 0.247 0.154 0.304 0.241 0.387 1.327 0.944 0.237 0.377 0.298 0.444
192 0.207 0.360 0.286 0.420 0.300 0.369 1.258 0.924 0.738 0.619 0.777 0.719
336 0.400 0.498 0.511 0.555 0.509 0.524 2.179 1.296 2.018 1.070 1.833 1.128
720 1.172 0.836 1.301 0.879 1.260 0.867 1.280 0.953 2.405 1.175 1.203 0.956

IL
I

24 0.598 0.564 0.708 0.627 0.948 0.732 5.282 2.050 3.607 1.662 3.838 1.720
36 0.553 0.592 0.584 0.617 0.634 0.650 4.554 1.916 2.407 1.363 2.934 1.520
48 0.653 0.658 0.717 0.697 0.791 0.752 4.273 1.846 3.106 1.575 3.755 1.749
60 0.789 0.748 0.855 0.774 0.874 0.797 5.214 2.057 3.698 1.733 4.162 1.847

Table 2: Univariate results with different prediction lengths Ly ∈ {96, 192, 336, 720} and fixed input length Lx = 96 on typical
datasets (For ILI, Ly ∈ {24, 36, 48, 60}, Lx = 36). Weather, ETTh2, Exchange, and ILI datasets are 10-minutely, hourly, daily,
and weekly recorded, respectively.

8 different countries from 1990 to 2016. (4) Traffic2 con-
tains the hourly road occupancy rates from the California
Department of Transportation. (5) Weather3 records 21 me-
teorological indicators every 10 minutes for one year. (6)
ILI4 includes the weekly patients with influenza-like illness
(ILI) from 2002 to 2021. For all datasets, train/valid/test sets
are split as 0.7/0.1/0.2 in chronological order.

Baselines Since classic models like ARIMA and
CNN/RNN-based networks lack competitive performance
(Zhou et al. 2021; Wu et al. 2021), we select five state-of-
the-art Transformer-based models: FEDformer (Zhou et al.
2022), Autoformer (Wu et al. 2021), Informer (Zhou et al.
2021), Reformer (Kitaev, Kaiser, and Levskaya 2020), and
LogTrans (Li et al. 2019). The FEDformer (FEDformer-f,
also based on Fourier transform) is used as the main baseline
model because of its best performance in these baselines.

Implementation Settings The mean square error (MSE)
and mean absolute error (MAE) are used as metrics. The
proposed model is trained using Adam (Kingma and Ba
2014) optimizer with an initial learning rate of 10−4 and
contains 2 encoder layers and 1 decoder layer. The sam-
pling factor c for query selection is set to 3. The batch
size is set to 32, and the training epochs are set to 10 with
early stopping. The common hyperparameters are consistent
with FEDformer (Zhou et al. 2022) and Autoformer (Wu
et al. 2021). All experiments are implemented with PyTorch
(Paszke et al. 2019) and conducted on the VenusAI plat-

2http://pems.dot.ca.gov
3https://www.bgc-jena.mpg.de/wetter/
4https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html

form (Yao et al. 2022) with 4 NVIDIA GeForce RTX 2080Ti
11GB GPUs.

Main Results
To evaluate different future horizons, we fix the input length
Lx = 96 (Lx = 36 for ILI) and set the prediction lengths
Ly ∈ {96, 192, 336, 720} (Ly ∈ {24, 36, 48, 60} for ILI).
The detailed results of ETT full benchmark are given in Ap-
pendix A.

Multivariate Results As shown in Table 1, InParformer
achieves the best performance in most cases. For example,
under the input-96-predict-192 setting, compared to FED-
former, InParformer yields 3.3% (0.269 → 0.260) MSE
reduction in ETTm2, 7.5% (0.201 → 0.186) in Electric-
ity, 15.1% (0.271 → 0.230) in Exchange and 6.2% (0.276
→ 0.259) in Weather. Overall, InParformer achieves a rela-
tive MSE reduction of 5.9% (excluding ILI) compared with
FEDformer. Even for the Exchange dataset that lacks clear
periodicity, InParformer still outperforms other models. No-
tably, the performance of InParformer varies consistently as
the future horizon increases, which indicates InParformer
performs a stable prediction.

Univariate Results As shown in Table 2, InParformer
still achieves the best performance on the typical datasets
with various temporal resolutions. Compared to FEDformer,
InParformer significantly improves the forecasting perfor-
mance and gives an overall MSE reduction of 20.5%. In par-
ticular, for both datasets with obvious periodicity (ETTh2)
and those without (Exchange), InParformer outperforms
other models. Besides, for these typical datasets with var-
ious domains and resolutions, InParformer achieves signif-
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icant and stable improvements, which indicates its advan-
tages in prediction capacity.

Decomp EvoSTD MOE STD

Metric MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.379 0.419 0.514 0.483 0.488 0.479
192 0.416 0.440 0.563 0.513 0.546 0.503
336 0.455 0.458 0.536 0.506 0.582 0.525
720 0.475 0.488 0.602 0.558 0.574 0.549

W
ea

th
er 96 0.212 0.286 0.277 0.350 0.240 0.316

192 0.259 0.322 0.336 0.382 0.311 0.367
336 0.317 0.358 0.379 0.413 0.344 0.388
720 0.395 0.409 0.409 0.420 0.423 0.434

Table 3: Comparison of decomposition methods. STD and
MOE denote the seasonal-trend decomposition blocks from
Autoformer and FEDformer, respectively.

Attn ProbAttn AutoCorr FEA InParAttn

Metric MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.439 0.456 0.397 0.427 0.381 0.423 0.379 0.419
192 0.562 0.524 0.439 0.456 0.417 0.443 0.416 0.440
336 0.509 0.502 0.464 0.466 0.457 0.465 0.455 0.458
720 0.603 0.565 0.473 0.490 0.476 0.483 0.475 0.488

W
ea

th
er 96 0.242 0.330 0.200 0.285 0.210 0.288 0.212 0.286

192 0.362 0.423 0.292 0.362 0.271 0.332 0.259 0.322
336 0.381 0.427 0.363 0.416 0.451 0.451 0.317 0.358
720 0.575 0.466 0.529 0.529 0.414 0.427 0.395 0.409

Table 4: Comparison of attention mechanisms. ProbAttn,
AutoCorr, and FEA denote the attention mechanisms from
Informer, Autoformer, and FEDformer, respectively.

Ablation Studies
To evaluate the effectiveness of our designs, we perform ad-
ditional experiments on typical datasets.

Decomposition Methods We replace EvoSTD in InPar-
former with the series decomposition blocks of Autoformer
and FEDformer, i.e., STD and MOE. For a fair compari-
son, STD and MOE in InParformer are under their default
settings and followed by a Feed-Forward layer. As shown
in Table 3, EvoSTD achieves better performance than other
series decomposition blocks, which indicates its strength in
extracting temporal patterns.

Attention Mechanisms We replace InPar Attention in In-
Parformer with the attention mechanisms of Informer, Aut-
oformer, and FEDformer. As shown in table 4, the proposed
InPar Attention achieves the best performance on two typi-
cal datasets. For the ETTh1 dataset with clear periodicity, In-
Par Attention yields a slight improvement compared to FEA
(the frequency enhanced attention from FEDformer) but sig-
nificant improvements compared to other attention mecha-
nisms. This implies that frequency information is vital for
periodic time series. For the Weather dataset without clear

periodicity, InPar Attention still brings significant improve-
ments, which shows the success of parallel attention design.

IPConv and Time-Aware Attention Types For InPar At-
tention, we evaluate the effectiveness of IPConv and the
impact of time-aware attention (TAA) types. As shown in
the left part of Table 5, IPConv gives obvious performance
improvement, which implies it can learn effective multi-
resolution temporal partitions. As shown in the right part of
Table 5, TAA based on additive attention (Bahdanau, Cho,
and Bengio 2014), which contains learnable parameters for
scoring, is more suitable for InPar Attention than that based
on dot-product attention.

Option IPConv W/o IPConv TAA-A TAA-D

Metric MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.379 0.419 0.378 0.415 0.379 0.419 0.439 0.457
192 0.416 0.440 0.418 0.441 0.416 0.440 0.568 0.537
336 0.455 0.458 0.456 0.461 0.455 0.458 0.502 0.498
720 0.475 0.488 0.546 0.536 0.475 0.488 0.604 0.560

W
ea

th
er 96 0.212 0.286 0.211 0.268 0.212 0.286 0.205 0.279

192 0.259 0.322 0.293 0.352 0.259 0.322 0.275 0.333
336 0.317 0.358 0.350 0.386 0.317 0.358 0.379 0.420
720 0.395 0.409 0.425 0.428 0.395 0.409 0.454 0.458

Table 5: Ablation studies of IPConv and time-aware atten-
tion (TAA) types. Left: The effectiveness of IPConv in InPar
Attention. Right: The impact of TAA types (with IPConv).
TAA-A denotes TAA based on additive attention. TAA-D
denotes TAA based on dot-product attention.

Conclusions

In this paper, we propose a novel Transformer-based model
named InParformer for long-term time series forecasting.
To capture long-range dependencies comprehensively, we
propose InPar Attention as an interactive parallel attention
mechanism performing in both the time and frequency do-
mains. Considering that time series with temporal redun-
dancy are weakly semantic, we design query selection and
key-value pair compression (via an interactive partitioned
convolution module), which can also improve the compu-
tation efficiency. In the recombination stage, the global con-
text information and the outputs of two sub-attention mech-
anisms are aggregated together. Moreover, the evolutionary
seasonal-trend decomposition module is deployed in InPar-
former to enhance intricate pattern extraction. Extensive ex-
periments on real-world benchmarks show that InParformer
is capable of forecasting long-term time series effectively.
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