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Abstract
Causal analysis for time series data, in particular estimating
individualized treatment effect (ITE), is a key task in many
real-world applications, such as finance, retail, healthcare,
etc. Real-world time series can include large-scale, irregular,
and intermittent time series observations, raising significant
challenges to existing work attempting to estimate treatment
effects. Specifically, the existence of hidden confounders can
lead to biased treatment estimates and complicate the causal
inference process. In particular, anomaly hidden confounders
which exceed the typical range can lead to high variance es-
timates. Moreover, in continuous time settings with irregular
samples, it is challenging to directly handle the dynamics of
causality. In this paper, we leverage recent advances in Lip-
schitz regularization and neural controlled differential equa-
tions (CDE) to develop an effective and scalable solution,
namely LipCDE, to address the above challenges. LipCDE
can directly model the dynamic causal relationships between
historical data and outcomes with irregular samples by consid-
ering the boundary of hidden confounders given by Lipschitz
constrained neural networks. Furthermore, we conduct exten-
sive experiments on both synthetic and real-world datasets to
demonstrate the effectiveness and scalability of LipCDE.

Introduction
Estimating individualized treatment effects (ITE) for time
series data, which makes predictions about causal effects of
actions (Zhang, Cao, and Liu 2022), is one key task in many
domains, including marketing (Brodersen et al. 2015; Abadie,
Diamond, and Hainmueller 2010), education (Mandel et al.
2014), healthcare (Kuzmanovic, Hatt, and Feuerriegel 2021),
etc. However, the existence of confounders can introduce
bias into the estimation (Simpson 1951; Pearl et al. 2000).
For example, in finance applications, multi-factor investing
strategies can give investors a deeper understanding of the
risk drivers underlying a portfolio. The unobserved factors
(i.e., hidden confounders), which typically happen at irregular
time stamps and are not reflected in finance system records
or are difficult to observe, could bring bias by influencing
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both interventions and stock returns. The reason is that even
a small number of existing factors (such as Small Minus Big
and High Minus Low) could significantly explain the cross-
section of stock returns (D’Acunto et al. 2021). If we can
simulate such hidden confounders within a reasonable range,
we are able to obtain treatment estimates with reduced bias
and variance by making appropriate impact assumptions on
the relationship between treatments and outcomes (Wang
and Blei 2019).

Estimating ITE is an extremely challenging task in contin-
uous time settings with hidden confounders. First, estimating
treatment effects in large-scale irregular and sparse time se-
ries still has considerable room for improvement as previous
works fail to consider the continuous time setting, where
it is difficult to handle the dynamic behavior and complex
interactions of covariates and treatments (Gao et al. 2021).
Second, hidden confounders’ values generated by random-
ness and noise can introduce high variance and undesirable
explanations. For example, in healthcare applications, accord-
ing to domain knowledge of drug resistance, the response to
single-agent immune-checkpoint inhibitors (ICI) in uremic
patients ranged from 15% to 31% (Zibelman, Ramamurthy,
and Plimack 2016). Consequently, when left unconsidered,
drug resistance will introduce biased estimates of treatment
effects. Furthermore, any substitute confounders generated
by data-driven methods with an impact on outcomes over
31% can lead to high variance.

Recently, there have been several attempts to address these
challenges. To model hidden confounders over time, (Ba-
hadori and Heckerman 2021) introduce a new causal prior
graph for the confounding information and concept com-
pleteness to improve the interpretability of prediction mod-
els; (Mastakouri, Schölkopf, and Janzing 2021) study the
identification of direct and indirect causes for causal feature
selection in time series solely based on observational data.
Deconfounding-based models (Hatt and Feuerriegel 2021;
Bica, Alaa, and Van Der Schaar 2020) use latent variables
given by their factor model as substitutes for the hidden
confounders to render the assigned treatments conditionally
independent. However, existing works either cannot handle
irregular time series (Bahadori and Heckerman 2021; Mas-
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takouri, Schölkopf, and Janzing 2021), or have strong as-
sumptions (Hatt and Feuerriegel 2021; Bica, Alaa, and Van
Der Schaar 2020). Furthermore, the range of hidden con-
founders generated by previous data-driven works is possibly
unjustifiable, which will distort (obscure or augment) the true
causal relationship between treatments and outcomes.

In this work, we consider the task of estimating treat-
ment effects under continuous time settings with multi-cause
hidden confounders (which affect multiple treatments and
the outcome). To tackle the above two challenges, we pro-
pose a novel Lipschitz regularized neural controlled differ-
ential equation (LipCDE) model for estimation by obtaining
the constrained time-varying hidden confounders. Specif-
ically, LipCDE first infers the interrelationship of hidden
confounders on treatment by estimating the boundary of hid-
den confounders: we decompose the historical covariates into
low-frequency components and high-frequency components
in the spectral domain. Then we use Lipschitz regulariza-
tion (Araujo et al. 2021) on the decomposition to get the
latent representation. Afterward, we model the historical tra-
jectories with neural CDE using sparse numerical solvers,
which is one of the most suitable methods for large-scale
problems under the continuous time setting (Fröhlich, Loos,
and Hasenauer 2019). In this way, we can explicitly model
the observed irregular sequential data as a process evolv-
ing continuously in time with a dynamic causal relationship
to equip the LipCDE with interpretability. In the outcome
model, we re-weight the population of all participating pa-
tients and balance the representation via applying the inverse
probability of treatment weighting (IPTW) strategy (Lim,
Alaa, and van der Schaar 2018).

In this paper, we conduct extensive experiments on both
simulated and real-world datasets. Experimental results show
that LipCDE outperforms other state-of-the-art estimating
treatment effect approaches. From a qualitative perspective,
experiments show that LipCDE is in agreement with the true
underlying hidden confounders in simulated environments,
which can effectively eliminate bias in causal models (Pearl
et al. 2000). In addition, the average RMSE of TSD (Bica,
Alaa, and Van Der Schaar 2020) and SeqConf (Hatt and
Feuerriegel 2021) on MIMIC-III’s blood pressure outcome
and COVID-19 datasets decreases by 28.7% and 32.3%, re-
spectively. To the best of our knowledge, this is the first
complete estimating treatment effects model that considers
both the boundary of hidden confounders and the continuous
time setting.

We summarize the main contributions as follows:

• LipCDE utilizes a convolutional operation with Lipschitz
regularization on the spectral domain and neural con-
trolled differential equation from observed data to obtain
hidden confounders, which are bounded to reduce the
high variance of treatment effect estimation.

• LipCDE can fully use information of observed data and
dynamic time intervals, allowing the continuous inclusion
of input interventions and supporting irregularly sampled
time series.

• Sufficient experiments demonstrate the effectiveness of
LipCDE in estimating treatment effect on both synthetic

and real-world datasets. Particularly, experiments on
MIMIC-III and COVID-19 demonstrate the potential of
LipCDE for health care applications in personalized med-
ical recommendation.

Related Work
Treatment effects learning in the static setting. In recent
years, there has been a significant increase in interest in the
study of causal inference accomplished through represen-
tational learning (Kallus, Mao, and Udell 2018; Curth and
van der Schaar 2021). (Johansson, Shalit, and Sontag 2016)
propose to take advantage of the multiple processing meth-
ods assigned in a static environment. (Shalit, Johansson, and
Sontag 2017) show that balancing the representational distri-
butions of the treatment and control groups can help upper
limits of error for counterfactual outcome estimates. However,
these approaches rely on the strong ignorability assumption,
which ignores the influence of implicit hidden confounders.
Many works focus on relaxing such assumptions with the
consideration of hidden confounders including domain ad-
versarial training (Berrevoets et al. 2020; Curth and van der
Schaar 2021). (Guo, Li, and Liu 2020a) and (Guo, Li, and
Liu 2020b) propose to unravel the patterns of hidden con-
founders from the network structure and observed features
by learning the representations of hidden confounders and
using the representations for potential outcome prediction.
(Wang and Blei 2019) propose to estimate confounding fac-
tors in a static setting using a latent factor model and then
infer potential outcomes using bias adjustment. Nevertheless,
such works fail to take advantage of the dynamic evolution of
the observed variables and the inter-individual relationships
which are present in the time-dynamic setting.

Treatment effects learning in the dynamic setting with-
out hidden confounders. There are many related previous
works estimating treatment effects in dynamic settings includ-
ing g-computation formula, g-estimation of structural nested
mean models (Hernán and Robins 2010), IPTW in marginal
structural models (MSMs) (Robins and Hernán 2009), and
recurrent marginal structural networks (RMSNs) (Lim, Alaa,
and van der Schaar 2018), CRN (Bica et al. 2020) etc. In
addition, Gaussian processes (Schulam and Saria 2017) and
bayesian nonparametrics (Roy, Lum, and Daniels 2017) have
been tailored to estimate treatment response in a continuous
time setting in order to incorporate non-deterministic quantifi-
cation. Besides, (Soleimani, Subbaswamy, and Saria 2017)
relies on regularization to decompose the observed data into
shared and signal-specific components in treatment response
curves from multivariate longitudinal data. However, those
models still need constraint methods to guarantee the poste-
rior consistency of the sub-component modules and cannot
directly model the dynamic causal relationship between dif-
ferent time intervals. While (Seedat et al. 2022; De Brouwer,
Gonzalez, and Hyland 2022) directly model the dynamic
causal relationship, they make a strong assumption with no
hidden confounders, which does not have the flexibility to be
applied to all real-world scenarios.

Treatment effect learning in the dynamic setting with
hidden confounders. Rather than making strong ignorabil-
ity assumptions, (Pearl 2012) and (Kuroki and Pearl 2014)
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theoretically prove that observed proxy variables can be used
to capture hidden confounders and estimate treatment effects.
(Veitch, Sridhar, and Blei 2020) use network information as a
proxy variable to mitigate confounding bias without utilizing
the characteristics of the instances. TSD (Bica, Alaa, and Van
Der Schaar 2020) introduces recurrent neural networks in the
factor model to estimate the dynamics of confounders. In a
similar vein, (Hatt and Feuerriegel 2021) propose a sequential
deconfounder to infer hidden confounders by using Gaussian
process latent variable model and DTA (Kuzmanovic, Hatt,
and Feuerriegel 2021) estimates treatment effects under dy-
namic setting using observed data as noisy proxies. Besides,
DSW (Liu, Yin, and Zhang 2020) infers the hidden con-
founders by using a deep recursive weighted neural network
that combines current treatment assignment and historical in-
formation. DNDC (Ma et al. 2021) aims to learn how hidden
confounders behave over time by using current network ob-
servation data and historical information. However, previous
works have not bounded confounders leading to high variance
estimates when the data-driven approach produces anomaly
confounders which have exceeded the impact constraint over
treatments and outcomes.

Problem Setup
Estimating Treatment Effects Task
Here we define the problem of estimating treatment ef-
fects from irregular time series observations formally: ob-
servational data for each patient i at irregular time steps
ti0 < · · · < timi

for some mi ∈ N. We have observed
covariates Xi = [Xi

t0 , X
i
t1 , . . . , X

i
tmi

] ∈ Xt and corre-
sponding treatments Ai = [Ai

t0 , A
i
t1 , . . . , A

i
tmi

] ∈ At,
and atk is the set of all j possible assigned treatments at
timestep tk. Additionally, we have hidden confounder vari-
ables Zi = [Zi

t0 , Z
i
t1 , . . . , Z

i
tmi

] ∈ Zt. We omit the patient
id i on timestamps unless they are explicitly needed. Com-
bining all hidden confounders, observed covariates, and ob-
served treatments, we define the history before time tk as
Hi

tk
= {Xi

<tk
, Ai

<tk
, Zi

<tk
} as the collection of all historical

information.
We focus on one-dimensional outcomes Y i =

[yit0 , y
i
t1 , . . . , y

i
tm ] ∈ Yt and we will be interested in the

final expected outcome E[Y i
at,tm |Hi

t , X
i
t , A

i
t, Z

i
t ], given a

specified treatment plan a. In this way, we can define the
individual treatment effect (ITE) with historical data as
τ it = E[Y i

bt,tm
|Hi

t , X
i
t , A

i
t, Z

i
t ] − E[Y i

at,tm |Hi
t , X

i
t , A

i
t, Z

i
t ]

for two specified treatments a and b. In practice, we rely on
assumptions to be able to estimate τ it for any possible treat-
ment plan, which begins at time step t until just before the
final patient outcome Y is measured:

Assumption 1. Consistency (Lim, Alaa, and van der Schaar
2018). If A≥t = a≥t, then the potential outcomes for fol-
lowing the treatment plan a≥t is the same as the observed
(factual) outcome Ya≥t

= Y .

Assumption 2. Positivity (Overlap) (Imai and
Van Dyk 2004). For any patient, if the probability
P (a<tm , z<tm , x≤tm) ̸= 0 then the probability of assigning

treatment: P (Atm = atm |a<tm , z<tm , x≤tm) > 0 for all
atm .

Assumption 1 and Assumption 2 are relatively stan-
dard assumptions of causal inference which assume that
artificially assigning a treatment has the same impact as
if it were naturally assigned and that each treatment has
some nonzero probability. Additionally, most previous works
in the time series domian make the sequential strong ig-
norability assumption (Robins and Hernán 2009) that if
there are no hidden confounders, for all possible treatments
At, given the historical observed covariates Xt, we have:
Ya≥tm

⊥⊥ Atm |A<tm , X<tm . However, this assumption is
often untestable due to the presence of hidden confounders in
the real-world. Inspired by (Wang and Blei 2019) and (Bica,
Alaa, and Van Der Schaar 2020), we assume sequential single
strong ignorability in the continuous time setting:

Assumption 3. Sequential single strong ignorability in con-
tinuous time setting. If there exists multi-cause confounders,
we have Ya≥tm

⊥⊥ Atm |Xtm , H<tm , for all a≥tm and all j
possible assigned treatments.

Assumption 3 expands the sequential single strong ignor-
ability assumption from (Bica, Alaa, and Van Der Schaar
2020) to the continuous time setting. Thus, only multi cause
hidden confounders exist at every time stamp, having a causal
effect on the treatment At and potential outcome Yt. One of
our goals is to learn representations of hidden confounders
under the line of deconfounding works, which aim to elimi-
nate bias, based on the following theorem:

Theorem 1. If the distribution of the assigned causes p(aT )
can be written as p(θ, xT , zT , aT ), we can obtain sequential
ignorable treatment assignment:

Ya≥tm
⊥⊥ Atm |Xtm , H<tm , (1)

for all a≥tm with possible assigned treatments, where θ are
the parameters of the causal model.

Thm. 1 is proved by (Bica, Alaa, and Van Der Schaar
2020) and (Hatt and Feuerriegel 2021) in the discrete case.
Here, we extend Thm. 1 to the continuous-time setting. Nev-
ertheless, there are still existing challenges in applying the
deconfounder framework to longitudinal data in the contin-
uous time setting. After its original publication, (Wang and
Blei 2019) has been met with concerns of difficulty in re-
constructing confounders in practical applications and the
deconfounder assumption itself has been challenged. Towards
the necessity of further constraints on the latent confounding,
we introduce a frequency-based Lipschitz assumption on the
structure of the hidden confounders in Assumption 4.

Assumption 4. Decomposition of time-varying hidden con-
founders. The hidden confounders Zt can be decomposed into
high-frequency components Zh

t and low-frequency Zl
t with

distinguishable frequency gap ω, i.e., Ztm = (Zh
tm , Zl

tm)
such that low-frequency confounders have Lipschitz bounded
influence and high-frequency confounders are sufficiently
covered by proxy variables in Xt.

In this sense, we combine two existing extensions of TSD
under a unifying assumption. Zl

t contains smooth information
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(the trend of the confounding data) bounded by its maximal
frequency ωl. The functional outcomes are then Lipschitz
bounded by constant L. Further, its distance and influence
from its original value Z0 will be bounded, reflecting its
bounded variation from a static confounder U , as explored
in (Hatt and Feuerriegel 2021). Further, the high-frequency
components are assumed to have corresponding noisy proxy
variables available in the measured covariates X . Conse-
quently, sufficient information about these high-frequency
confounders can be derived from the observed proxy vari-
ables, as explored in (Kuzmanovic, Hatt, and Feuerriegel
2021). Unified together, our assumption explores a semipara-
metric assumption enhancing the practicality of applying the
deconfounder setup to longitudinal data.

Neural Controlled Differential Equations
Starting from an initial state u(t0), neural ordinary differ-
ential equations (ODE) evolve following a neural network
based differential equations. The state at any time ti is given
by integrating an ODE forward in time:

du(t)

dt
= F (u(t), t; θ), u(ti) = u(t0) +

∫ ti

t0

du(t)

dt
dt, (2)

where F ∈ F , parametrized by θ with (F , ||·||) a normed vec-
tor space and u(t0) is the initial state. Neural CDEs are a fam-
ily of continuous time models that explicitly define the latent
vector field fθ by a neural network parameterized by θ, and
allow for the dynamics to be modulated by the values of an
auxiliary path over time. To constrain the ODE into CDE for-
mat, let Ht = (H1

t , H
2
t , · · · , Hn

t ) : t ∈ [t0, tm] → Rn×m

be the m dimensional representation of historical data with all
n observed history control paths, the integral be a Riemann-
Stieltjes integral and F be a continuous function acting on
all control path (Kidger et al. 2020). For continuous time syn-
thetic control, we estimate the latent representation of treat-
ment effect Ht through: Ht = Ht0 +

∫ t

t0
fθ(Hs)dHs, t ∈

(t0, tm].

Lipschitz Bounded Neural Controlled
Differential Equations (LipCDE)

To address the treatment effect estimation task from irreg-
ular time series observation, we must avoid inference bias
caused by hidden confounders. Thus, we propose an approach
called Lipschitz bounded neural controlled differential equa-
tions (LipCDE). As shown in Figure 1, LipCDE first infers
the interrelationship of hidden confounders on treatment by
bounding the boundary of hidden confounders via the hidden
confounders boundary branch. After that, LipCDE feeds the
history trajectories into the synthetic control branch, which
utilizes both observed data and hidden confounders to gen-
erate the latent representation of each patient. Besides, we
re-weight the population of all participating patients and bal-
ance the representation via applying a time-varying inverse
probability of treatment weighting (IPTW) strategy. Com-
bined with the LSTM layer, the outcome model can get the
final estimate of the treatment effect.

Hidden Confounders Boundary Branch
In this section, we focus on how to use Lipschitz regular-
ized convolutional operation to infer the hidden confounders
from both high-frequency signals and low-frequency signals
of observed data. As shown in Fig 1, the Fourier transform
F on observed data first converts the time-domain signals
of history trajectories ht (Cao et al. 2020, 2021), includ-
ing covariates and treatments with length N , into the corre-
sponding amplitude and phase at different frequencies. Then,
we sort the spectrum so that the spectrum corresponding to
low-frequency information is concentrated at the origin after
Fourier transform, and high-frequency information is far from
the origin and contains rich boundary and detail information.
After that, we use Gaussian high-pass filter Gh and Gaus-
sian low-pass filter Gl to get high-frequency components and
low-frequency components, respectively:

Gh(ht) = Gh(F(ht)) = 1− e
−D2(F(ht))

2D2
0

Gl(ht) = Gl(F(ht)) = e
−D2(F(ht))

2D2
0

(3)

The use of spectral-domain analysis enables change detection
in certain frequency bands where the influence of trends (low
frequency) or daily and seasonal cycles can be considered as
time-invariant hidden confounders. The high-frequency com-
ponents are easily perturbed, which can be treated as noisy
proxies. We extract the influence of hidden confounders on
the covariates by analyzing the presence of the covariates
we extract. After that, both components are fed into convolu-
tional operation:

Fc(ht) = Conv(Gh(ht)) + Conv(Gl(ht)) (4)

Next, we use the inverse Fourier transform F−1 converts
the spectrum information of latent representation back to the
time-domain signals. Then, the RNN layer takes the repre-
sentation F−1(Fc(ht)) as input and outputs the hidden states
hhc of hidden confounders. Note that, after the Fourier trans-
form, time series no longer consider specific timesteps in the
spectral domain. In addition, in contrast to directly handling
irregular time series as (Ware 1998), we use the processing of
the Fourier transform as a mathematical component without
considering time intervals, and irregular sampling is enabled
in the next component.

To define the boundary of hidden confounders’ value in-
terval, following the RNN layer, the confounders encoder
uses a Lipschitz bounded linear fully-connected (FC) layer
with Lipschitz regularization (Perugachi-Diaz, Tomczak, and
Bhulai 2021) to map the output of RNN layer into a hid-
den embedding, i.e. z = g(hhc) = Wghhc + bg. The
function g : Rn → RK can be said as L-Lipschitz if
there exists an L such that for all x, y ∈ Rn, we have
||f(x)− f(y)|| ≤ L||x− y|| (B’ethune et al. 2021). In this
work, we enforce the function g to satisfy the 1-Lipschitz
constraint, where g is the linear FC layer. Following spectral
normalization of (Gouk et al. 2021):

Lip(g) ≤ 1, if ||Wg||2 ≤ 1, (5)
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Figure 1: Architecture of LipCDE.

where || · ||2 is the spectral matrix norm, we enforce the
linear weights Wg be at most 1-Lipschitz by having a spec-
tral norm less than one. This constraint ensures that when
the observed data is within the normal interval, the inferred
hidden confounders satisfy the corresponding bound interval
with constant L.

Synthetic Control Branch
Since the neural ordinary differential equations(ODE) fam-
ily is effective in continuous time problems, we use neural
CDE to estimate latent factors and treatment effects. Inspired
by (Bellot and Van Der Schaar 2021), let ut := gη (Ht) =
gη ([xt, at, ẑt, Ht−1]), where gη : Rn×m → Rl×m is a set of
functions that embeds the historical data into a l-dimensional
latent state. Let f be a neural network parameterizing the
latent vector field. To apply Lipschitz constraint on f , follow-
ing (Erichson et al. 2020), we define f as a continuous time
Lipschitz RNN:

f(h, t) = ARh+ σ (WRh+ Uu(s) + b) , (6)

where hidden-to-hidden matrices AR and WR are trainable
matrices and nonlinearity σ(·) is an 1-Lipschitz function.
Now ḟ = ∂f(t)

∂t is the time derivative and f considers both
controlling the history path of observed data and the hidden
state of RNN. A latent path can be expressed as the solution
to a controlled differential equation of the form:

ut = ut0 +

∫ t

t0

f (us, s) dH
0
s, t ∈ (t0, tm] (7)

In that way, we can directly utilize adjoint methods (Chen
et al. 2018) of CDEs to enable computing the gradient with a
dynamic causal relationship between historical information
controlled by H and outcomes. For each estimate of fθ and
gη the forward latent trajectory in time that these functions
defined through (7) can be computed using any numerical
ODE solver as those equations continuously incorporate in-
coming interventions, without interrupting the differential
equation:

ût1 , . . . , ûtk = ODESolve (fθ, ut0 ,Ht1 , . . . ,Htk) (8)

Outcome Model
After sampling the latent representation Ut = (ût1 , . . . , ûtk)
of historical trajectories on each patient, we use the outcome
model to estimate the treatment effect. To adjust the treatment
assignment and get the final estimates, we first re-weight

the population via an RNN model, which can handle time-
varying treatment assignment (Lim, Alaa, and van der Schaar
2018), to estimate the propensity scores and IPTW of each
dynamic time steps. After that, we use two stacked LSTM
layers to decode the padded hidden sequence of irregular
inputs. Then we use a linear fully-connected layer mapping
the output of the LSTM layer into an unbiased estimated
treatment response over time. For the loss function part, we
weight each patient via the generated score of IPTW, wi, and
use the mean squared error (MSE) function as our target loss
function: L = 1

N

∑N
i=1 w

i(ŷitm+1
− yitm+1

)2.
Empirically, the identifiability can be assessed on the syn-

thetic data via sample hidden confounders Zt repeatedly to
evaluate the uncertainty of the outcome model estimates.
However, identifiability might not be guaranteed under the
framework of deconfounding in the completely general case
(D’Amour 2019; Ogburn, Shpitser, and Tchetgen 2020). Pre-
vious works find that the estimates may have a high variance
when the treatment effects are non-identifiable (Bica, Alaa,
and Van Der Schaar 2020; Hatt and Feuerriegel 2021; Kuz-
manovic, Hatt, and Feuerriegel 2021). To achieve the goal
of identifiability and obtain unbiased ITE estimates, (Hatt
and Feuerriegel 2021) introduces the assumption of Time-
Invariant Unobserved Confounding, which requires the hid-
den confounders are invariant for different timestamps, and
(Kuzmanovic, Hatt, and Feuerriegel 2021) claim that we can
learn the hidden embedding to make Sequential Strong Ig-
norability assumption hold via the observed noised proxies.
Thus, the greater identifiability of our work follows both
(Hatt and Feuerriegel 2021) and (Kuzmanovic, Hatt, and
Feuerriegel 2021) as it utilizes both time-invariant hidden
confounders from low-frequency components and dynamic
noisy proxies from the high-frequency component of the
observed data simultaneously in practice.

Experiments
Experiments Setting
In this section, we estimate the treatment effects for each
time step by one-step ahead predictions on both synthetic
dataset and real-world datasets including MIMIC-III (John-
son et al. 2016) dataset and COVID-19 (Steiger, Mußgnug,
and Kroll 2020) dataset. Hidden confounders in such real-
world datasets is present as variables not included in the
records. However, for real-world data, it is untestable to esti-
mate the oracle treatment responses and we only evaluate the
factual treatment effects.
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(a) RMSE results on treatment effects (b) RMSE results on counterfactual treatment effects

Figure 2: Results on synthetic data. The x-axis of each graph is the confounding degree and the y-axis is RMSE(×100%).

Baselines. LipCDE is evaluated by examining the degree
of control it has over hidden confounders. The baselines
used in these experiments are: Oracle, which estimates ITE
with simulated (oracle) confounders; Conf. (No-hidden),
which assumes no hidden confounders and can make it clear
how hidden confounders here impact the performance of
treatment effect prediction models; CRN (Bica et al. 2020),
which introduces a sequence-to-sequence counterfactual re-
current network to estimate treatment effects and utilizes
domain adversarial training to handle the bias from time-
varying confounders; TSD (Bica, Alaa, and Van Der Schaar
2020), which leverages the assignment of multiple treatments
over time to enable the estimation of treatment effects in
the presence of multi-cause hidden confounders; DTA (Kuz-
manovic, Hatt, and Feuerriegel 2021), which combines a
LSTM autoencoder with a causal regularization penalty to
learn dynamic noisy proxies and render the potential out-
comes and treatment assignment conditionally independent;
SeqDec (Hatt and Feuerriegel 2021) , which utilizes a Gaus-
sian process latent variable model to infer substitutes for the
hidden confounders; OriCDE (Bellot and Van Der Schaar
2021), which can estimate ITE explicitly using the formalism
of linear controlled differential equations. Except OriCDE,
all baselines share the same design of the outcome model,
i.e. MSM (Robins, Hernán, and Brumback 2000), which uses
inverse probability of treatment weighting (IPTW) to adjust
for the time-dependent confounding bias by linear regres-
sion and then constructs a pseudo-population to compute
final outcome, and RMSN (Lim, Alaa, and van der Schaar
2018), which estimates IPTW using RNNs instead of logistic
regressions. OriCDE and LipCDE use the outcome model
introduced in previous section.

Estimating Treatment Effects Experiments
Synthetic experiments. For the synthetic dataset, in addi-
tion to estimating factual treatment responses, we will also
perturb the inputs to quantify how accurate counterfactual
relationships are captured by LipCDE. Following TSD, we
have T = 30 max time steps and N = 5000 patient trajecto-

ries, where each patient has p = 5 observed covariates and
different treatments. We vary the confounding degree param-
eter γ to produce a varying amount of hidden confounders.
Factual results use the outcome results corresponding to the
real-world treatment we simulate. For the counterfactual es-
timations, we set all the treatments to 0 at the timestamp
interval of [ li2 , li], where li is the sequential length of patient
i, and get the outcome of the counterfactual world. As shown
on Figure 2, for the factual treatment effects results, methods
considering hidden confounders are generally better than the
models without the hidden confounders (CRN, Conf.). Note
that, LipCDE achieves better results on all different levels
of confounders and its outcome is closest to the estimates
obtained using simulated (oracle) confounders, which means
LipCDE can yield less biased estimates compared with other
baselines. In addition, LipCDE remains stable and becomes
closer to the simulated (oracle) confounders baseline when
we increase the degree of confounders influence, which indi-
cates that our model can effectively constrain the influence
boundary of hidden confounders based on observed data. For
the counterfactual path results, we interestingly observe that
the RMSE decreases as the confounding degree increases.
The reason is that when the degree increase, Zt gets easier to
handle with fixed treatment plans referring to the data gener-
ation method. Besides, LipCDE still performs better than the
current baselines in the counterfactual world, indicating the
stability of LipCDE for hidden confounder’s reasoning and
the validity of the estimation.

Real-world experiments on MIMIC-III & COVID-19.
real-world data allow us to demonstrate LipCDE has strong
scalability and interpretability in real-world applications.
MIMIC-III dataset contains 5000 patient records with 3 treat-
ments, 20 covariates of patients and 2 outcomes including
blood pressure (Blo. pre.), and oxygen saturation (Oxy. sat.).
The COVID-19 dataset contains 401 German districts over
the period of 15 February to 8 July 2020. We extract 10
time-varying covariates and 2 treatments with 2 outcomes,
’active cases’, in each district. The results in Table 1 show
that LipCDE outperforms existing baselines in all cases. By
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Outcome Model - MSM (RMSE%) RMSN (RMSE%) Ours (RMSE%)
Methods CRN Conf. DTA TSD Conf. DTA TSD SeqDec OriCDE LipCDE
Blo. pre. 12.43 14.54 13.31 13.57 14.46 18.33 12.11 13.74 10.55 9.19
Oxy. sat. 4.17 4.72 4.65 4.33 4.22 4.21 4.25 4.19 4.24 4.15

COVID-19 - 15.10 13.93 13.07 11.48 13.52 11.08 11.43 11.36 7.56

Table 1: Results for real-world data (MIMIC-III and COVID-19) experiments. Lower is better.

Degree MR Conf. TSD SeqDec LipCDE MR Conf. TSD SeqDec LipCDE
0

15%
3.43 2.83 2.43 1.19

30%
3.32 2.84 3.19 2.29

0.2 3.47 2.84 2.69 2.6 4.66 3.65 2.95 2.62
0.4 3.45 3.67 3.7 3.39 4.19 4.06 3.89 3.61

Table 2: Irregular data with missing value

modeling the dependence of the assigned treatment for each
patient, LipCDE is able to infer latent variables and make
orderly use of the causal relationship between latent vari-
ables and observed data. This result is consistent with what
we have seen in the simulated dataset. Specifically, the av-
erage RMSE on MIMIC-III’s blood pressure outcome and
COVID-19 datasets is decreased by 28.7% and 32.3% over
TSD and SeqConf respectively. Besides, the small increase
in oxygen saturation is thought to be due to the fact that oxy-
gen saturation itself is not dependent on current covariates
and is less influenced by treatment. Although these results
on real data require further validation by physicians, they
demonstrate the potential of the method to be applied in real
medical scenarios.

Figure 3: Analysis of the outcome on synthetic data’s coun-
terfactual path. Comparing with baseline models, LipCDE
can estimate treatment effects with lower variance

Analysis
Irregular time series with missing values. We emphasize
that our model is suitable for irregular time series sampling.
Therefore, we remove randomly 15% and 30% of the aligned
synthetic data with different confounding degrees, indepen-
dently for each unit. Except for CDE-based methods, all the
baselines require some form of prior interpolation. Results
shown in Table 2 demonstrate that our model achieves a
comparable performance with irregularly aligned data. Note
that, comparing with SeqDec which only models irregular
samples via an indirect simple multivariate Gaussian distribu-
tion, LipCDE shows the ability of handling continuous time
setting by utilizing the CDE module.

Analysis on bounded hidden confounders. We perform
the analysis using simulated datasets and evaluate the hidden
confounder’s quality on LipCDE with TSD and SeqDec. As
shown on Figure 3, LipCDE can achieve better estimate re-
sults with lower variance compared with the previous strong
baseline. Further, we find that TSD can induce highly confi-
dent posterior distributions with lower bounds of the hidden
confounders, which can yield highly confident biased predic-
tions (Zheng, D’Amour, and Franks 2021). The seqDec has
more discrete points and no obvious boundary, which also
leads to the degradation of the model performance. LipCDE
controls the data distribution of hidden confounders more
accurately by filtering the convolutional neural network and
Lipschitz regularization, which has higher similarity to the
originally hidden confounder compared with other baselines.

Conclusion
In this paper, we proposed the Lipschitz-bounded neural
controlled differential equation (LipCDE), a novel neural
network that utilizes hidden confounders for estimating treat-
ment effect in the case of irregular time series observations.
For one thing, it uses the performance of time-varying ob-
servations in the frequency domain to infer the hidden con-
founders under Lipschitz regularization. For another thing,
a well-designed CDE explicitly models the combinational
latent path of observed time series, which can effectively cap-
ture underlying temporal dynamics and intervention effects.
With experimental results on synthetic and real datasets, we
demonstrate the effectiveness of LipCDE in reducing bias in
the task of estimating treatment effects.
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