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Abstract

Learning representations for graph-structured data is essen-
tial for graph analytical tasks. While remarkable progress has
been made on static graphs, researches on temporal graphs
are still in its beginning stage. The bottleneck of the temporal
graph representation learning approach is the neighborhood
aggregation strategy, based on which graph attributes share
and gather information explicitly. Existing neighborhood ag-
gregation strategies fail to capture either the short-term fea-
tures or the long-term features of temporal graph attributes,
leading to unsatisfactory model performance and even poor
robustness and domain generality of the representation learn-
ing method. To address this problem, we propose a Frame-
level Timeline Modeling (FTM) method that helps to capture
both short-term and long-term features and thus learns more
informative representations on temporal graphs. In particular,
we present a novel link-based framing technique to preserve
the short-term features and then incorporate a timeline ag-
gregator module to capture the intrinsic dynamics of graph
evolution as long-term features. Our method can be easily as-
sembled with most temporal GNNs. Extensive experiments
on common datasets show that our method brings great im-
provements to the capability, robustness, and domain general-
ity of backbone methods in downstream tasks. Our code can
be found at https://github.com/yeeeqichen/FTM.

Introduction
Graph representation learning intends to transform nodes
and links on the graph into lower-dimensional vector em-
beddings, which can be quite challenging due to the complex
graph topological structures and node/link attributes. While
approaches on static graphs have made breakthroughs and
demonstrated distinguishable applicability in various fields
(Graepel et al. 2010; He et al. 2014; Li et al. 2022; Zhu et al.
2022), those on temporal graphs are just getting started.
Modeling a temporal graph (which may evolve over time
with the addition, deletion, and changing of its attributes)
is a core problem in developing real-world industrial sys-
tems (e.g., social network, citation network, recommenda-
tion systems) where many data are time-dependent, and is

*These authors contributed equally.
†Corresponding author.

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: An example of temporal graph modeling. Given
a model that has learnt the dynamics of a large number of
users’ shopping behaviors in high-dimensional space, what
the man in green tends to buy in the future is predictable.

much more difficult because of the temporal factors. Figure
1 gives an example of temporal graph modeling.

In learning representations on temporal graphs, a key
point is the neighborhood aggregation strategy, which al-
lows information passing and gathering among graph at-
tributes, so that nodes learn their representations from their
neighbors. For static graphs, directly linked nodes are neigh-
bors to each other because they all appear in the one and
only topology. In contrast, temporal graph attributes scatter
sparsely across the timeline, leading to temporal-structure
inconsistency. For any node in a temporal graph, a node
connected to it is not necessarily a neighbor, for this node
may appear a long time ago or disappear soon. Each node
in a temporal graph may also have several temporal neigh-
borhoods, posing a challenge for information aggregation.
Therefore, how to design the neighborhood aggregation
strategy on temporal graphs remains an open question.

Recent works introduce snapshot-based methods (Kumar,
Zhang, and Leskovec 2019; Pareja et al. 2020) and temporal
random walk-based methods (Nguyen et al. 2018; Xu et al.
2020) for neighborhood aggregation, but are often too sim-
ple to capture the evolution of temporal graphs over time.
The comparison of the above two methods and our method
is shown in Figure 2. In particular, snapshot-based methods
equally slice the timeline into a sequence of snapshots, each
of which contains nodes and links that occurred within its
time span. This kind of method treats a snapshot as a static
graph and fails to model the temporal properties within a
snapshot, losing short-term features of graph attributes. On
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the other hand, temporal random walk-based methods do not
impose restrictions on the time range, but select temporal
neighbors from the past according to a certain rule (most of-
ten randomly) and learn representations based on the neigh-
borhood attributes and their time information. However, the
problem is that the randomly constructed temporal neighbor-
hood cannot ensure a balance between short-term features
and long-term features.

To develop a representation learning method on temporal
graphs that adequately captures both short-term and long-
term features, we propose a simple but effective Frame-level
Timeline Modeling method (FTM for short), at the heart of
which is the innovation of the temporal neighborhood ag-
gregation strategy: first, we refer to the concept of frame1

in signal processing, and put forward a novel method called
link-based framing technique, where we separate most re-
cent links into several frames (i.e., temporal neighborhoods)
to emphasize short-term features; then, we extract frame fea-
tures with a frame aggregator, which can be easily replaced
by most GNN methods; finally, we design a timeline ag-
gregator for learning the intrinsic dynamics of successive
frames across the timeline to capture long-term features.

We conduct experiments on several widely-used bench-
marks in both transductive and inductive settings, and the re-
sults demonstrate the effectiveness of our proposed method.
Moreover, the robustness and domain generality of baselines
and our method are also evaluated through quantitative and
qualitative experiments, which further suggest the insights
of FTM. Our main contributions are summarized as follows:

• We propose a simple but effective frame-level time-
line modeling method for temporal graph representation
learning, namely FTM, which makes contributions to the
neighborhood aggregation strategy, and can be easily as-
sembled with most GNN methods.

• We conduct comprehensive experiments to show that
models assembled with FTM achieve better performance
on common benchmarks, and we further evaluate its ef-
fectiveness through quantitative and qualitative analyses.

• We point out the robustness and domain generality issues
of several state-of-the-art GNN-based temporal graph
representation learning methods, and demonstrate that
FTM could greatly alleviate these issues.

Related Work
Learning representations with GNNs has become a pop-
ular research area for graph modeling. Earlier works ex-
plore learning representations of topological structures (Kipf
and Welling 2016a; Grover and Leskovec 2016), extending
GNN to inductive learning (Hamilton, Ying, and Leskovec
2017), and integrating attention mechanisms (Veličković
et al. 2018). In all these works, however, the time informa-
tion of graph attributes are discarded.

Recent approaches take advantage of the temporal prop-
erty. Certain approaches learn to access time-aware knowl-
edge by equally slicing the timeline into a sequence of snap-

1A fundamental technique to decompose raw signal into multi-
ple ranges according to frame length and hop length.

Figure 2: An example illustrating prior techniques and our
link-based framing technique (where frame length is 2 and
hop length is 1) for neighborhood construction.

shots (Trivedi et al. 2019; Singer, Guy, and Radinsky 2019).
They aggregate the topological features in a snapshot and
combine time-dependent features with sequence-modeling
techniques to learn temporal graph embeddings. However,
they ignore the sequential nature of nodes and links within
the same snapshot, losing short-term features that can guide
learning. Meanwhile, the amount of nodes and links within
each snapshot is inconsistent, leading to great data biases in
learning topological features.

More recently, TGAT (Xu et al. 2020) leverages a time en-
coding function to learn time-aware representations in con-
tinuous time. TGN (Rossi et al. 2020), as a variant of TGAT,
integrates a memory module to keep track of the evolution
of node-level features. These methods make progress in cap-
turing short-term features since the time encoding makes it
possible to model the temporal properties of a neighborhood.
However, in most cases, they randomly sample neighbors
from the past to form a temporal neighborhood for a target
node, which means that they cannot ensure a balance be-
tween short-term features and long-term features.

Our work adopt the idea of time encoding, but make con-
tributions to the way that temporal neighborhoods are con-
structed and information is aggregated, so that the model
learn more informative representations.

Proposed Method: FTM

Problem Formalization

Graph representation learning aims to obtain node or link
representations based on their own properties and their in-
teractions with neighbors. Let ET− =

{
ei,j,t|1 ≤ i, j ≤

n, 0 ≤ t < T
}

and V T− =
{
vs|s = 1 . . . n

}
denote the

set of links and the set of nodes observed before time T ,
respectively, where n is the amount of nodes, vs is the s-
th node (s is only used to distinguish nodes), and ei,j,t is
an link between vi and vj emerged at time t ∈ R+. Let
ET−

s =
{
es,i,t|1 ≤ i ≤ n, 0 ≤ t < T

}
∪
{
ej,s,t|1 ≤

j ≤ n, 0 ≤ t < T
}

denotes the subset of ET− containing
links that link to node vs and satisfy the time constraint (we
mainly consider undirected graphs, where the two parts of
ET−

s are equivalent). Supposing that GT− = (V T−, ET−)
denotes the final state of a temporal graph before time T ,
learning representations on it is mainly to obtain the node
and link representations at time t based on GT−.
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Figure 3: The architecture of the model assembling FTM with a backbone network. Assuming that our goal is to compute node
v0’s representation at timestamp t5, we first construct a timeline consists of 3 frames

{
f t3−
v0,2

, f t4−
v0,2

, f t5−
v0,2

}
as each layer’s input.

At each layer - Stage 1, we compute each frame’s representation ĥl
0(tj) in parallel through the backbone network (works as the

frame aggregator). Stage 2, we aggregate all frames’ representations to get the node representation via the timeline aggregator.

Input Representation
Graph attributes can be recorded in various ways. For in-
stance, online reviews are in text format, and citations are in
triplet format. We encode text with BERT-base (Devlin et al.
2019), and other records with TransE (Bordes et al. 2013),
to initialize node and link features. Then, we split links into
frames, and feed the features of successive frames into FTM.
Link-based Framing Technique. The process of splitting
links into temporal frames is controlled by two parameters:

- Frame length defines how many links are included in a
frame. For example, at timestamp t, to construct a frame
of length k for node vs, we take the most recent k links
from Et−

s to form this frame and denote it as f t−
s,k.

- Hop length defines how many links to skip when taking
the next frame. In practise, we set it to be frame length

2
(which is empirically the best and is also a convention
in signal processing) to stabilize the training process. An
example is provided in Figure 2.

Frame-level Timeline Modeling
The main idea of FTM is to preserve both the short-term and
long-term features of graph attributes through a frame ag-
gregator and a timeline aggregator. The role of the frame
aggregator is to model each neighborhood that generated by
the link-based framing technique, so it can be replaced by

most GNN methods. For example, the overall framework
of the model assembling FTM with TGAT (Xu et al. 2020),
i.e., taking TGAT as the frame aggregator, is shown in Fig-
ure 3. Since TGAT is composed of a stack of identical lay-
ers (with shared parameters), the calculation process of each
layer is similar. Assuming that we want node vi’s embed-
ding at timestamp t, the calculation process in layer l can be
described as the following two parts:
Temporally Attentive Frame Aggregator. While TGAT
randomly samples links from the past to form temporal
neighborhoods, we integrate k most recent links to con-
struct a frame in order to preserve short-term features. Mean-
while, the reason we add links by number rather than by time
(as snapshot-based methods) is to guide the model to learn
the common evolution of links, instead of time-interval-
related knowledge. Given a frame f t−

i,k of vi that contains
links

{
ei,j1,t1 , . . . , ei,jk,tk

}
, we obtain a temporal neighbor-

hood feature matrix Z(t) as:

Z(t) = [zt(i, t), zt(j1, t1), . . . , zt(jk, tk)] , (1)

zt(jk, tk) =
[
h(l−1)
jk

(tk) || φ(t− tk) || ejk
]
, (2)

where h(l−1)
jk

(tk) is the previous layer’s output for vjk , φ(·)
is a time encoding function, ejk is the feature vector of
ei,jk,tk , and zt(jk, tk) maps the information of vjk into a
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time-aware representation. Then, we attentively aggregate
Zt with the multi-head self-attention mechanism:

qr(t) = [Z(t)]0Wr
Q, (3)

Kr(t) = [Z(t)]1:NWr
K , Vr(t) = [Z(t)]1:NWr

V (4)

αr
j =

exp
(
qr⊤Kr

j

)
Σq exp

(
qr⊤Kr

q

) , h̃
l,r

i (t) =
∑

j
αr
jvrj , (5)

where Wr
Q,Wr

K ,Wr
V are query, key and value matrix, re-

spectively, αr
j denotes the attention weight, and h̃

l,r

i (t) is
the output of the r-th attention head. Assuming that we have
nh attention heads, the frame representation ĥ

l

i(t) will be:

ĥ
l

i(t) = ReLU(yW0 + b0)W1 + b1, (6)

y =
[
zt(i, t)||h̃

l,1

i (t)|| . . . ||h̃l,nh

i (t)
]
, (7)

where W0, W1 are weights and b0, b1 are biases.
Attentively Frame-level Timeline Aggregator. In the prior
part, we get the representation ĥ

l

i(t) of frame f t−
i,k . Now,

we consider how to aggregate the information of multi-
ple frames. Empirically, we set the hop length to half of
the frame length to retain redundant information between
frames. By doing so, (i) short-term features are further high-
lighted; and (ii) framing serves as a scrubbing technique
because irregular links (with abnormal time interval/content)
will not play a leading role and the commonalities in the evo-
lution of links will be emphasized.

Let F t−
i,k =

{
f
tj−
i,k |1 ≤ j ≤ n, tn = t

}
denotes a set of

frames of node vi, in which the timestamps satisfy:

tj−1 = T k
2
(E

tj−
i ), 2 ≤ j ≤ n (8)

where n is the size of this set, T k
2

maps a set of links to its k
2 -

th (i.e., half of the frame length) recent element’s timestamp.
We call this set a n-length timeline of node vi at timestamp
t, and we get the final node representation hl

i(t) as:

hl
i(t) =

[
ĥ
l

i(t1)|| . . . ||ĥ
l

i(tn)
]T

W2 + b2, (9)

where W2 and b are weights and bias. Here we take 1-layer
MLP as an example for simplicity, but it could be effortlessly
extended to RNN-based or attention-based methods, etc.

hl
i(t) generated by the last layer is just what we want -

node vi’s embedding at timestamp t, hi(t).
Learning & Inference. Since the temporal information is
mostly reflected in the time-sensitive interactions among
nodes, we choose to use the future link prediction setup for
training. The goal of future link prediction is to predict the
probability that an link will exist between a target node vi
and another node vj at a specific future time, i.e., given the
set of previous links of vi, we compute the probability of a
future link ei,j,ti,j between vi and vj . To train the model, we
sample a set of negative links (̸= ei,j,ti,j ) and optimize the
per-node objective:

L =
∑

vi,vj ,ti,j

Pos (i, j, ti,j)+Q·Evq∼P Neg (i, q, ti,j) (10)

Dataset Node Link
Reddit (2019) 11,000 672,000

Wikipedia (2019) 9,000 157,000
Icews14 (2018) 7,000 91,000

Icews05-15 (2018) 10,000 461,000
Bitcoin-otc (2016) 6,000 36,000

Bitcoin-alpha (2016) 4,000 24,000
Mooc (2019) 7,000 412,000

Table 1: The node and link statics for each dataset.

where P is the negative link sampling distribution, Q de-
notes the negative sampling size, Pos(·, ·, ·) and Neg(·, ·, ·)
denote the positive and negative scoring functions:

Pos (i, j, ti,j) = − log
(
σ
(
−hi(ti,j)

⊤hj(ti,j)
))

(11)

Neg (i, q, ti,j) = − log
(
σ
(
hi(ti,j)

⊤hq(ti,j)
))

(12)

where σ(·) is an activation function, hi(t) is the representa-
tion of node vi at timestamp t. For inference, the output of
Pos(i, j, ti,j) is used as the logits.

Experimental Setups
We evaluate our method against strong baselines (adapted
to temporal settings when possible). Note that assembling
FTM with a baseline method means that we take the base-
line method as the frame aggregator of FTM.

Tasks and Metrics
We perform future link prediction to evaluate the quality of
the generated graph representations. We use average preci-
sion (AP) as the evaluation metric and consider this task in
two settings: (i) Transductive Task. We predict future links
among nodes that have been observed during training. (ii)
Inductive Task. We perform future link prediction among
nodes that have not been observed in the training phase.

Datasets
We choose seven datasets that contain time-sensitive node
interactions: Reddit2 is created from posts between active
users and subreddits, where users and subreddits are nodes,
and posts are links. Wikipedia3 is created by taking top
edited pages in Wikipedia and active users as nodes, and the
corresponding edits as links. Icews144, Icews05-155 con-
tain political events and the corresponding timestamps. All
nodes are real-world entities (e.g. countries) and links are
event types. Bitcoin-otc6, Bitcoin-alpha7 are who-trusts-
whom networks of people who trade with Bitcoin, where
nodes are people and links are the credit evaluation. Mooc8

2http://snap.stanford.edu/jodie/reddit.csv
3http://snap.stanford.edu/jodie/wikipedia.csv
4https://github.com/nle-ml/mmkb
5https://github.com/nle-ml/mmkb
6https://snap.stanford.edu/data/soc-sign-bitcoinotc.csv.gz
7https://snap.stanford.edu/data/soc-sign-bitcoinalpha.csv.gz
8https://snap.stanford.edu/data/act-mooc.tar.gz
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Model Reddit Wikipedia
Transductive Inductive Transductive Inductive

GAE (2016b) 93.23 - 91.44 -
VAGE (2016b) 92.92 - 91.34 -

DeepWalk (2014) 83.10 - 90.71 -
Node2vec (2016) 84.56 - 91.48 -
CTDNE (2018) 91.41 - 92.17 -
DyRep (2019) 98.25 96.11 94.76 92.11
Jodie (2019) 97.02 94.46 92.75 93.13

GraphSAGE (2017) 97.20 94.68 91.09 86.08
w/ FTM 98.01↑ 96.28↑ 92.91↑ 91.93↑

GAT (2018) 97.33 95.37 94.73 91.27
w/ FTM 98.21↑ 96.75↑ 95.03↑ 93.54↑

TGAT (2020) 98.27 96.73 95.13 93.97
w/ FTM 98.41↑ 96.82↑ 97.82↑ 97.14↑

TGN (2020) 98.78 97.77 98.28 97.69
w/ FTM 98.88↑ 97.96↑ 98.82↑ 98.33↑

Average Gain 0.48 0.82 1.34 2.98

Table 2: AP(%) for future link prediction tasks. ↑ means that FTM brings an improvement to the baseline method. The best
results in each column are highlighted in bold font. ’-’ denotes incapability.

Model Attack Intensity(%)
0 10 20 30 40 50

GraphSAGE 85.46(+1.58) 34.11(+28.14) 51.78(+3.56) 45.89(+5.85) 40.81(+3.04) 48.84(+9.15)
GAT 83.75(+4.31) 49.56(+17.66) 40.47(+19.32) 41.89(+16.11) 36.70(+9.39) 41.38(+15.06)

TGAT 87.36(+1.37) 59.99(+26.83) 56.59(+29.85) 47.39(+38.39) 34.61(+51.56) 38.57(+47.29)
TGN 88.19(+1.82) 80.80(+3.18) 81.93(+2.63) 81.81(+4.96) 83.39(+2.09) 83.17(+2.40)

Average Gain 2.27 18.95 13.84 16.33 16.52 18.48

Table 3: AUC (%) for node classification tasks on Wikipedia. Attack intensity controls the ratio of (the norm of) the added
noise to (the maximum norm of) the link features in the dataset. x(+y) indicates that the baseline method achieves x% in AUC,
and FTM brings an improvement of y% to it, i.e., the model assembling FTM with this method achieves x+y%.

dataset contains user actions on a popular MOOC platform,
where nodes represent users and course activities, and links
represent user actions. Dataset scales are listed in Table 1.

Baselines

GAE, VAGE (Kipf and Welling 2016b), DeepWalk (Per-
ozzi, Al-Rfou, and Skiena 2014) and Node2vec (Grover and
Leskovec 2016) are models for static graphs.
CTDNE, DyRep, Jodie, GraphSAGE, GAT, TGAT and
TGN are baselines for temporal graphs. We do not ensemble
FTM with CTDNE, DyRep and Jodie due to the conflicting
schemes9. For other methods, we test the original version
and the FTM-assembled version. There may be slight differ-
ences between our implementation and others, but it is fair
for comparison.

9These methods have their own custom temporal neighborhood
construction strategies. If we apply our action-based framing tech-
nique to these methods, we are only assembling FTM with their
feature extraction modules.

Results and Analysis
Transductive & Inductive Future Link Prediction. As
shown in Table 2, (1) temporal methods surpass static ones,
suggesting the importance of temporal properties in mod-
eling temporal graphs; (2) models assembled with FTM
consistently outperform the originals on all benchmarks,
demonstrating the effectiveness of FTM. For instance, on
Wikipedia, FTM brings an average gain of 2.98 in AP un-
der inductive setting. Meanwhile, TGN+FTM achieves new
state-of-the-art performance on both Wikipedia and Reddit.
The overall performance on this task indicates that FTM
guides the learning of the evolution of temporal graphs and
helps to generate more informative representations.

Quantitative Analysis
Given these overall performance improvements, we inves-
tigate how FTM’s improvements are reflected in the learnt
node representations. Because we have the gold label of
node type in Wikipedia, we conduct a downstream task of
future link prediction, node classification, in two settings:
(i) Fine-tuning. We fine-tune a MLP layer to classify nodes
based on the learnt node embeddings. As the result in the
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(a) Classify users of Wiki (b) Embedding analysis

Figure 4: (a) x-axis/y-axis represents the average/standard deviation of the time intervals of a user’s actions. The green parts
denotes user distribution. The darker the color, the greater the number of users. Red points denote atypical users that have
misled TGAT but are correctly classified by TGAT+FTM. (b) The cosine similarity of successive temporal node embeddings
generated by TGAT+FTM and TGAT+Snapshot, respectively. The consistency of the embeddings generated by TGAT+FTM
proves that FTM helps to learn stable temporal representations.

Training Model Test Dataset
Dataset Icews14 Icews05-15 Bitcoin-otc Bitcoin-alpha Mooc

Reddit

GraphSAGE 46.89(+35.32) 61.48(+23.08) 70.36(+7.59) 54.44(+16.09) 49.86(+3.38)
GAT 63.45(+24.32) 64.44(+20.81) 70.66(+6.30) 61.35(+9.49) 47.28(+7.25)

TGAT 76.29(+9.82) 72.80(+15.47) 70.19(+10.81) 65.46(+8.11) 57.01(+16.98)
TGN 68.63(+12.20) 70.57(+15.72) 72.86(+6.48) 64.55(+6.04) 67.23(+2.48)

Average Gain 20.42 18.77 7.80 9.93 7.52

Wikipedia

GraphSAGE 71.88(+7.59) 77.49(+3.46) 58.88(+12.44) 53.81(+18.16) 49.11(+4.85)
GAT 67.19(+12.29) 69.32(+15.20) 67.20(+0.34) 61.48(+6.71) 49.42(+7.19)

TGAT 80.27(+6.94) 82.03(+10.82) 71.38(+12.16) 71.01(+2.18) 53.98(+22.54)
TGN 66.40(+15.73) 67.77(+16.36) 83.76(+0.41) 64.69(+7.29) 73.20(+1.86)

Average Gain 10.64 11.46 6.34 8.59 9.11

Table 4: AP (%) of future link prediction tasks. x(+y) indicates that the baseline method achieves x% in AP, and FTM brings
an improvement of y% to it, i.e., the model assembling FTM with this method achieves x+y%.

second column of Table 3 (attack intensity is 0) shows,
FTM brings about 1%˜4% absolute gain in AUC to back-
bone methods, which reveals that models assembled with
FTM generate more reasonable node embeddings. It also
demonstrates the insights of our method in temporal graph
representation learning; (ii) Adversarial Attack. The ability
to resist Gaussian noise-perturbated examples is important
because noisy data is inevitable under most circumstances
(Cheng et al. 2023). We add random Gaussian noise to the
original data to generate adversarial examples for five times,
and record the average performance of each model. The re-
sults are reported in the last six columns of Table 3 (with
attack intensity from 10% to 50%). The average gains that
FTM brings to the baseline methods demonstrate that FTM
can handle data noise (and maybe data biases) better, which
is an important capability that guarantees the applicability of
the proposed method.

Qualitative Analysis

In this section, we examine our model’s ability to generate
more informative representations on the wikipedia dataset
qualitatively. As Figure 4(a) shows, FTM helps to distin-
guish atypical users, whereas baselines are often misled;
it reflects the potential of FTM in addressing data biases,
since the data bias issues in data collected from platforms
like Wikipedia are mainly caused by atypical users who of-
ten perform irregular/abnormal actions. Moreover, we hy-
pothesize that the evolution of user actions has short-term
stationary features, because people’s personality will not
change rapidly. We take the most popular snapshot-based
modeling method as the opponent to demonstrate that FTM
makes it possible to capture short-term stationary features
over time. First, we modify the neighborhood sampling strat-
egy of the original TGAT to be snapshot-based, namely
TGAT+Snapshot. Specifically, for each node we take its
neighbors within an hour to form a temporal neighbor-
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Model
Neighborhood Scale

Inductive Generalization
S M L XL S M L XL

GraphSAGE 86.31 88.96 94.19 94.68 70.87 70.83 78.74 83.59
w/ FTM 92.24↑ 92.31↑ 95.53↑ 96.28↑ 79.37↑ 77.26↑ 86.30↑ 86.53↑

GAT 91.11 93.15 95.56 95.37 69.88 74.96 83.76 85.84
w/ FTM 91.85↑ 93.40↑ 95.84↑ 96.75↑ 82.38↑ 81.75↑ 86.20↑ 88.97↑
TGAT 91.12 92.63 95.95 96.73 69.22 71.76 85.64 87.34

w/ FTM 94.08↑ 94.32↑ 97.26↑ 96.82↑ 91.08↑ 89.52↑ 95.82↑ 91.06↑
Average Gain 3.21 1.76 0.98 1.02 14.29 10.33 6.73 3.26

Table 5: Case studies on neighborhood scale, where neighborhood scale expands from S to XL. We do not take TGN into
consideration, because the way TGN updates node-wise memory has little to do with the neighborhood scale and the percentage
of training data. We report AP(%) of future link prediction on Reddit (inductive; generalize from Wiki).

Model
Percentage of Training Data

Inductive Generalization
1% 5% 10% 50% 1% 5% 10% 50%

GraphSAGE 65.31 85.39 91.17 95.64 57.99 62.79 73.04 80.15
w/ FTM 70.40↑ 87.58↑ 91.95↑ 96.65↑ 61.98↑ 74.92↑ 82.71↑ 85.34↑

GAT 68.99 90.81 93.13 95.10 59.53 76.44 79.70 85.80
w/ FTM 73.13↑ 91.02↑ 93.70↑ 96.68↑ 68.45↑ 81.99↑ 85.91↑ 90.30↑
TGAT 65.65 88.92 92.67 96.25 74.51 77.16 81.27 86.38

w/ FTM 80.76↑ 92.32↑ 93.45↑ 96.25 81.84↑ 87.88↑ 87.22↑ 88.53↑
Average Gain 8.10 1.67 0.64 0.69 5.00 8.25 5.69 2.87

Table 6: Case studies on the percentage of training data, where models are trained on limited training data of Reddit, e.g.,
1% means models are trained/validated on one-percent of the original training/validation data. We report AP(%) of future link
prediction on Reddit (inductive; generalize from Wiki).

hood. Then, we compute the cosine similarity of succes-
sive temporal node embeddings for TGAT+Snapshot and
our TGAT+FTM respectively. As shown in Figure 4(b), the
temporal node embeddings generated by TGAT+FTM show
higher consistency. It demonstrates that TGAT+FTM learns
more stable representations of users and we believe that the
main reason lies in capturing short-term stationary features.
Intuitively, this ability helps to stabilize the training process
and capture the dynamics of user actions.

Domain Generality
Our reported results thus far demonstrate the effectiveness of
FTM in improving the capability and robustness of temporal
GNNs. In this section, we explore whether FTM could help
improve the domain generality of baseline methods. From
the results shown in Table 4, we can observe that (1) these
baseline methods suffer from severe domain generality is-
sues, e.g., GraphSAGE trained on Reddit only get 46.89 in
AP on Icews14; and (2) assembling FTM with these base-
line methods greatly improves their domain generality, e.g.,
when applying models trained on Reddit to Icews14, FTM
brings an average gain of 20.42 in AP to them. It illustrates
the efficacy of FTM in deriving generalizable knowledge
of graph evolution. Furthermore, we test the capability of
our method in handling domain gaps from a new perspec-
tive - we subsample user-action data from the wikipedia
dataset with different time interval distribution and evalu-

ate our method on it. The result shows that assembling FTM
with baseline methods improves their AP by 1.5 in average,
but is not listed here for space-saving issues.

Case Studies
In normal experiments, we set the number of model layers
to be 2 and the length of frames to be 20 to form a node’s
temporal neighborhood. In this section, we record the per-
formance of aforementioned methods under different neigh-
borhood scales and data sizes. Note that the test data is the
same as aforementioned experiments.

In studying the influence of neighborhood scale, we sepa-
rately let (the number of model layers, the length of frames)
be (1, 10), (1, 20), (2, 10), (2, 20) to form a S-scale, M-
scale, L-scale, XL-scale neighborhood respectively. The re-
sults are provided in Table 5. In all cases, models assembled
with FTM outperform the originals. It illustrates that, even
under low-resource settings, assembling FTM with back-
bone methods can enhance the capability, the robustness,
and the domain generality of these models.

In studying the influence of data size, we sample x-
percent of the training/validation set to form new training/-
validation sets. As the results in Table 6 illustrate, models
assembled with FTM outperform the originals in most cases.
It indicates that FTM is not totally data-driven, but superior
in understanding the evolution of the temporal graph. This
ability is of practical importance.
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Aggregation Function AP on Wikipedia Convergence Time Parameter SizeTransductive Inductive
1-layer MLP 97.68 97.19 8.5 × 103 s 100%
2-layer MLP 97.26 96.79 1.3× 104 s 105%

LSTM 97.64 96.99 2.7× 104 s 112%
Self-attention 97.93 97.44 1.1× 104 s 110%

Table 7: Comparison of different aggregate functions in Timeline Aggregator module.

Implementation & Training Details
Hyper-parameters. We do the chronological train-
validation-test split with 70%-15%-15% according to the
timestamps of links. In the test set, we randomly sample
10% nodes as ’new nodes’ for inductive tasks, and mask
down all their links in the training set. Both the number
of self-attention layers and the number of heads in each
layer of the backbone network are 2. The length of timeline
is chosen from [2, 3, 4] (we only report the best result).
During training, we use Adam optimizer with learning rate
1e-4. The dimension of time encoding vectors is set to 172,
which is same to the dimension of link feature vectors. We
have conducted experiments to verify the effect of different
aggregate functions in the Timeline Aggregator module.
The result is shown in Table 7 (timeline length is 2 and all
experiments are conducted on a RTX 2080Ti GPU). Taking
both the performance and efficiency into consideration, we
decide to deploy a 1-layer MLP as the timeline aggregate
function because it achieves comparable performance while
having faster convergence rate and smaller parameter size
than other aggregate functions. Readers can implement the
self-attention mechanism for better performance.

Conclusion
In this paper, we propose a simple but effective frame-level
timeline modeling method for temporal graph representation
learning, where the main contributions are made to the way
that temporal neighborhoods are constructed and neighbor-
ing information is aggregated. Technically, we break down
a temporal sequence of graph-structured data into individ-
ual frames, and model the evolution of successive frames to
mine deeper into the dynamics of nodes and links. Experi-
mental results demonstrate the effectiveness of FTM. Mean-
while, our experiments empirically reveal that even state-
of-the-art GNNs have critical weakness in modeling tempo-
ral graphs; but FTM helps to derive generalizable knowl-
edge during training and thus greatly improves both the ro-
bustness and the domain generality of baseline methods, es-
pecially when there are outliers/noise in the data (cf. Fig-
ure 4(a), Table 3), or the amount of data and computa-
tional resources are insufficient (cf. Table 5). The efficacy
of FTM may provide insights that could facilitate the design
of more advanced representation learning methods on tem-
poral graphs.
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