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Abstract

Several techniques have recently aimed to improve the per-
formance of deep learning models for Scene Graph Genera-
tion (SGG) by incorporating background knowledge. State-
of-the-art techniques can be divided into two families: one
where the background knowledge is incorporated into the
model in a subsymbolic fashion, and another in which the
background knowledge is maintained in symbolic form. De-
spite promising results, both families of techniques face sev-
eral shortcomings: the first one requires ad-hoc, more com-
plex neural architectures increasing the training or inference
cost; the second one suffers from limited scalability w.r.t. the
size of the background knowledge. Our work introduces a
regularization technique for injecting symbolic background
knowledge into neural SGG models that overcomes the lim-
itations of prior art. Our technique is model-agnostic, does
not incur any cost at inference time, and scales to previously
unmanageable background knowledge sizes. We demonstrate
that our technique can improve the accuracy of state-of-the-
art SGG models, by up to 33%.

Introduction
A scene graph is a set of facts describing the objects occur-
ring in an image and their inter-relationships. Scene Graph
Generation (SGG) asks to identify all the facts that hold in
an image. Using prior knowledge (for instance common-
sense knowledge bases and knowledge graphs (Sap et al.
2019)) is particularly appealing in SGG, as relationships
in scene graphs naturally adhere to commonsense princi-
ples. This intuition has led to the introduction of neurosym-
bolic techniques (d’Avila Garcez, Broda, and Gabbay 2002)
that inject background knowledge into a neural model at
training-time and/or use it at inference-time (also called
testing-time) to amend its predictions.

Neurosymbolic SGG techniques are divided into two ma-
jor families. The first one represents knowledge in a sub-
symbolic fashion and incorporates it either only at training-
time (Xie et al. 2019), at testing-time (Zareian et al. 2020),
or both at training- and testing-time (Gu et al. 2019; Zareian,
Karaman, and Chang 2020). The second family maintains
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Figure 1: At training-time, background knowledge ex-
pressed through negative formulas in first-order logic is in-
jected into a deep model n so that the model’s predictions
wi

θ for each input image Ii adhere to the background knowl-
edge T . Knowledge injection is performed via a logic-based
loss function Ls. To scale to large theories, neural-guided
projection (NGP) selects a fixed-size subset T i∗

ρ of the the-
ory to compute the loss for each Ii.

knowledge in symbolic form and injects it into the model at
training-time only (Donadello, Serafini, and d’Avila Garcez
2017; van Krieken, Acar, and van Harmelen 2019). While
they have led to promising results, both groups of techniques
face several shortcomings. The first one requires introducing
ad-hoc, more complex neural architectures, and accessing
the background knowledge at inference-time, thus increas-
ing the training or testing cost. More importantly, ad-hoc
neural architectures make it difficult to take advantage of
state-of-the-art, neural SGG models, such as VCTree (Tang
et al. 2019). The second family suffers from limited scal-
ability with respect to the number of formulas considered,
making them impractical in real-world scenarios.

Our work introduces a neurosymbolic regularization tech-
nique in which symbolic background knowledge, also re-
ferred to as a theory, is used as an additional supervision
signal for a neural model (see Figure 1). Our objective is
to amend the neural network when its predictions do not
abide by the background knowledge. The main difference
between our proposal and prior art on neurosymbolic SGG is
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that, instead of providing examples of what the neural model
should predict (as in (Gu et al. 2019; Zareian, Karaman, and
Chang 2020; Zareian et al. 2020)), we provide examples of
what the model should not predict. This is achieved by en-
forcing negative integrity constraints (ICs), expressed in the
form ¬predicate(subject,object), through a logic-
based loss function. The class of negative ICs, which is not
supported by (Gu et al. 2019; Zareian, Karaman, and Chang
2020; Zareian et al. 2020) provides two benefits. Firstly, un-
like any other symbolic-based regularization method, it al-
lows us to design a technique that scales in the presence
of hundreds of thousands of ICs. To this extent, instead of
using the whole theory for regularizing every training sam-
ple, we propose a neural-guided projection (NGP) proce-
dure that identifies a small subset of ICs which are maxi-
mally logically violated under the neural predictions. The
task of amending the neural module towards having its out-
puts abide by the ICs amounts to solving an optimization
problem in which the weights of the neural module are up-
dated to minimize the maximum violation of the ICs. Sec-
ondly, it is easy for users to (semi-)automatically create such
ICs from existing knowledge bases or even from the training
data itself, by creating a negative IC out of each fact not in
the knowledge base or training data. To assess the robust-
ness of NGP, we ran experiments using two different the-
ories. The first one was created by taking the complement
of the commonsense knowledge graph ConceptNet (Speer,
Chin, and Havasi 2017), while the second one by taking the
complement of the training facts.

Beyond outperforming prior relevant (sub)symbolic reg-
ularization techniques, NGP offers multiple other benefits.
Firstly, unlike (Gu et al. 2019; Zareian, Karaman, and Chang
2020), NGP is oblivious to the neural models and loss
function used. Furthermore, it does not require accessing
the background knowledge at inference-time like (Gu et al.
2019; Zareian, Karaman, and Chang 2020). Similarly to (Xie
et al. 2019; Donadello, Serafini, and d’Avila Garcez 2017;
Gu et al. 2019; Zareian, Karaman, and Chang 2020; Zhu,
Fathi, and Fei-Fei 2014), as well as to prior art on knowl-
edge distillation (Dao et al. 2021; Hinton, Vinyals, and Dean
2015), we do not question the background knowledge. Our
analysis shows that NGP is robust to the theory in use, im-
proving accuracy even when considering only the comple-
ment of the training facts as negative ICs. Our empirical
comparison confirms that NGP:
• improves the accuracy of state-of-the-art SGG models,

namely IMP (Xu et al. 2017), MOTIFS (Zellers et al.
2018) and VCTree (Tang et al. 2019), by up to 33%;

• scales to theories including approximately 1M ICs– sizes
no prior symbolic-based regularization technique sup-
ports (Donadello, Serafini, and d’Avila Garcez 2017);

• is particularly effective when applied in conjunction with
TDE (Tang et al. 2020), a technique that tackles the bias
in the data, improving the performance of IMP, MOTIFS
and VCTree by up to 16 percentile units;

• outperforms GLAT (Zareian et al. 2020) and LENSR
(Xie et al. 2019), two state-of-the-art regularization tech-
niques that maintain the knowledge in subsymbolic form,
by up to 18% and 15%;

• improves the accuracy of SGG models by up to six times
when restricting the availability of ground-truth facts.

Via suitable regularization components, such as TDE (Tang
et al. 2020), we outperform in accuracy recently introduced
state-of-the-art models (Li et al. 2021) by up to 90% and
ad-hoc neurosymbolic SGG architectures leveraging exter-
nal knowledge bases (Gu et al. 2019) by up to 86%.

An extended version of this paper with additional em-
pirical results and examples is available in (Buffelli and
Tsamoura 2022). The sources and the data to reproduce our
empirical analysis are in https://github.com/tsamoura/ngp.

Preliminaries
First-order logic is a language of predicates, variables and
constants. Terms are either variables or constants. An atom
α is an expression of the form p(⃗t), where p is a predicate
and t⃗ is a vector of terms. Formulas are expressions com-
posed over atoms and the logical connectives, ∧, ∨ and ¬; a
formula is propositional if instead of atoms, it is composed
over terms. A formula is ground when it includes exclusively
constants. We use t ∈ φ to denote that a variable t occurs in
a propositional formula φ. A theory T is a set of formulas.
The set of all possible atoms formed using the predicates
and the constants occurring in T is the universe U of T . An
interpretation J of T is a total mapping from the elements
in U to a domain. We denote by J(φ) the value of φ in J .

Classical semantics Interpretations J in classical
Boolean logic map elements in the universe to either true
(⊤) or false (⊥). We say that J satisfies φ if φ evaluates to
true in J , i.e., J(φ) = ⊤, and refer to J as a model of φ.

Fuzzy logic semantics Interpretations in fuzzy logic map
elements in the universe to the interval [0, 1]. There are
multiple ways1 to define the logical connectives (see (van
Krieken, Acar, and van Harmelen 2020)). We say that J sat-
isfies φ if J(φ) = 1.

Probabilistic semantics In probabilistic logics, similarly
to the classical case, statements are either true or false. How-
ever, a probability is assigned to these truth values (Hájek,
Godo, and Esteva 2013). Consider a propositional formula
φ composed over independent Bernoulli random variables,
where each variable t is true with probability p(t) and false
with probability 1 − p(t). Let p denote the vector of the
probabilities so assigned to the variables. The probability
P (J,p), of an interpretation J under p is zero if J is not
a model of φ; otherwise it is given by:∏

t∈φ|J(t)=⊤

p(t) ·
∏

t∈φ|J(t)=⊥

1− p(t) . (1)

Given (1), the probability of formula φ being true under
p, denoted as P (φ|p), is the sum of the probabilities of all
the models of φ under p ((Chavira and Darwiche 2008)):

P (φ|p) =
∑

J model of φ

P (J,p) . (2)

1The truth of ground formula φ is: J(¬φ) ··= 1− J(φ),
J(φ1 ∧ φ2) ··= max{0, J(φ1) + J(φ2)− 1},
J(φ1 ∨ φ2) ··= min{1, J(φ1) + J(φ2)} in Lukasiewicz t-
(co)norms.
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Example 1 Consider the formula ϕ = ¬(h ∧ d ∧ e), where
h stands for horse, d for drinks and e for eye. All interpre-
tations of ϕ, apart from the one assigning true to each vari-
able, are models of the formula, i.e., the formula evaluates
to true in those interpretations. Assuming that each one of
the above terms is assigned a probability p(·), the probabil-
ity of the interpretation that assigns each variable to false is
computed as (1− p(e))× (1− p(d))× (1− p(h)).

Proposed Framework
Scene graph generation aims to identify all the
predicate(subject,object) facts that hold in
an image. Let S, P and O be the sets of possible subject,
predicate and object terms, respectively. Let also n be a
neural module that takes an input image and outputs the
facts that are predicted to hold in that image. Without loss
of generality, we assume that the output neurons of n are
divided into three mutually disjoint sets so that there is a
one-to-one mapping between the neurons within each set
and the elements included in sets S, P and O. We use S,
P and O to denote both the sets of terms and the sets of
neurons mapped to those terms and use t to refer both to a
term and to the neuron that maps to t. We denote by wθ(t)
the activation value of output neuron t, where θ denotes the
trainable parameters of n, and by wθ the vector of activation
values of the output neurons, i.e., the predictions of n.

Facts in a scene graph usually abide by commonsense
knowledge. We focus on commonsense knowledge encoded
as a theory T in first-order logic and in particular on the-
ories in the form of integrity constraints (ICs). Namely,
an example of a negative IC is the formula φ given by
¬drinks(horse,eye), which expresses the restriction
that a horse cannot drink an eye. Hereafter, we will consider
T to include exclusively negative, atomic ICs.

Semantics A theory T can be used to penalize a model
n. For instance, penalizing n under φ involves adjusting n’s
weights θ so that the neurons drinks, horse and eye
cannot simultaneously take high activation values. In the lan-
guage of logic, the terms in S, P and O form a universe.
When adopting a probabilistic logic semantics, the activa-
tion values wθ of the output neurons can be seen as the like-
lihood p = wθ of those terms. When adopting the semantics
of fuzzy logic, instead, the vector wθ can be seen as an in-
terpretation J of the output terms as activation values map
terms to the interval [0, 1], see above.

Loss Functions
To inject background knowledge into a neural model, we
need to quantify the level to which an IC φ is consistent
with the neural predictions wθ. In the case of probabilistic
logic, we denote this level of consistency by P (φ|wθ) (see
(2)). In fuzzy logic, we denote this level of consistency by
wθ(φ), as wθ is treated as an interpretation. Our framework
is not bound to a specific semantics for interpreting theory
T , adopting any semantics. To transparently support seman-
tics that blend classical logic with uncertainty, we assume
the existence of a function SAT : (φ,wθ) → R+ express-
ing the degree of consistency of φ with wθ.

Quantifying the consistency between φ and wθ allows us
to define a loss function Ls(φ,wθ) that is inversely propor-
tional to SAT (φ,wθ). For instance, to define a loss based on
(2), we can employ standard cross entropy (as in (Tsamoura,
Hospedales, and Michael 2021)). The cross entropy of (2) is
also known as semantic loss (SL) (Xu et al. 2018). Again,
we do not stick to a specific loss function or semantics as
in prior art, e.g., (Donadello, Serafini, and d’Avila Garcez
2017), but rather spell out the properties a loss function
should satisfy to be incorporated into our framework: (i)
Ls(φ,wθ) = 0 if the probability of φ under wθ is one (in
the case of probabilistic logic) or wθ(φ) = 1 (in the case of
fuzzy logic); (ii) Ls is differentiable almost everywhere. The
first property is to ensure the soundness of the loss function
w.r.t. the logic semantics, while the second one is to ensure
the ability to train via backprobagation. We use Ls(T,wθ)
as a shorthand for Ls(

∧
φ∈T φ,wθ).

Optimization Objective
We are now ready to introduce our technique. Let
I1, . . . , Im be a sequence of training images. SGG bench-
marks such as Visual Genome (VG) (Krishna et al. 2017)
include for each image Ii a ground truth set F i of
predicate(subject,object) facts representing rela-
tionships that hold in Ii. State-of-the-art neural modules are
trained based on loss functions Ln that take as arguments the
facts in F i and the neural predictions for Ii. We denote by
wi

θ the predictions of n for Ii. As increasing the level of con-
sistency between the ICs in T and wi

θ reduces to minimizing
the loss function Ls, our optimization objective becomes:

θ∗ ··= argmin
θ

β1 ·
m∑
i=1

Ln(F i,wi
θ) + β2 ·

m∑
i=1

Ls(T,wi
θ).

Above, β1 and β2 are hyperparameters setting the impor-
tance of each component of the loss. In our empirical evalu-
ation, those hyperparameters are computed in an automated
fashion using (Kendall, Gal, and Cipolla 2018). The loss
function can be an arbitrary, non-linear function and hence
Ls(T,wi

θ) is not necessarily equal to
∑
φ∈T

Ls(φ,wi
θ).

Neural-Guided Projection
Commonsense knowledge bases can be quite large. Hence,
if naively implemented, regularization would be very time
consuming if not infeasible. To overcome this limitation in
a way that aligns with our optimization objective, for each
training image Ii we identify the subset T i∗

ρ of ρ integrity
constraints associated with the highest value of Ls among
all possible subsets T i

ρ of ρ ICs. We call the elements of T i∗
ρ

the maximally non-satisfied ICs:

T i∗
ρ

··= arg max
T i
ρ⊆T

Ls(T i
ρ,w

i
θ), (3)

and regularize the neural module w.r.t. those con-
straints. Regularizing using the maximally non-satisfied
ICs maximizes our chances of providing meaning-
ful feedback to the model. Consider again the IC
φ = ¬drinks(horse,eye). If the likelihood of φ being
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Algorithm 1: NGP(I,F , T, nt) → nt+1

1: w ··= nt(I)
2: T ∗

ρ
··= arg max

Tρ⊆T
Ls(Tρ,w)

3: ℓ ··= β1 · Ln(F ,w) + β2 · Ls(T ∗
ρ ,w)

4: nt+1 ··= backpropagate(nt,▽ℓ)
5: return nt+1

Note: β1, β2 and ρ are hyperparameters.

Algorithm 2: GREEDY(I, ρ, T, nt) → T ∗

1: w ··= nt(I) T ∗ ··= ∅ j ··= 1
2: while |T ∗| < ρ do
3: get the j-th p(s,o) prediction maximizing w(p) ·

w(s) · w(o)
4: if ¬p(s,o) is in T , then add ¬p(s,o) to T ∗

5: j ··= j + 1
6: end while
7: return T ∗

true under wθ is close to zero, then we are confident that the
prediction needs to be amended; otherwise, we cannot know
whether the neural predictions are indeed the correct ones
or not and hence, we cannot provide meaningful feedback.
In that case, only the ground truth annotations can provide
meaningful supervision signal to the neural model.

Our technique, referred to as neural-guided projection
(NGP), is summarized in Algorithm 1, which presents the
steps taking place on an image-by-image basis. The algo-
rithm denotes by I the input image, by F the ground truth
facts that hold in I , by T the theory, and by nt the state of the
neural module at the t-round of the training process, while ρ
defines the number of ICs to choose. An overview of NGP
is shown in Figure 1.

Computing T i∗
ρ A greedy strategy for computing the set

of maximally non-satisfied ICs is presented in Algorithm 2.
The arguments are as in Algorithm 1. Iteratively sampling ρ
constraints from the theory and computing Ls after taking
the conjunction of those constraints is also an option.

Proposition 1 summarizes the cases in which the ICs cho-
sen in Algorithm 2 are the ones maximizing (3). Let T ∗ be
the set of ICs returned by Algorithm 2, SL denote the seman-
tic loss and DL2 the fuzzy loss from (Fischer et al. 2019).

Proposition 1 When Ls=SL, then T ∗ maximizes (3) when
the formulas in T ∗ share no common variables. When
Ls=DL2, then T ∗ always maximizes (3).

The proof of Proposition 1, a further discussion about Ls

and examples of Algorithm 1 and 2, and the DL2 loss (Fis-
cher et al. 2019) are the in the extended version of our paper.

Experiments
Benchmarks Following previous works, e.g., (Zareian,
Karaman, and Chang 2020; Li et al. 2021), we use Visual
Genome (VG) (Krishna et al. 2017) with the same split
adopted by (Tang et al. 2020), and the Open Images v6
(OIv6) benchmark (Kuznetsova et al. 2020) with the same

split adopted by (Li et al. 2021). We mostly focus on VG,
as it is heavily biased (Tang et al. 2020) and more challeng-
ing than OIv6 (SGG models have lower performance for VG
than for OIv6, as also reported in (Li et al. 2021)).

Theories We used VG¬ and CNet¬. VG¬ was computed
by taking the complement of the training facts: we enumer-
ated all combinations of predicates, subjects and objects in
VG and for each p(s,o) fact that is not in the set of training
facts, where p, s and o denotes a predicate, subject and ob-
ject in the domain of VG, we added to VG¬ the IC ¬p(s,o).
We adopted the same approach to create theory CNet¬ out
of ConceptNet’s knowledge graph. However, there we con-
sidered sparse subgraphs of the entire graph. In particular,
we identified subject-object pairs (s, o) having less than ten
p(s, o) facts in ConceptNet, where p, s and o denotes a
predicate, subject and object in the domain of VG or OIv6,
respectively. We then repeated the same process for subject-
predicate and predicate-object pairs. While the presence, or
absence, of a fact in either ConceptNet or the VG training
data affects our theory, NGP is not biased by the training
facts’ frequencies. We did not manually check the resulting
theories and hence, they may include constraints that violate
commonsense, reflecting real-world noisy settings. Theories
CNet¬ and VG¬ include approximately 500k and 1M ICs.

Models Similarly to (Tang et al. 2020) and (Suhail et al.
2021), we applied NGP on three state-of-the-art neural SGG
models: IMP (Xu et al. 2017), MOTIFS (Zellers et al. 2018)
and VCTree (Tang et al. 2019). Prior art (Zareian et al. 2020;
Tang et al. 2020; Li et al. 2021) also considers KERN (Chen
et al. 2019) and VTransE (Zhang et al. 2017)– we use the
more recent model VCTree.

Regularization techniques We considered several re-
cently proposed state-of-the-art regularization techniques:
• TDE (Tang et al. 2020), a neural-based technique that

operates at inference-time and aims at removing the bias
towards more frequently appearing predicates in the data;

• GLAT (Zareian et al. 2020), a neural-based technique
that amends SGG models at inference-time using pat-
terns captured from the training facts;

• LENSR (Xie et al. 2019), a neural-based technique that
amends SGG models at training-time after embedding
the input symbolic knowledge into a manifold;

• LTNs (Donadello, Serafini, and d’Avila Garcez 2017), a
symbolic-based technique that injects the input symbolic
knowledge to an SGG model at training-time;

• ITR, our own symbolic-based technique that returns the
most-likely prediction not violating any input IC, where
the likelihood of a prediction is the product of the confi-
dences of its predicate, subject and object as assigned by
a model. ITR is an inference-time counterpart to NGP.

LTNs is a direct competitor to NGP, while LENSR and
GLAT are the neural counterparts to NGP. TDE does not
use commonsense knowledge and hence it is orthogonal to
all the other regularization techniques.

Additional architectures We consider KBFN (Gu et al.
2019), a state-of-the-art ad-hoc, architecture accessing Con-
ceptNet both at training- and at testing-time; and BGNN (Li
et al. 2021) a recently-introduced confidence-aware bipar-
tite graph neural network with adaptive message propagation
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mechanism. BGNN cannot be easily integrated with regular-
ization techniques (as also shown in our results), as it makes
use of an ad-hoc data sampling procedure at training-time.
Indeed, the authors position BGNN as an alternative to mod-
els trained with TDE.

Overview of experimental results We considered the
standard tasks of predicate and scene graph classification.
Given an input image, and a set of bounding boxes with la-
bels indicating the subjects/objects contained in each bound-
ing box, predicate classification asks to predict the facts that
hold in the image. In scene graph classification, the goal is
the same, but the bounding boxes are unlabeled. We used
the standard measures Mean Recall@k (mR@k) and zero-
shot Recall@k (zsR@k) to assess accuracy. mR@k was pro-
posed as a replacement to recall@k to address the data bias
issue in SGG benchmarks (Tang et al. 2020, 2019). zsR@k
measures recall@k considering only the facts that are in the
testing but not the training set (Lu et al. 2016).

We employed NGP with different loss functions. We set
the number of constraints (i.e., ρ in Eq. 3) to ρ = 3. We
found that this value adds minimum computational overhead
while improving mR and zsR. We considered the loss func-
tions DL2 (Fischer et al. 2019) (fuzzy logic) and SL (Xu
et al. 2018) (probabilistic logic). NGP(X) denotes NGP em-
ployed using loss X. All experiments ran using the full theo-
ries. LTNs were prohibitively slow for the size of our theory:
using the same computational resources we used for NGP, it
would have taken 4,000 hours for training for just one epoch.
As such, we do not report results for LTNs.

Table 1 shows the impact of NGP, LENSR and ITR on
IMP, MOTIFS and TDE for theory CNet¬. Similarly, Table 2
shows the impact of NGP, GLAT and LENSR for theory
VG¬. NGP and LENSR adopt VG¬ for a fair comparison
against GLAT, as the latter regularizes SGG models using
knowledge mined from the training images. Table 3 stud-
ies the integration of TDE and NGP on MOTIFS and VC-
Tree (TDE does not support IMP (Tang et al. 2020)). Table 4
focuses on theory VG¬ and studies the integration of TDE
with NGP and GLAT when the baseline model is VCTree.

The above results are on the VG dataset. Table 5 shows the
impact of NGP(SL) with CNet¬ and TDE on MOTIFS for
the OIv6 dataset when the models are trained with limited
access to the ground truth labels. In particular, we remove
0%, 50% and 75% of the ground truth facts at training-time,
while keeping the corresponding images in the training set.
As all the baselines we consider require the ground facts
to compute a loss Ln, the above setting leads to discarding
each sample that misses ground truth facts when training a
baseline model (both with and without TDE). In contrast,
when applying NGP, we use only Ls at training-time when
the ground-truth facts are not available. The above setting
demonstrates the effectiveness of NGP in weak supervision.
We report results for MOTIFS, as it was the most challeng-
ing to regularize, as discussed below. OIv6 does not provide
zero-shot evaluation and, thus, we report only mR@k. Sim-
ilarly to Table 5, Figure 2 shows the impact of NGP(SL)
with CNet¬ on IMP and VCTree when reducing 10%–50%
of the ground-truth facts in VG. The task of interest is predi-
cate classification. Again, when the ground-truth facts of an

image are missing, Ls is used to back propagate through the
SGG model when regularizing under NGP; images that miss
ground-truth facts are ignored in the absence of NGP. For
completeness, Figure 2 also shows mR and zsR when using
the full training set (0% reduction). Figure 3 shows R@100
on a per-predicate basis for predicate and scene graph clas-
sification, respectively, when the benchmark is VG. In both
cases, the baseline model is VCTree regularized under TDE
(blue bars); NGP(SL) is applied using CNet¬ and ρ = 2
(orange bars). Figure 4 reports results on VG for the ad-
hoc architecture KBFN and the model BGNN. NGP is ap-
plied with CNet¬ and KBFN with ConceptNet– KBFN does
not support negative ICs. Further details are in (Buffelli and
Tsamoura 2022).

Key Conclusions
NGP can substantially improve the recall of SGG mod-
els. Table 1 shows that NGP with theory CNet¬ improves the
relative mR@k of IMP, MOTIFS and VCTree up to 25%, 3%
and 4.5% on predicate classification; on scene graph classi-
fication, the improvements are up to 33%, 20% and 6.4%.
Table 2 shows that when NGP uses VG¬, the relative im-
provements over IMP, and VCTree further increase to 34%
and 5% on predicate classification, and to 36% and 3% on
scene graph classification. Table 5 shows that NGP can im-
prove the performance of MOTIFS by 4% in predicate clas-
sification, even with fewer ground-truth facts. The results
in Table 1 for zsR@k also show that NGP can improve a
model’s generalization capabilities of predicting facts that
are missing from the training set.

We observe MOTIFS is sensitive to regularization:
LENSR always decreases its recall; NGP increases its re-
call with CNet¬, but decreases it when adopting either VG¬,
see Table 2, or the semantics of fuzzy logic, see Table 1.
We conjecture that the decreases are because MOTIFS fa-
vors the most frequent predicate for a given subject-object
pair in the ground-truth facts. Hence, adding a regulariza-
tion term that penalizes predictions outside of the training
facts may lead to severe overfitting explaining also the dras-
tic drop in zsR@k. Regarding the fuzzy logic semantics, the
decrease stresses the limitations of techniques like LTNs that
are bound to fuzzy logic. Given the above, we only consider
probabilistic logic for NGP hereafter, without discarding the
potential of fuzzy logic in other scenarios.
NGP outperforms prior regularization techniques in
most scenarios. NGP is the most effective regularization
technique in most cases in Table 1. For instance, regulariza-
tion of IMP via NGP(SL) leads to up to 25% higher mR@k
over ITR on predicate classification. With the exception of
MOTIFS, NGP also outperforms GLAT and LENSR in the
scenarios in Table 2 leading to up to 20% and 27% higher
accuracy in predicate and scene graph classification. The re-
sults show that LENSR fails to provide a meaningful loss for
training for scene graph classification. Below, we attempt to
explain why. In advance of regularization, LENSR learns a
manifold M representing the input theory and a function q
mapping embeddings of predictions into the space of M.
At regularization-time, LENSR maps via q the embedding
of a p(s,o) prediction into the space of M, where the em-
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Model Theory Reg. Predicate Classification Scene Graph Classification
mR@ zsR@ mR@ zsR@

20 50 100 20 50 100 20 50 100 20 50 100

I - - 9.26 11.43 12.23 12.23 17.28 19.92 5.57 6.31 6.74 2.04 3.47 3.90
I CNet¬ ITR 9.27 11.44 12.23 12.24 17.30 19.94 5.61 6.35 6.78 2.08 3.50 3.92
I CNet¬ LENSR 10.56 13.16 14.22 12.78 18.31 21.06 0.01 0.01 0.02 0.01 0.01 0.01
I CNet¬ NGP(SL) 11.29 14.22 15.30 12.84 18.75 21.84 6.99 8.45 8.92 2.71 4.48 5.35
I CNet¬ NGP(DL2) 11.62 14.73 15.92 13.13 18.57 21.87 5.58 6.42 6.95 2.17 3.50 3.93

M - 12.65 16.08 17.35 1.21 3.34 5.57 6.81 8.31 8.85 0.33 0.65 1.13
M CNet¬ ITR 12.68 16.10 17.39 1.23 3.35 5.57 6.82 8.32 8.85 0.35 0.66 1.13
M CNet¬ LENSR 12.50 15.90 17.20 1.12 3.26 5.37 0.30 0.34 0.36 0.02 0.02 0.02
M CNet¬ NGP(SL) 12.94 16.44 17.76 1.31 3.57 5.74 8.16 10.00 10.54 0.49 1.05 1.58
M CNet¬ NGP(DL2) 7.35 10.52 12.34 0.27 0.67 1.20 4.92 7.99 6.56 0.13 0.24 1.09

V - - 13.07 16.75 18.11 1.04 3.28 5.52 9.29 11.42 12.12 0.48 1.37 2.09
V CNet¬ ITR 13.71 17.27 18.58 1.37 3.80 6.38 9.36 11.49 12.19 0.51 1.40 2.17
V CNet¬ LENSR 13.53 16.98 18.27 1.33 3.83 5.88 0.0 0.01 0.01 0.02 0.02 0.02
V CNet¬ NGP(SL) 13.69 17.51 18.92 1.29 3.85 6.04 9.89 11.75 12.35 0.67 1.56 2.44
V CNet¬ NGP(DL2) 13.86 17.49 18.77 1.16 3.62 5.68 9.41 11.56 12.12 0.49 1.38 2.39

Table 1: Impact of different regularization strategies on IMP (I), MOTIFS (M) and VCTree (V) using CNet¬. Results on VG.

Model Theory Reg. Predicate Classification Scene Graph Classification
mR@ zsR@ mR@ zsR@

20 50 100 20 50 100 20 50 100 20 50 100

I - - 9.26 11.43 12.23 12.23 17.28 19.92 5.57 6.31 6.74 2.04 3.47 3.90
I - GLAT 10.04 12.44 13.30 11.87 17.04 19.72 5.95 6.75 7.17 2.09 3.40 3.82
I VG¬ LENSR 10.51 13.29 14.33 12.40 18.07 21.22 0.01 0.01 0.02 0.01 0.01 0.01
I VG¬ NGP(SL) 11.82 15.16 16.46 12.39 18.18 21.13 7.14 8.60 9.15 2.95 4.62 5.66

M - - 12.65 16.08 17.35 1.21 3.34 5.57 6.81 8.31 8.85 0.33 0.65 1.13
M - GLAT 12.82 16.26 17.60 1.26 3.49 5.79 6.84 8.34 8.89 0.32 0.63 1.12
M VG¬ LENSR 12.57 16.09 17.38 1.37 3.41 5.65 0.01 0.01 0.01 0.02 0.02 0.02
M VG¬ NGP(SL) 12.10 15.28 16.54 1.34 3.43 5.47 6.27 7.94 8.42 0.14 0.35 0.55

V - - 13.07 16.75 18.11 1.04 3.28 5.52 9.29 11.42 12.12 0.48 1.37 2.09
V - GLAT 13.88 17.51 18.90 1.28 3.87 6.43 9.39 11.52 12.20 0.51 1.42 2.17
V VG¬ LENSR 13.46 17.06 18.49 1.27 3.69 5.98 0.0 0.01 0.02 0.01 0.01 0.01
V VG¬ NGP(SL) 14.09 17.72 19.08 1.35 3.98 6.36 9.57 11.68 12.49 0.61 1.51 2.39

Table 2: Impact of different regularization strategies on IMP (I), MOTIFS (M) and VCTree (V) using VG¬. Results on VG.

bedding of p(s,o) is the sum of the word embeddings of s,
p and o weighted by w(p), w(s) and w(o). The L2 dis-
tance between the mapped embedding and M serves as a
loss to back-propagate through an SGG model. As the pre-
dictions of a model have higher uncertainty in scene graph
classification than in predicate classification (not only p, but
also s and o are now uncertain), the embedding of p(s,o)
will be further away from the prediction embeddings that
LENSR has seen while learning q in advance of regulariza-
tion. This discrepancy leads q to transform the prediction
embeddings erroneously, leading to a loss function that pro-
vides a meaningless training signal. LENSR was not tested
on scene graph classification by the authors (Xie et al. 2019).

NGP complements bias reduction techniques. Regarding
MOTIFS, the recall improvements brought by TDE are up
to 59% and 73% in predicate and scene graph classification
and increase to 62% and 89% when NGP is additionally ap-
plied using CNet¬. Regarding VCTree, the recall improve-

ments brought by TDE are up to 62% and 38% in predicate
and scene graph classification; when NGP is additionally ap-
plied, recall increases up to 88% and 63%. Tables 1 and 3
show that the combination of TDE with NGP leads to much
higher improvements than the sum of the improvements ob-
tained by applying each technique separately.

We observe similar improvements when NGP is applied
using VG¬. On predicate classification, mR@k increases to
24.07%, 31.06% and 34.53%; on scene graph classification,
mR@k increases to 11.19%, 15.10% and 17.66%, see Ta-
ble 4. The adoption of VG¬ allows us to establish a fair com-
parison against GLAT. Our empirical analysis shows that
GLAT cannot be effectively integrated with bias reduction
techniques: when GLAT is applied jointly with TDE, mR@k
on predicate classification drops from 19.40%, 25.94% and
29.48% to 13.07%, 19.05% and 23.14%, see Table 4. The
corresponding decreases in recall are even larger on scene
graph classification: mR@k drops from 10.51%, 14.53%
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Model Theory Reg. Predicate Classification Scene Graph Classification
mR@ zsR@ mR@ zsR@

20 50 100 20 50 100 20 50 100 20 50 100

M - - 12.65 16.08 17.35 1.21 3.34 5.57 6.81 8.31 8.85 0.33 0.65 1.13
M - TDE 17.18 23.95 27.66 8.10 13.68 17.11 10.11 13.44 15.35 1.85 3.01 3.68
M CNet¬ N+TDE 17.99 24.50 28.16 8.51 14.00 17.80 11.80 15.11 16.77 1.92 3.05 3.74

V - - 13.07 16.75 18.11 1.04 3.28 5.52 9.29 11.42 12.12 0.48 1.37 2.09
V - TDE 19.40 25.94 29.48 8.14 12.38 14.07 10.51 14.53 16.73 1.48 2.54 3.99
V CNet¬ N+TDE 23.91 30.78 34.19 8.15 12.47 15.41 13.60 17.69 19.85 1.57 2.63 3.63

Table 3: Impact of NGP(SL) (abbreviated as “N”) on MOTIFS (M) and VCTree (V) with TDE. Results on VG.

Model Theory Reg. Predicate Classification Scene Graph Classification
mR@ zsR@ mR@ zsR@

20 50 100 20 50 100 20 50 100 20 50 100

V - - 13.07 16.75 18.11 1.04 3.28 5.52 9.29 11.42 12.12 0.48 1.37 2.09
V - TDE 19.40 25.94 29.48 8.14 12.38 14.07 10.51 14.53 16.73 1.48 2.54 3.99
V VG¬ N+TDE 24.07 31.06 34.53 6.30 10.46 12.90 11.19 15.10 17.66 1.66 2.64 3.51

V - - 13.07 16.75 18.11 1.04 3.28 5.52 9.29 11.42 12.12 0.48 1.37 2.09
V - TDE 19.40 25.94 29.48 8.14 12.38 14.07 10.51 14.53 16.73 1.48 2.54 3.99
V - G+TDE 13.07 19.05 23.14 4.99 8.09 11.01 0.90 2.06 3.60 1.30 2.22 3.18

Table 4: Impact of NGP(SL) (abbreviated as “N”) and GLAT (abbreviated as “G”) on VCTree (V) with TDE. Results on VG.

% Red. Reg. Prd Cls mR@ Sg Cls mR@
50 100 50 100

-0% - 46.10 46.15 28.90 28.92
-0% TDE 42.00 42.01 12.87 12.87
-0% NGP(SL) 48.65 48.70 26.07 26.10

-50% - 43.12 43.17 25.81 25.83
-50% TDE 32.07 32.08 19.34 19.36
-50% NGP(SL) 46.41 46.46 26.21 26.24

-75% - 42.16 42.17 23.27 23.28
-75% TDE 34.09 34.10 14.73 14.74
-75% NGP(SL) 44.90 44.94 25.23 25.26

Table 5: Impact of NGP(SL) and TDE on MOTIF when re-
ducing the ground-truth facts from the OIv6 dataset.

and 16.73% to 0.90%, 2.06% and 3.60%.
NGP is particularly beneficial when reducing the amount
of ground-truth facts. Figure 2 shows that the accuracy
of SGG models can substantially decrease when reducing
the ground-truth facts. In the case of VG, the most sen-
sitive model is IMP: when reducing the training data by
50%, zsR@100 drops by more than 6.5 times (19.92 %
vs. 3.06%), while mR@100 drops by more than two times
(12.23 % vs. 5.36%). In the case of OIv6, Table 5, MO-
TIFS’ mR@100 drops from 46.15% to 42.17% in predi-
cate classification when reducing the ground-truth by 75%;
in scene graph classification, MOTIFS’ mR@100 drops
from 28.92% to 23.28%. NGP can lead to drastic accu-
racy improvements for those cases. Regarding IMP and VG,
zsR@100 can increase from 3.06% to 18.99% when reduc-
ing the ground-truth by 50%; zsR@100 can similarly in-
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Figure 2: Impact of NGP on IMP and VCTree for predicate
classification when reducing VG’s ground-truth. Blue lines
show mR@100; orange show zR@100. Solid lines show mR
and zsR w/o NGP; dotted show mR and zsR w/ NGP.

crease from 5.36% to 11.28%. Similarly, when reducing by
75% of the ground-truth of OIv6, mR@100 for predicate
classification can increase from 42.17% to 44.94% in the
case of MOTIFS; mR@100 can increase from 42.17% to
44.94% for scene graph classification, when NGP is applied.

While NGP drops the mR of MOTIFS in scene graph clas-
sification when the whole ground-truth is used in OIv6, it is
beneficial when reducing the ground-truth by 50% and 75%,
Table 5. The high mR for MOTIFS even with significantly
fewer ground-truth facts in Table 5 manifests that frequency-
based techniques are effective for the OIv6 dataset. Still, the
integration with logic-based approaches (NGP) can further
improve mR, Table 5. It is also worth noting that while TDE
is particularly effective in VG, it decreases the mR of MO-
TIFS up to 11% in OIv6. This is because OIv6 has a much
higher annotation quality, and hence de-biasing is not cru-
cial. Finally, in contrast to NGP, TDE provides no supervi-
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Figure 3: R@100 for the 28 least frequent predicates in VG
for predicate and scene graph classification (upper and lower
figure, respectively).

sion when reducing the ground-truth facts.

NGP improves recall for less frequent predicates. VG
is a highly skewed benchmark (Tang et al. 2020), since 90%
of the ground truth facts reference only few predicates (e.g.,
looking at facts are the 0.00263% of the ground truth
facts; flying in facts are only the 0.00001%). In Fig-
ure 3, we plot the R@100 for the 28 least frequent predicates
in VG (predicates shown in decreasing order of their oc-
curence frequencies) for predicate classification (upper part)
and scene graph classification (lower part). The blue bars
show recall of the baseline model (VCTree regularized with
TDE); the orange ones show recall after adding NGP(SL) on
top. The percentages on the bars show the relative changes
in recall due to NGP. Figure 3 shows that NGP brings major
improvements in recall for predicates with very few training
data, such as belonging to and on back of, show-
ing it acts as a form of weak supervision.
Regularization can be more effective than sophisticated
(neurosymbolic) SGG models. The mR@k of KBFN is
17.01% and 18.43% for predicate classification, see Fig-
ure 4. When jointly regularizing VCTree using NGP(SL)
and TDE, the mR@k is 30.78% and 34.19%. Similarly, for
scene graph generation, the mR@k of KBFN is 15.79%
and 17.07%, and 17.69% and 19.85% for the regularized
VCTree model. Likewise, the regularized VCTree model
reaches up to 90% higher performance than BGNN. These
results show that regularizing a standard SGG model like
VCTree, can be more effective than ad-hoc, neurosymbolic
SGG architectures or more sophisticated models.

Related Work
Regularising neural models using symbolic knowledge has
been extensively studied in information and natural language
analysis (Wang and Pan 2020; Minervini and Riedel 2018;
Rocktäschel, Singh, and Riedel 2015). Unlike the above line
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Figure 4: Regularization vs. ad-hoc architectures and sophis-
ticated models. Results on VG.

of research, NGP focuses on scalable knowledge injection
into SGG models under different semantics.

Differently from contrastive learning (Oord, Li, and
Vinyals 2018; Chen and He 2021; Jaiswal et al. 2021) where
models are trained in an unsupervised fashion by perform-
ing tasks that can be created from the input itself, NGP trains
neural models using symbolic domain knowledge. The au-
thors in (Suhail et al. 2021) train a graph neural network to
learn the joint conditional density of a scene graph and then
use it as a loss function. To deal with the ambiguity in the
SGG annotations, the work in (Yang et al. 2021) generates
different probabilistic representations of the predicates. In
contrast to NGP, the above techniques do not support ex-
ternal knowledge. Finally, the work in (Zhong et al. 2021)
generates localized scene graphs from image-text pairs; the
technique does not rely on logic, but exclusively on neu-
ral models. Integrating logic-based regularization with the
above research is an interesting future direction.

Every technique that uses learned or fixed background
knowledge as a prior, e.g., (Gu et al. 2019; Zareian et al.
2020), is biased towards that knowledge. Differently from
techniques like MOTIFS (Zellers et al. 2018), NGP is not bi-
ased by the frequency of the training facts: if the background
knowledge is independent of the training facts or their fre-
quencies, then NGP will not be biased toward the training
facts or their frequencies. The above holds as both the logic-
based losses and NGP’s mechanism for choosing the maxi-
mally violated ICs are indifferent to any frequencies.

Conclusions
We introduced NGP, the first highly-scalable, symbolic,
SGG regularization framework that leads to state-of-the-art
accuracy. Future research includes supporting richer formu-
las and regularizing models under theories mined via knowl-
edge extraction e.g., (Zhu, Fathi, and Fei-Fei 2014)– NGP
supports such theories by weighting the ICs. Integrating
NGP with neurosymbolic techniques that support indirect
supervision like DeepProbLog (Manhaeve et al. 2018), Neu-
roLog (Tsamoura, Hospedales, and Michael 2021) and ABL
(Dai et al. 2019) is another direction for future research.
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