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Abstract

In this work, we demonstrate how to reliably estimate epis-
temic uncertainty while maintaining the flexibility needed to
capture complicated aleatoric distributions. To this end, we
propose an ensemble of Normalizing Flows (NF), which are
state-of-the-art in modeling aleatoric uncertainty. The ensem-
bles are created via sets of fixed dropout masks, making them
less expensive than creating separate NF models. We demon-
strate how to leverage the unique structure of NFs, base distri-
butions, to estimate aleatoric uncertainty without relying on
samples, provide a comprehensive set of baselines, and derive
unbiased estimates for differential entropy. The methods were
applied to a variety of experiments, commonly used to bench-
mark aleatoric and epistemic uncertainty estimation: 1D sinu-
soidal data, 2D windy grid-world (Wet Chicken), Pendulum,
and Hopper. In these experiments, we setup an active learn-
ing framework and evaluate each model’s capability at mea-
suring aleatoric and epistemic uncertainty. The results show
the advantages of using NF ensembles in capturing compli-
cated aleatoric while maintaining accurate epistemic uncer-
tainty estimates.

Introduction
One common decomposition of uncertainty is aleatoric and
epistemic (Hora 1996; Der Kiureghian and Ditlevsen 2009;
Hüllermeier and Waegeman 2021). Aleatoric uncertainty
refers to the inherent randomness in the outcome of an ex-
periment, while epistemic uncertainty can be described as
ignorance or a lack of knowledge. The important distinc-
tion between the two is that epistemic uncertainty can be
reduced by the acquisition of more data while aleatoric can-
not. Our goal in this paper is to learn aleatoric distributions
in high dimensions, with arbitrary distributional form, while
also tracking epistemic uncertainty due to non-uniform data
sampling.

Normalizing Flows (NFs) have been shown to be effective
at capturing highly expressive aleatoric uncertainty with lit-
tle prior knowledge (Kingma and Dhariwal 2018; Rezende
and Mohamed 2015). This is done by transforming a base
distribution via a series of nonlinear bijective mappings, and
can model complex heteroscedastic and multi-modal noise.
Robotic systems display such noise, as robots interact with
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nonlinear stochastic dynamics often in high dimensions. To
further complicate the problem of dynamics modeling, data
collection for many robot systems can be prohibitively ex-
pensive. Therefore, an active learning framework is usually
adopted to iteratively collect data in order to most efficiently
improve a model. In order to apply such a framework, en-
sembles have been employed to capture epistemic uncer-
tainty for deep learning models (Gal, Islam, and Ghahramani
2017).

In this paper, we utilize NFs’ ability to capture rich
aleatoric uncertainty and extend such models to epistemic
uncertainty estimation with ensembles. We then use our NF
models to tackle epistemic uncertainty for regression tasks.
The contributions of this work are as follows:

• We develop two methods for estimating uncertainty for
NFs, derive unbiased estimates for said models, and
leverage the base distribution to reduce the sampling bur-
den on the estimation of uncertainty.

• We leverage memory-efficient ensembling by creating
ensembles via fixed dropout masks and apply them to
NFs.

• We demonstrate the usefulness of uncertainty estima-
tion on an array of previously proposed benchmarks (De-
peweg et al. 2018) and novel settings for active learning
problems.

Problem Statement
Given a dataset D = {xi, yi}Ni=1, where xi ∈ RK and
yi ∈ RD, we wish to approximate the conditional proba-
bility pY |X(y|x). Our models therefore take as input x and
output the approximate conditional probability density func-
tion, pY |X(y|x) = fθ(y, x), where θ is a set of parameters to
be learned. In the experiments that follow, the ground truth
distribution, pY |X(y|x), is not assumed homoscedastic nor
do we put restrictions on its shape.

In order to capture uncertainty, we utilize the informa-
tion based criteria proposed in Houlsby et al. (2011) to
estimate uncertainty. Let H(·) denote the differential en-
tropy of a random variable, H(X) = E [− log(pX(x))], and
W ∼ p(w) index different models in a Bayesian framework
or an ensemble. Then one can define epistemic uncertainty,
I(y∗,W ), as the difference of total, H(y∗|x∗), and aleatoric,
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Ep(w) [H(y∗|x∗, w)], uncertainty,

I(y∗,W ) = H(y∗|x∗)− Ep(w) [H(y∗|x∗, w)] , (1)

where I(·) is the mutual information and y∗, x∗ denote val-
ues not seen during training.

These uncertainty estimates can be used for the problem
of active learning, where we iteratively add data points to
our training dataset in order to improve our model’s per-
formance as much as possible with each data point selected
(Settles 2009; MacKay 1992). When doing active learning,
one attempts to find the x∗ that maximizes Equation (1) and
query new points in that region. Intuitively, we are looking
for the point x∗ which has high total uncertainty, H(y∗|x∗),
but each model has low uncertainty, H(y∗|x∗, w).

Background
NFs were chosen to capture aleatoric uncertainty as they
are capable of representing flexible distributions. Ensembles
were chosen as they are a computationally efficient way of
estimating epistemic uncertainty for deep learning.

Normalizing Flows
NFs are non-parametric models that have been shown to
be able to fit flexible multi-modal distributions (Tabak and
Vanden-Eijnden 2010; Tabak and Turner 2013). They do so
by transforming a simple continuous distribution (e.g. Gaus-
sian, Beta, etc.) into a more complex one via the change of
variable formula. These transformations make it so one can
score and sample from the fitted distribution, thus allowing
NFs to be applied to a multitude of problems. Let B be a
D-dimensional continuous random vector with pB(b) as its
density function and let Y = g(B) where g is invertible,
g−1 exists, and both g and g−1 are differentiable. Using the
change of variable formula, we can write the distribution of
Y as,

pY (y) = pB(g
−1(y))| det(J(g−1(y)))|, (2)

where J(·) is the Jacobian and det refers to the determi-
nant. The first term in the product on the RHS of Equa-
tion (2) is what changes the shape of the distribution while
| det(J(g−1(y)))| normalizes it, forcing it to integrate to
one.

NF models can be learned by making g(·) parameterized
by θ, i.e., gθ(·), and then learned via the log likelihood. In
addition, NFs can be made conditional (Winkler et al. 2019;
Ardizzone et al. 2019). Following the framework of Winkler
et al. (2019), Equation (2) becomes,

pY |X(y|x) = pB|X(g−1
θ (y, x))×

| det(J(g−1
θ (y, x)))|, (3)

log(pY |X(y|x)) = log(pB|X(g−1
θ (y, x)))+

log(| det(J(g−1
θ (y, x)))|). (4)

Note that now gθ : Y × X 7→ B and NF models com-
monly chain together multiple bijective mappings to make
their models more flexible. When fitting a NF, one typically
optimizes the negative log likelihood in Equation (4) over
mini batches. For a complete overview of NFs, please refer
to Papamakarios et al. (2021).

Ensembles
Ensembles use multiple models to obtain better predictive
performance and to measure uncertainty. The conditional
model can be written as,

fθ(y, x) =
M∑

w=1

πwfθw(y, x), (5)

where M and πw are the number of model components and
the component weights, respectively.

Ensembles are typically generated in one of two ways:
randomization (Breiman 2001) and boosting (Freund and
Schapire 1997). Randomization has been preferred method
for deep learning models (Lakshminarayanan, Pritzel, and
Blundell 2017). Each model is randomly initialized and then
at each training step for a model w, a sample, with replace-
ment, is drawn from a training set D and then a step in the
direction of the gradient is taken. This creates diversity as
each ensemble component is exposed to a different portion
of D at each step in the gradient.

Normalizing Flows Ensembles
We propose two approaches for creating NF ensembles,
Nflows Out and Nflows Base, both of which rely on neural
spline bijective mappings, gθ(·), as they have been shown
to be very flexible distribution approximators (Durkan et al.
2019a,b). Both bagging and random initialization are uti-
lized in training our ensemble components. Each ensemble
component is created via fixed dropout masks (Durasov et al.
2021), which reduces the memory and computation cost of
our method.

Nflows Out
Nflows Out creates an ensemble in the nonlinear transfor-
mations g’s,

pY |X,W (y|x,w) = fθw(y, x) = pB|X(g−1
θw

(y, x))×
| det(J(g−1

θw
(y, x)))|. (6)

The base distribution is static for each component and the
bijective transformation is where the component variability
lies. The network gθw outputs the parameters of cubic spline
and thus each ensemble component produces a different cu-
bic spline. By including the complex aleatoric uncertainty
prediction of an NF as well as the ability of dropout en-
sembles to capture uncertainty over learned parameters,
our method bridges the state-of-the-art of aleatoric rep-
resentation and epistemic uncertainty estimation. These
new capabilities allows Nflows Out to be applied to new de-
cision making tasks.

Using Nflows Out, we can approximate Equation (1). We
employ Monte Carlo sampling to estimate the quantities of
interest. Thus, total uncertainty is estimated as,

H(y∗|x∗) = −E
[
log(pY |X(y∗|x∗))

]
(7)

≈ − 1

N

N∑
n=1

log(pY |X(yn|x∗)), (8)
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Figure 1: The left figure illustrates Nflows Base and the right figure depicts Nflows Out on an ensemble of 3 components with
one bijective transformation.

where N is the number of samples drawn. For a given x∗

we sample N points from pB|X and then randomly select
an ensemble component gw to transform each point. The
aleatoric uncertainty, Ep(w) [H(y∗|x∗, w)], of Equation (1)
is calculated in a similar fashion,

Ep(w) [H(y∗|x∗, w)]

= − 1

M

M∑
w=1

E
[
log(pY |X,W (y|x∗, w))

]
(9)

≈ − 1

M

M∑
w=1

1

Nw

(
Nw∑

nw=1

log(pY |X,W (ynw
|x∗, w))

)
. (10)

For a given x∗ and w, we sample Nw points from pB|X
and then transform the samples according to gθw . Monte
Carlo estimation can suffer from the curse of dimensionality
(Rubinstein and Glynn 2009). Experiments and an intuitive
proof detailing Monte Carlo’s estimation limitations in high
dimensions is contained in the Appendix A.8.

Nflows Base
In an attempt to alleviate the model’s reliance on sampling,
we propose a second ensembling technique for NFs, Nflows
Base. The ensembles are created in the base distribution,

pY |X,W (y|x,w) = fθw(y, x) = pB|X,W (g−1
θ (y, x))×

| det(J(g−1
θ (y, x)))|, (11)

where pB|X,W (b|x,w) = N(µw,Σw), µw and Σw are es-
timated via a neural network with fixed dropout masks. In

Nflows Base, the bijective mapping is static for each com-
ponent while the base distribution varies. Figure 1 depicts
Nflows Base on the left and Nflows Out on the right.

Nflows Base has advantages when estimating uncer-
tainty as the component variability is contained in the
base distribution and thus analytical formulae can be
used to approximate aleatoric uncertainty. Equation (10)
becomes,

≈ 1

M

M∑
w=1

1

2
log(det(2πΣw)). (12)

These advantages are seen in memory reduction, compu-
tationally efficiency, and estimation error. Let Nx denote
the number of x∗ to estimate uncertainty for. Then Nflows
Out needs to sample TS points where TS = NxNwM
and the samples are also used to estimate Equation (8)
(Nout = NwM ). On the other hand, for Nflows Base,
TS = NxNbase points are needed to estimate uncertainty,
where Nbase = Nout

M . This reduces the number of samples
needed to drawn by a factor M . Please refer to the Ap-
pendix A.8 for analysis of time savings. In addition to re-
ducing the sampling required, there is less estimation error
as component-wise entropy can be computed directly from
Equation (12) instead of through sampling. For nonparamet-
ric models, it is uncommon to estimate aleatoric uncertainty
without sampling as the output distribution does not hold a
parametric form.

Baseline Models
We have included several baselines and compared each
method’s ability to measure aleatoric and epistemic uncer-
tainty. These baselines are detailed below.
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Figure 2: Samples from each model at the corresponding x-values on the Hetero Environment are represented by the blue dots
and left y-axes. Epistemic uncertainty is represented by the red curve and the right y-axes. Note that the probability density is
in the top left graph instead of epistemic uncertainty

Probabilistic Network Ensembles
Probabilistic network ensembles (PNEs) have been shown
to be a powerful tool to measure uncertainty for neural net-
works (Chua et al. 2018; Kurutach et al. 2018). We are par-
ticularly interested in capturing their capabilities at measur-
ing aleatoric and epistemic uncertainty in supervised learn-
ing tasks. PNEs were created with fixed dropout masks with
each component modeling a Gaussian,

pY |X(y|x) = 1

M

M∑
w=1

pY |X,W (y|x,w). (13)

The model is then trained via negative log likelihood, with
randomly initialized weights and bootstrapped samples from
the training set. We estimate epistemic uncertainty for PNEs
via the same method for Nflows Base, Equations (8) and
(12).

Monte Carlo Dropout
In addition to ensembles, other Bayesian approximations ex-
ist in the deep learning community. MC dropout is one of the
more prevalent and commonly used Bayesian approxima-
tions (Gal and Ghahramani 2016; Gal, Islam, and Ghahra-
mani 2017; Kirsch, Van Amersfoort, and Gal 2019). MC
dropout creates ensembles via dropout during training and
uses dropout at test time to estimate uncertainty. The output
distribution is therefore similar to PNEs in Equation (13).
However, we cannot sample each mask at test time, and thus
a random sample of masks needs to be drawn. Therefore,
when estimating uncertainty for MC dropout we first sample
a set of masks and then sample each Gaussian correspond-
ing to each mask. After which, we apply Equations (8) and

(12) to measure uncertainty. Note the each mask has equal
probability, as the dropout probability was set to 0.5.

Gaussian Processes
Gaussian Processes (GPs) are Bayesian models widely used
to quantify uncertainty (Rasmussen 2003). A GP model can
be fully defined by its mean function m(·) and a positive
semidefinite covariance function/kernel k(·, ·) of a real pro-
cess f(x),

m(x) = E [f(x)] ,

k(x, x′) = E [(f(x)−m(x))(f(x′)−m(x′))] . (14)

Choosing the mean and covariance function allows a practi-
tioner to input prior knowledge into the model. From these
choices, the predictive posterior becomes,

Ef [x
∗] = m(x∗) = kT∗ (K + σ2

wI)
−1y (15)

varf [x
∗] = k∗∗ − kT∗ (K + σ2

wI)k∗, (16)

where k∗ = k(X,x∗), k∗∗ = k(x∗, x∗), K is the kernel ma-
trix with entries Kij = k(xi, xj), and σ2

w is a noise variance
hyperparameter. Note that X and y refer to the complete set
of training data. GPs place a probability distribution over
functions that are possible fits over the data points. This dis-
tribution over functions is used to express uncertainty and is
used to quantify epistemic uncertainty.

Experiments
We first evaluate each method on two 1D environments, pre-
viously proposed (Depeweg et al. 2018), to compare whether
each method can capture multi-modal and heteroscedastic
noise while measuring epistemic uncertainty. In addition,
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Figure 3: Samples from each model at the corresponding x-values on the Bimodal Environment are represented by the blue dots
and left y-axes. Epistemic uncertainty is represented by the red curve and the right y-axes. Note that the probability density is
in the top left graph instead of epistemic uncertainty

we provide 5 active learning problems, both 1D and multi-
dimensional. Both openai gym and nflows libraries were uti-
lized with minor changes (Brockman et al. 2016; Durkan
et al. 2020). The model from Depeweg et al. (2016, 2018)
is Bayesian Neural Network that is limited to mixture Gaus-
sians and is thus not as expressive NFs for aleatoric uncer-
tainty. In addition, there is no source code for it and was not
included as a baseline, though we have included MC dropout
as a close comparison. For all model hyper-parameters
please refer to the Appendix A.1 and the code can be found
at https://github.com/nwaftp23/nflows epistemic.

Data
In order to assess our uncertainty estimation, we evaluate on
two 1D benchmarks, Hetero and Bimodal (Depeweg et al.
2018). The Hetero data can be seen in Figure 2 in the top left
pane. There are two valleys of low data density displayed in
the red bar chart where one would expect high epistemic un-
certainty. The Bimodal data can be seen in Figure 3 in the
top left pane. Density of data drops off when moving right
along the x-axis, thus you would expect epistemic uncer-
tainty to grow as x does. For complete details involved in
generating the data, please refer to the Appendix A.2. Both
1D environments were included to provide proof of concept
for uncertainty estimation and visualizations.

In addition to the 1D environments, we validated our
methods across three multi-dimensional environments. Tra-
jectories were gathered from an agent and then the transition
function for each environment was estimated, f(st, at) =
st+1. The first, Wet Chicken (Trep. 1994), is commonly used
to evaluate a model’s capacity to fit multi-modal and het-
eroscedastic noise (Depeweg et al. 2018, 2016). It simulates

a canoe approaching the edge of a waterfall. The paddlers
are enticed to the edge of the waterfall as that is the region
with the most fish, but as they get closer the probability in-
creases that they fall over the edge and start over. Hence to-
wards the edge of the waterfall the transitions become bi-
modal. The dynamics are naturally stochastic and are gov-
erned by the equations contained in the Appendix A.3. Wet
Chicken was included to assess uncertainty estimation on an
intrinsically stochastic multi-dimensional environment.

Moreover, we evaluated all methods on Pendulum (Brock-
man et al. 2016) and Hopper (Todorov, Erez, and Tassa
2012). These environments are included because they are
commonly used in benchmarking and provide us a higher di-
mensional output space to validate our methods. These envi-
ronments are inherently nonstochactisic and thus noise was
injected into the dynamics in order to produce multi-modal
noise. The noise is applied to each action, a′t = at + amaxϵ,
where epsilon is drawn from a multi-modal distribution and
amax refers to the maximum value in the action space. Note
that the parameters used to create the noise distribution are
included in the Appendix A.4 and that at is recorded in the
replay buffer, not a′t.

1D Fits
First, we turn to our 1D environments to give motivation and
empirical proof of the epistemic uncertainty estimation. In
Figure 2, we can see that each model does a reasonable job
of capturing the narrow and widening of the ground truth
distribution for the Hetero environment. Moreover, Figure
2 displays each model’s capacity to estimate epistemic un-
certainty in the red curve and right y-axis. Each model does
a good job of capturing higher epistemic uncertainty in the
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GP MC Drop PNE Nflows Nflows Out Nflows Base

Figure 4: Mean KL divergence on 50 randomly sampled test set inputs as data was added to the training sets
( 1
50

∑50
i=1 DKL(Pi ∥ Qi), where Pi is the ground truth conditional distribution and Qi is the model’s conditional distribu-

tion conditioned on xi).

two regions with fewer data points. It is not surprising to
see GPs, PNEs, and MC dropout perform well on Hetero, as
each method has been shown to accurately fit heteroscedas-
tic Gaussian noise.

While the baseline methods were sufficiently capable
of capturing the Hetero data, this not the case for the Bi-
modal setting. Figure 3 shows that none of the non-NF mod-
els can fit both modes. This is to be expected as GPs, PNEs
and MC dropout fit a Gaussian at each x. While ensem-
bles such as PNEs and MC dropout can theoretically capture
multiple modes, there is no guarantee of this. To guarantee
capturing multiple modes, deep learning engineering is re-
quired. Once can either manipulate of the loss function or
separate the training data according to each mode, both of
which may require prior knowledge. On the other hand, NFs
are able to fit multiple modes directly via the log likelihood.
Note that some fine tuning of the number of transformations
and transformation types is required.

In addition to the aleatoric uncertainty estimation, Figure
3 displays each model’s ability to capture epistemic uncer-
tainty on the Bimodal data with the red curve on the right
y-axis. Nflows Out and Nflows Base are the only models
to capture both modes while maintaining accurate epis-
temic uncertainty estimates. Each model shows the pattern
of increasing uncertainty where the data is more scarce with
MC dropout having the most trouble displaying this pattern.
MC dropout had the most difficulty to estimate epistemic
uncertainty on most tasks. This is likely the case because,
as opposed to the PNEs or the NFs methods, the number of
ensemble components is generally quite larger (2n where n
is the number of neurons in your network). Therefore, when
estimating Equation (1), a subset of masks needs to be sam-
pled, leading to less stable estimates of uncertainty.

Active Learning
In order to assess each model’s capability at utilizing epis-
temic and capturing flexible aleatoric uncertainty, we pro-
vide an active learning experimental setup. For both 1D and
multi-dimensional experiments, each model started with 100
and 200 data points, respectively. At each epoch, the mod-
els sampled 1000 new inputs and kept the 10 with the high-
est epistemic uncertainty. The models are then evaluated

by sampling 50 inputs from the test set and averaging the
Kullback-Liebler (KL) divergence for the ground truth dis-
tribution at those points and model’s distributions,

1

50

50∑
i=1

DKL(Pi ∥ Qi) (17)

Note that the KL divergences reported were estimated
via samples using the k-nearest-neighbor method (Wang,
Kulkarni, and Verdu 2009). KL divergence was chosen as an
evaluation metric as we are most interested in distributional
fit. In order to ensure variation, the training and test were
gathered via different processes; refer to the Appendix A.5
for more details. All experiments were run across 10 seeds
and their mean and standard deviation are reported.

Figure 4 displays the performance of each method as the
training size increases. For each data setting, the NF en-
semble models reach lower KLs, thus verifying that they
can leverage epistemic uncertainty estimation to learn
more expressive aleatoric uncertainty faster. In some
cases other models provided better results with small num-
ber of data points, this information is conveyed in Table 1,
with the best-performing models in bold at different acquisi-
tion epochs. Note that in addition to the baselines discussed,
we included an NF with no ensembles, using total entropy
as the acquisition function.

Related Work
Using Bayesian methods, researchers have developed in-
formation based criterion for the problem of active learn-
ing using Gaussian Processes (GPs) on classification prob-
lems (Houlsby et al. 2011). Researchers have leveraged
said information based criterion for uncertainty estimation
with Bayesian neural networks (Gal, Islam, and Ghahramani
2017; Kendall and Gal 2017; Kirsch, Van Amersfoort, and
Gal 2019). These works extended previous epistemic uncer-
tainty estimation by leveraging dropout to estimate uncer-
tainty on image classification for neural networks. In con-
trast, our work estimates epistemic uncertainty on a harder
output space. The experiments contained in this paper were
conducted on regression problems where the output is drawn
from continuous distributions in 1-11 dimensions, whereas
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Env Acq Batch GP PNEs MC Drop Nflows Nflows Out Nflows Base

Hetero

10 1.43±0.12 1.39±0.06 1.43±0.1 1.54±0.23 0.48±0.09 0.51±0.17
25 1.43±0.11 1.44±0.1 1.43±0.08 1.3±0.45 0.31±0.09 0.43±0.11
50 1.41±0.07 1.39±0.07 1.46±0.1 1.39±0.21 0.27±0.08 0.36±0.09
100 1.33±0.06 1.45±0.08 1.44±0.07 0.95±0.33 0.3±0.08 0.38±0.06

Bimodal

10 2.23±0.18 1.49±0.06 1.49±0.03 1.26±0.81 0.74±0.76 0.36±0.07
25 2.02±0.07 1.46±0.05 1.47±0.04 1.21±0.6 0.24±0.04 0.2±0.03
50 1.97±0.07 1.5±0.03 1.49±0.02 1.2±0.45 0.22±0.03 0.18±0.03
100 2.3±0.03 1.51±0.05 1.49±0.05 1.07±0.32 0.18±0.02 0.14±0.02

Wet Chicken

10 7.61±0.21 7.14±0.24 7.93±0.27 8.04±1.07 7.83±1.2 7.67±1.36
25 7.73±0.17 7.49±0.47 8.02±0.3 8.19±1.03 6.64±0.79 6.25±0.98
50 7.81±0.12 7.61±0.44 7.95±0.18 8.12±0.78 6.51±0.56 5.86±0.92
100 7.71±0.18 7.55±0.46 7.97±0.28 8.06±0.7 6.73±1.06 5.93±1.01

Pendulum-v0

10 24.56±0.21 27.29±0.73 31.04±0.41 26.45±4.61 27.62±1.87 26.07±2.22
25 24.52±0.3 26.43±1.05 30.11±0.29 24.86±3.66 24.13±1.18 23.97±2.16
50 24.68±0.26 26.47±1.19 29.6±0.26 24.44±3.04 22.86±1.63 22.45±1.29
100 24.67±0.17 26.04±0.94 29.0±0.39 23.9±0.93 23.09±1.56 21.93±1.17

Hopper-v2

10 114.8±0.97 122.42±1.22 125.66±0.98 126.87±2.83 112.79±1.18 114.6±2.14
25 113.29±0.62 120.3±1.56 125.99±0.84 123.93±1.84 109.31±2.0 110.64±1.59
50 112.98±0.71 119.82±1.66 125.65±0.88 122.36±1.36 108.59±1.04 109.44±1.87
100 112.27±1.0 118.4±1.21 125.21±1.36 119.97±1.91 107.74±0.99 108.71±1.83

Table 1: KL Divergence of 50 randomly sampled test inputs ground truth distribution and the corresponding model distribution.
Experiments were across ten different seeds and the results are expressed as mean plus minus one standard deviation. Best
models are bolded.

the previous works applied their methods to classification
problems, a 1D categorical output.

NFs have been shown to be poor estimators of epistemic
uncertainty (Kirichenko, Izmailov, and Wilson 2020; Zhang,
Goldstein, and Ranganath 2021). Researchers have argued
that NFs, inability to differentiate between in and out dis-
tribution samples via their likelihood is a methodological
shortcoming. Some have found workarounds to this prob-
lem, specifically in the sphere of ensembles (Choi, Jang,
and Alemi 2018). Ensembles have been shown to be a pow-
erful tool in the belt of a machine learning practitioner by
leveraging similar uncertainty quantification benefits to their
Bayesian cousins but at a smaller computational footprint
(Lakshminarayanan, Pritzel, and Blundell 2017). The work
regarding NFs and uncertainty have focused on image gener-
ation and unsupervised learning. Our methods differ, as we
consider supervised learning problems (Winkler et al. 2019).
In addition, the ensembles created in Choi, Jang, and Alemi
(2018) contrast with ours as we leverage the base distribu-
tion to estimate our uncertainty, use mutual information in-
stead of WAIC and create our ensembles with less memory.

In addition to the examples discussed, work has been
done to quantify epistemic uncertainty for regression prob-
lems (Depeweg et al. 2018; Postels et al. 2020). Depeweg
et al. (2016) method’s relied on Bayesian approximations to
neural networks which modeled mixture of Gaussians and
demonstrated their ability to capture uncertainty on three en-
vironments. Our work expands on this, by developing more
expressive NF models for uncertainty estimation. Postels

et al. (2020) develop theory to show how latent represen-
tations of a proxy network can be used to estimate uncer-
tainty. They use the proxy network’s latent representation
as their conditioner. In contrast, we show to how to do this
with one NF model and how to leverage the base distribu-
tion to be more sample efficient. This study provided an
array of multi-modal problems while Postels et al. (2020)
considered a single uni-modal problem. Our work expands
on both these papers by providing a comprehensive analysis
of different baseline methods, comparing their uncertainty
quantification and including higher dimensional data. In ad-
dition, we provide a full active learning experimental setup
and develop new NF frameworks for measuring uncertainty
that are more sample efficient and have lower memory costs.

Conclusion

In this paper, we introduced NF ensembles via fixed dropout
masks and demonstrated how they can be used efficiently to
quantify uncertainty. In doing so, we show how to leverage
the base distribution to estimate uncertainty more sample ef-
ficiently. Moreover, Nflows Base shows that one can accu-
rately measure uncertainty in the base distribution space. We
empirically show that our models outperform the state-of-
the-art in capturing the combination of aleatoric and epis-
temic uncertainty on 5 regression tasks. This paper shows
that NF ensembles are an expressive model for aleatoric un-
certainty while keeping the benefits of previous methods for
capturing epistemic uncertainty.
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