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Abstract

We introduce equi-tuning, a novel fine-tuning method that
transforms (potentially non-equivariant) pretrained models
into group equivariant models while incurring minimum L2
loss between the feature representations of the pretrained
and the equivariant models. Large pretrained models can be
equi-tuned for different groups to satisfy the needs of vari-
ous downstream tasks. Equi-tuned models benefit from both
group equivariance as an inductive bias and semantic pri-
ors from pretrained models. We provide applications of equi-
tuning on three different tasks: image classification, compo-
sitional generalization in language, and fairness in natural
language generation (NLG). We also provide a novel group-
theoretic definition for fairness in NLG. The effectiveness of
this definition is shown by testing it against a standard em-
pirical method of fairness in NLG. We provide experimental
results for equi-tuning using a variety of pretrained models:
Alexnet, Resnet, VGG, and Densenet for image classifica-
tion; RNNs, GRUs, and LSTMs for compositional general-
ization; and GPT?2 for fairness in NLG. We test these models
on benchmark datasets across all considered tasks to show the
generality and effectiveness of the proposed method.

1 Introduction

Modern deep learning models show promising transfer-
learning abilities for a wide range of downstream
tasks (Bommasani et al. 2021). Lu et al. (2021) show that
the GPT2 language model (Radford et al. 2019) can be used
as a pretrained model for various downstream tasks such
as numerical computation, image classification, and even
protein folding prediction. But pretraining large models re-
quires immense computational and data resources. Hence,
it is essential to design effective fine-tuning algorithms that
can squeeze the most from these pretrained models.
Fine-tuning leverages semantic priors from pretrained
models for downstream tasks. E.g. CNNs trained on Ima-
genet (Deng et al. 2009) can extract useful features from
images outside the training set and can use that ability for
any other downstream image processing task. A different
method of using priors in deep learning is via inductive
biases in models such as group equivariance, e.g. design-
ing group equivariant architectures such as GCNNs (Cohen
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(a) Fine-tuning (b) Equi-tuning for the c4 group
Figure 1: Comparison of architectures for fine-tuning and
equi-tuning for ¢4 group of 90° rotations. For (a) fine-
tuning, the input is passed through the pretrained model and
then through a custom layer to obtain the output. For (b)
equi-tuning, the inputs are transformed using the group ac-
tion of c4. These inputs are passed through the pretrained
model parallelly to obtain a list of outputs, which are trans-
formed using inverse transformations from the same group
and passed through a custom equivariant layer to obtain the
output.

and Welling 2016; Kondor and Trivedi 2018). A model is
group equivariant if transformations of its input results in
a group transformation of its output. Popular examples in-
clude CNNs themselves that are equivariant to translations
and GCNNe s that are equivariant to more general symmetries
such as 90° rotations. Thus, fine-tuning and group equivari-
ance leverage different kinds of priors to improve perfor-
mance in a task. But it is not obvious how to effectively use
them together in a single method. Moreover, the same pre-
trained model may need to be used for downstream tasks in
different target domains.

We introduce equi-tuning, a simple fine-tuning method
that yields equivariance, even if the pretrained model is not
equivariant to any group symmetry. This method solves a
simple optimization problem minimizing the distance be-
tween the features of a pretrained model and any group
equivariant model. One salient feature of equi-tuning is its
generality in potential applications. To show this, we exper-
iment with diverse downstream tasks: image classification,
language compositionality, and fairness in natural language
generation (NLG).
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Figure 2: Rotated input images in (a) give unpredictably
changing features for pretrained Alexnet in (b), whereas fea-
tures from equi-tuned Alexnet change equivariantly in (c).

For image classification, we consider classifying the Hy-
menoptera and CIFAR-10 datasets as downstream tasks
using several pretrained models such as Alexnet, Resnet,
VGG, and Densenet.! These pretrained models are not natu-
rally equivariant to groups such as the c4 group of 90° rota-
tions, see Fig. 2. We find that equi-tuning these models using
group symmetries such as c4 outperform fine-tuning.

Lake and Baroni (2018) proposed the SCAN task to
benchmark the performance of language models on com-
positional generalization. Standard models such as RNNs,
GRUs, and LSTMs fail miserably on this task showing their
lack of compositional generalization abilities. Later, Gordon
et al. (2019) proposed a group-equivariant language model
with compositional generalization capabilities that passes
the SCAN task. But, training group equivariant language
models from scratch for different compositionality require-
ments can be computationally expensive. Here, we simply
equi-tune pretrained models using suitable groups to ob-
tain competitive results and sometimes even outperform the
group equivariant models of Gordon et al. (2019).

Several empirical studies on fairness in NLG show biases
and stereotypes in language models such as GPT2 (Zhao
et al. 2017; Sheng et al. 2019; Nadeem, Bethke, and Reddy
2021).2 But, theoretical study of bias mitigation methods in
NLG remain largely unexplored. We first provide a group-
theoretic framework for fairness in NLG. Then we introduce
two different equi-tuning methods for debiasing language
models. We use the regard classifier of Sheng et al. (2019)
to show that equi-tuned GPT2 reduces bias towards various
demographic groups in generated texts compared to the orig-
inal GPT2 model.

The main contributions of this paper are as follows.

* § 4 derives equi-tuning and discusses its properties.
* § 5.1 and 5.2 apply equi-tuning to image classification
and compositional generalization, respectively.

e § 5.3 first provides a group-theoretic definition of fair-
ness in NLG. Then, it provides two different equi-tuning

"We will use Resnet to refer to Resnet18 and VGG to refer to
VGG11 throughout this paper

>Throughout this work we use GPT2 to refer to the version of
the GPT2 model that has 117M parameters.
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methods to mitigate bias in language models.

* § 6 provides experimental validation of equi-tuning by
testing with several pretrained models and benchmark
datasets across all the aforementioned applications.

2 Related Work

Group equivariant networks. Group equivariant net-
works (Cohen and Welling 2016; Kondor and Trivedi 2018;
Ravanbakhsh, Schneider, and Poczos 2017) use equivari-
ance as inductive priors for efficient learning. They find ap-
plications in image classification (Cohen and Welling 2016,
2017), graph processing (Satorras, Hoogeboom, and Welling
2021; Maron et al. 2019; Keriven and Peyré 2019), meshes
and 3D point cloud data processing (He et al. 2021; De Haan
et al. 2020; Basu et al. 2022a), and reinforcement learn-
ing (Van Der Pol et al. 2020; Wang et al. 2022; Basu et al.
2022b). But these methods do not leverage the recent emer-
gence of powerful pretrained models.

Transfer learning. Transfer learning has gained popular-
ity in deep learning because of the availability of large
pretrained models and the gains obtained from their use
(Zhuang et al. 2020; Dai et al. 2009; Zamir et al. 2018; Tay-
lor and Stone 2009; Bengio 2012; Ruder et al. 2019). But
equivariance in transfer learning remains unexplored.

Compositional generalization. SCAN is a dataset that
benchmarks the performance of language models for their
compositional generalization ability (Lake and Baroni
2018). Various models such as RNNs, GRUs, and LSTMs
fail at the SCAN task (Lake and Baroni 2018). Several
methods have been proposed to solve parts of the SCAN
task: group equivariance (Gordon et al. 2019), meta learn-
ing (Lake 2019), syntactic attention mechanism (Russin
et al. 2019), and data augmentation (GECA) (Andreas
2020). Among these, the group equivariant method of Gor-
don et al. (2019) is the most systematic and achieves the
best results. Also, all methods besides GECA require com-
plex architectures or training methods that are non trivial to
use with transfer learning. Equi-tuning, in contrast, is a sys-
tematic method that can be used on top of pretrained models
such as RNNs, GRUs, LSTMs, transformers, etc.

Fairness in NLG. Several works have shown bias in lan-
guage models on the basis of gender, race, sexual orienta-
tion, etc. (Sheng et al. 2019; Prates, Avelar, and Lamb 2020;
Henderson et al. 2018). Existing work on detecting and mit-
igating biases in NLG is mainly ad hoc and lacks generality
(Sun et al. 2019; Nadeem, Bethke, and Reddy 2021; Abid,
Farooqi, and Zou 2021). Moreover, Steed et al. (2022) have
shown that mitigating bias in the embedding space does not
help reduce bias for downstream tasks. In contrast, our work
attempts to define fairness using group theory, which moti-
vates our bias mitigation methods that provide appropriate
guarantees on fairness. Recently, Yeo and Chen (2020) pro-
vided a theoretical definition of fairness in NLG inspired by
Dwork et al. (2012); the idea is that similar prompts from
different demographic groups such as “man” and “woman”
must generate similar sentences. There, defining the metric
to measure similarity is non-trivial since the metric must also



preserve the individuality of different demographic groups.
In contrast, our framework does not need any such metric
and provides a direct method to preserve such individuality
while mitigating bias.

3 Background

Here we give a background on group equivariance, compo-
sitional generalization, and fairness in NLG.

3.1 Group Equivariance

Groups. A set with a binary operator, (G,-) is called a
group if it satisfies the axioms of a group in appendix § A.1.
The action of a group on a finite set X' is givenas I' : G x
X — X that satisfies the axioms of group action in § A.4.
Group actions are used to formally describe transformations
acting on a set &, e.g. rotations of 90°s is an action I' on
a set of square images X’. A transformation of x € X by
group element g € G is written as I'(g, ).

Group equivariance. LetI'y andI'y be the group actions
of G on sets X’ and ) respectively. A function f : X — ) is
called group equivariant to G if f(T'x(g,2)) = T'y(g, f(x))
forall g € G,x € X. Hence, if a neural network performing
segmentation is equivariant to the group of 90° rotations (c4
group), then, if the input is rotated by a multiple of 90°, the
output also gets rotated by the same angle.

3.2 Compositional Generalization

Compositionality in languages refers to the ability to un-
derstand novel sentences by understanding and algebraically
manipulating their components (Chomsky 2009; Montague
1970). Compositionality is key to excellent human under-
standing of languages, whereas it is hypothesized that neu-
ral networks do not posses such capabilities, leading to their
extreme sample inefficiency in modeling languages (Lake
et al. 2017; Lake and Baroni 2018; Loula, Baroni, and Lake
2018; Dessi and Baroni 2019). E.g., if humans understand
the meanings of “walk”, “jump”, and “jump twice”, then
they can naturally understand the meaning of “walk twice”.
But deep neural networks fail to do so, as shown by tests on
the SCAN dataset (Lake and Baroni 2018).

SCAN is a translation dataset where the inputs are com-
mands such as “Jump Twice” and the outputs consist of cor-
responding actions such as “JUMP JUMP”. There are sev-
eral data splits in SCAN that test different generalization ca-
pabilities of a model. The two of interest to us are the Add
Jjump task and the Around right task. These two tasks test the
compositional generalization capabilities of models.

The training set of the Add jump task consists of sen-
tences that do not contain any commands containing the
word “Jump” except for the word “Jump” itself. But the
training set contains other sentences with verbs that are sim-
ilar to “Jump”, such as “Walk”, “Run”, “Walk Twice”, “Run
Twice”, etc. The test set on the other hand contains com-
plicated commands using the word “Jump” such as “Jump
Twice”, “Turn Left After Jump Twice”, etc. Thus, for a
model to perform well in the test set, it must infer the mean-
ing of complicated sentences such as “Jump Twice” from
the understanding of “Jump” and “Walk Twice”. Similarly,
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in the training set of the Around right task, the command
“Around Right” never appears, but similar commands such
as “Around Left” appear. The test set contains the phrase
“Around Right” and for the model to succeed in this task, it
must infer that “Right” and “Left” are directions and can be
treated in a similar way.

3.3 Fairness: Mitigating Biases in NLG

As discussed in § 2, Sheng et al. (2019) show that lan-
guage models such as GPT2 exhibit biases towards certain
demographic groups in their generated texts. These biases
are often subtle and are not easily detectable using senti-
ment classifiers. Hence, they introduce the concept of re-
gard towards various demographic groups and provide a task
to detect bias in texts generated by models in terms of re-
gards. They consider three sets of demographic groups for
this task: a) [“man”, “woman’], b) [“Black™, “White”], ¢)
[“gay”, “straight”]. These sets correspond to gender, race,
and sexual orientation, respectively. The task consists of two
types of contexts: respect and occupation. Each type has
five context sentences, and models generate texts for each
of these sentences. The respect task tests the biases in the
model’s respect towards various demographic groups, e.g.
‘The XYZ was known for’, where XYZ is replaced by any
demographic group. The occupation task tests the bias in
model’s description of occupation for different demographic
groups, e.g. ‘The XYZ worked as’, where XYZ is replaced by
any demographic group. Sheng et al. (2019) also develop an
automatic regard classifier using transfer learning on BERT
using a dataset created using human annotations. This classi-
fier labels any generated sentence as negative, neutral, posi-
tive, or other. This classifier is shown to match human labels
of regard for texts with around 80% accuracy. We use this
regard classifier in our experiments for fairness in NLG.

4 Equi-Tuning

We motivate equi-tuning as a method that minimizes a dis-
tance between the features obtained by a pretrained model
and any equivariant model when the dataset contains all
the transformations from a discrete group. We show that
the solution obtained corresponds to the Reynold’s opera-
tor (Sturmfels 2008) applied to the pretrained model, which
directly implies certain universality properties.

Let M : X C R® — Y C R™ be a pretrained model.
Further, let I'y and I'y, be group actions of the group G
on X and ) respectively. We construct a model M that is
equivariant to actions of a finite group G and also minimizes
the sum of the distances between features M(T" x (g, z)) and
Mg(Tx(g,x)) forany z, forall g € G. The idea is that Mg
loses little pretrained knowledge from M while also being
equivariant to G. We assume that the group actions are well
defined, which is true for a wide range of cases including all
cases considered in this paper. Formally, for any z € X, we
want to solve the following optimization problem.

min ZG IM(Tx(g,2)) — Mc(Tx(g,2))ll5

Me(Tx(g,2)) = I'y(9, Mg (z)) forall g € G.
(1)

S.t.



When clear from context, we write 'y (g,z) as gz and

T'y(g,y) as gy, for simplicity. Now, assuming that ||g||* =
1, we have the optimization as

. _ 2
Jnin E Hg "M(gz) — Mg(x)H2
<) gec @)
s.t. Mg(gx) = gMg(z) forall g € G.

To solve (2), we first remove the constraint of equivariance
on M and obtain a lower bound to the solution of (2).
Then, we show the obtained solution also satisfies the con-
straints in (2), hence, it is also a solution to (2). Removing
the equivariant constraint from (2), we obtain the optimiza-

. . _ 2
tion problem minyg, (z) > e |97 M(gz) — Ma ()|
This is a convex problem with solution

Mo () = ﬁ S g M(ge)
geG

3

Note that (3) is the Reynold’s operator (Sturmfels
2008) applied to M. Further, Yarotsky (2022) shows that
Reynold’s operator for group G applied to any function
makes it equivariant to G. Hence, it satisfies the constraints
of (2). Since it minimizes the lower bound, it also minimizes
the function in (2). Sec. C gives efficient implementation of
(3). Sec. D shows that equituning is comparable to parameter
sharing (Ravanbakhsh, Schneider, and Poczos 2017; Cohen
and Welling 2016) in compute complexity.

Comments and properties. The assumption ||g||> = 1
is very general and subsumes the entire class of permuta-
tion, and special linear groups such as SO(n), where n is
a positive integer. Moreover, our algorithm can be directly
extended to groups that have a constant norm, not necessar-
ily just 1. Note that equi-tuning is not useful in cases where
M is already equivariant/invariant to a larger group H > G,
where we get Mg (x) = M(z) in (3).

Under the assumption that M is a universal approximator
of all functions f : X — ) as defined in appendix § B.2, it
follows from Yarotsky (2022) and Murphy et al. (2018) that
Mg is an universal approximator of all functions e : X — Y
that are equivariant with respect to G.

Discussion and Example. The features obtained in (3) are
called scalar features as described by Cohen et al. (2019). In
appendix § H, we extend this solution to obtain outputs that
are regular features represented by Mg in Alg. 2. Regular
features are considered more expressive than scalar features.
As proved in § H, MZ is also equivariant. We restrict our
experiments in this work to scalar features for simplicity.

Traditional equivariant networks, such as GCNN (Cohen
and Welling 2016), SE(3)-transformers (Fuchs et al. 2020),
and LieConv (Finzi et al. 2020), require the group equivari-
ance constraint to hold for each layer of the network. In con-
trast, for equi-tuning, we only need to ensure that the group
actions are defined on the input and output layers of the pre-
trained model, which is a key reason for the simplicity and
generality of our algorithm.

Now we provide an example of equi-tuning for image pro-
cessing using the c4 = {e,r,r% r3} group, where ¢ is the
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identity and r denotes rotation by 90°. As shown in Fig. 1b,
for constructing the model for equi-tuning, we compute four
transformations of the input and compute the features by
passing them through the pretrained model parallelly. The
outputs are transformed using inverse transformations and
are passed through a custom group equivariant layer, where
they are averaged and passed through custom equivariant
layers to obtain the output. In contrast, for fine-tuning the
input is simply passed through the model and a custom layer
to obtain the output, see Fig. 1a. § F gives examples of equi-
tuning for language models.

5 Applications

Emphasizing the generality of equi-tuning, we apply it to
three different tasks: 1) image classification, 2) composi-
tional generalization in language, and 3) fairness in NLG.

5.1 Image Classification

Cohen and Welling (2016) found that equivariant networks
using the c4 (90° rotations) and d4 groups (90° rotations and
horizontal flips) consistently outperformed non-equivariant
networks on the CIFAR10 dataset. Hence, we choose the
same groups for our image classification experiments.

As shown in Fig. 1, equi-tuning supports a custom equiv-
ariant layer, which is useful to change the dimension of the
output as required by downstream tasks. For our image clas-
sification tasks, we use parameter-sharing (Ravanbakhsh,
Schneider, and Poczos 2017) to design the custom equivari-
ant layers for the ¢4 and d4 groups. Parameter-sharing sim-
ply takes a fully connected network and introduces a sharing
scheme in the weights of the network.

5.2 Compositional Generalization in Language

We consider the SCAN task for testing compositional gener-
alization of language models. As discussed in § 3.2, Gordon
et al. (2019) provide a solution to the Add jump task and
Around right task by training group equivariant recurrent
deep neural networks such as G-RNNs, G-GRUs, G-LSTMs
from scratch.

For solving the SCAN task, Gordon et al. (2019) use
cyclic groups and apply them on the vocabulary space of
the models to achieve local equivariance. The group used
for both Add jump task and Around right task is the cyclic
group of size two, i.e. G = ({e, g},+), where g - g = e, and
e is the identity element. The group acts on the input and
output vocabularies of models considered for the tasks. The
identity element makes no transformations to the input or
the output. The element g swaps two words in both the in-
put and the output vocabularies simultaneously. The words
swapped depends on the task considered.

For Add jump task, g swaps the words [“Jump”, “Run’’]
in the input vocabulary, and the words [JUMP, RUN] in the
output vocabulary. Similarly, for Around right task, g swaps
the words [“Left”, “Right”] in the input vocabulary, and the
words [LEFT, RIGHT] in the output vocabulary.

We start with recurrent models such as RNNs, GRUs,
LSTMs, pretrained in-house, and treat them as blackbox
models and simply use the equi-tune transform from (3) on



the input and output vocabularies. We use the same group
and group actions as Gordon et al. (2019) described above.
We do not use any custom group equivariant layers for these
models. We fine-tune the resulting model on their corre-
sponding SCAN datasets to get the final equi-tuned models
that we call EquiRNNs, EquiGRUs, and EquiLSTMs based
on the architecture of the pretrained model.

5.3

As discussed in § 2, fairness in NLG generally lacks a the-
oretical definition that can also help mitigate bias in pre-
trained language models. Moreover, Steed et al. (2022) show
that upstream bias mitigation does not help with fairness in
downstream tasks.

Here, we first introduce a group-theoretic framework for
fairness. Let us call it group-theoretic fairness to emphasize
the fact that this is a bottom-up group-theoretic approach at-
tempting to define and help mitigate bias in existing large
language models (LLMs). Then we provide two different
approaches toward group-theoretic fairness in LLMs using
equi-tuning.

‘Fairness through Equivariance’ for NLG

Group-theoretic fairness. Suppose we are given some
set of demographic groups such as [“man”, “woman”],
[“Black”, “White”], or [“straight”, “gay”’] and we want to
define fairness for open-ended NLG using language models
such as GPT?2 for any such demographic group. Let V be the
vocabulary set of the model. Define £ to be the set of lists
of equality words corresponding to a list of demographic
groups. E.g. for demographic groups [“man”, “woman”], £
can be [[‘'man’, ‘woman’], [‘he’, ‘she’], [‘king’, ‘queen’]] or
some larger set of lists. For demographic groups [“Black”,
“White”], £ can be [[‘Black’, ‘White’]] or some larger set
of lists. For simplicity, we assume we are working with
only one set of demographic groups at a time. This can
be generalized to multiple groups using products of groups,
which we leave for future work. Now, define a set of words
N =V \ & to be the set of neutral words, where &' repre-
sents the set of all words in £. Neutral words such as ‘engi-
neer’, ‘chess’, ‘scientist’, and ‘book’ are neutral to any de-
mographic.

Let the size of the list of demographic group consid-
ered be d; then we work with the cyclic group of size
d with generator g and multiplication as its operator, i.e.,
G = {e,g,...,9%'}. The group action of the group G on
the words can be defined by simply defining the group action
of g. The group action of g makes a right cyclic shift by one
to the words in each list of £ and does not affect the words in
N Thus, for the demographic group [“man”, “woman”], the
action of g transforms £ to g€ = [[‘woman’, ‘man’], [‘she’,
‘he’], [‘queen’, ‘king’]] for the £ defined above. Similarly,
if the neutral set is A = [‘doctor’, *nurse’], then g remains
unchanged as [‘doctor’, ‘nurse’]. Here, we assume that the
group actions are well-defined, which is a basic assumption
of equi-tuning. Let X be a sentence, written as a list of words
from V), then we define the group transformed sentence, g.X
as the list of words of X transformed individually by g. Here
the transformation of the words follows from the transforma-
tion applied to the vocabulary. E.g. for £ = [[‘he’, ‘she’]], if
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X = ‘he is playing chess’, then g X = ‘she is playing chess’.

Now, let X; be a context to a language model M such that
it generates some sentence Xo. Then, we say M is group-
theoretically fair if

P(gX2|gX1) = P(X2|X1), )

for all g € G. Here P(X3|X7) represents the probability of
generating the sentence Xo when using X; as the context.
Similarly, we define the probability P(gX5|gX7).

Examples. Consider the list of demographic groups as
[“man”, “woman”], and let £ = [[‘man’, ‘woman’], [‘he’,
‘she’]]. Then, let us consider different cases based on
whether each of X; and X5 contains only neutral words
or not. Suppose X7 only contains neutral words, then by
definition, we have ¢gX; Xi. Thus, (4) reduces to
P(gX2|X1) = P(X3]|X1), which leads to equal probabil-
ity for both the gender groups conditioned on neutral words
such as ‘doctor’, ‘nurse’, or ‘homemaker’. Similarly, when
X5 has only neutral words, it leads to equal probability for
neutral words for both the gender groups. When neither X
nor X, contains only neutral words, then transforming the
context gives equal probability for the transformed gener-
ated text as the generated text under the original context.
E.g. P[‘dad’ | ‘he is a’] = P[‘'mom’ | ‘she is a’].

EquiLM. Now we describe EquiLM (Equivariant Lan-
guage Model), which can achieve group-theoretic fairness.
Let ¢ denote an EquiLM that is equivariant to the cyclic
group G = {e, g, ...,g% '} described above using the equi-
tune transform of (3) (see §F in the appendix for exam-
ples on applying group actions in language models). Then,
for some sentence of length k, X; € V¥, $(X1) € RIVI.
Moreover, because of equivariance of ¢, we have ¢(gX1) =
9¢(X1). Thus, if the sentence X; is transformed to g X7,
then for any word w € V, the probabilities ¢(X7)[x2] and
?(gX1)[gz2] are equal, where (X )[x2] denotes the prob-
ability of the word x5 in the output probabilities of ¢(X7).
Now, writing P(X5|X7) as a product of conditional proba-
bilities representing word generations gives us equation (4).

R-EquiLM. While group-theoretic fairness defined in (4)
can be obtained using EquiLM, it requires the user to par-
tition V into A/ and £, which might not be an easy task for
huge vocabulary sets. Thus, here we introduce a set of words
G, which is designed to be a small set containing general
words that does not entertain any group action. Any word
that does not necessarily belong to A/ and £ is put into this
set. Hence, the user provides £ and G, and A is computed
as V \ (£’ UN), where £’ is the set of words in & as de-
fined before. The group and group actions are the same as
in EquiLLM, but restricted to only £ and N. Hence, we
obtain a relaxed equivariance over the output vocabulary
space of this language model, which we call R-EquiLM (Re-
laxed EquiLM). The relaxed equivariance property of a R-
EquilM, say ¢, is described as follows. If zo € V is a word,
then (b(gXl)[l’Q] = g¢(X1)[a?2} if To € Eu N ThllS, this
form of equivariance holds only for output words that belong
to a particular subset of V. Moreover, relaxed equivariance
does not guarantee any equality of probabilities over gener-
ated sentences like EquiLM. Because the generated text may



Model Group No aug. c4 aug.
- 88.88 (4.5) 91.11(1.3)
Alexnet cd 93.07 (1.8) 93.07 (1.8)
d4 90.45(1.2)  90.45(1.2)
— 89.41 (2.1)  90.32(1.4)
Resnet c4 91.37(1.5) 91.63(1.4)
d4 91.89 1.3) 91.89(1.3)
- 7830 (11.9) 77.12(11.4)
VGG c4 88.62 (4.6)  88.75(4.3)
d4 90.98 (2.2)  90.98 (2.2)
- 86.79 (2.7)  88.88 (1.5)
Densenet c4 91.50 1.3) 91.24(1.7)
d4 90.06 (1.4)  90.06 (0.8)

Table 1: Mean (and standard deviation) classification ac-
curacy of fine-tuning several pretrained models on the Hy-
menoptera dataset. For each model, ¢4 and d4 groups were
used for equivariant fine-tuning. Comparisons are made with
c4 rotation augmentations. Results average five seeds.

contain words from G, no guarantees can be obtained on the
probability of the overall sentence. Nevertheless, R-EquiLM
provides equivariance at a word-level for a particular subset
of V and is relatively easy to implement because of the pres-
ence of G. This is reflected in our our experiments in § 6.3.

Both EquiLM and R-EquiLLM can be constructed by equi-
tuning pretrained models with the groups and group actions
defined above. The construction of the sets £ and G are given
in Sec. E. For our experiments on NLG bias mitigation in
§ 6.3, we simply apply the equi-tuning transformation from
(3) and do not fine-tune the obtained model. This is because
it was found that applying the transformation to large pre-
trained models such as GPT2 has negligible impact on the
quality of text generation. This is also verified by computing
the perplexities of these equi-tuned models (i.e. using only
the equi-tune transformation) on Wikitext-2 and Wikitext-
103 test sets, which show negligible difference compared to
the pretrained model (GPT2 in this case).

6 Experiments

We provide results for equi-tuning on image classification,
compositional generalization, and fairness in NLG.

6.1 Image Classification

Experimental setting. We experiment on two datasets:
Hymenoptera3 and CIFAR-10 (Krizhevsky, Nair, and
Hinton 2010) using four different pretrained models:
Alexnet (Krizhevsky, Sutskever, and Hinton 2012), Resnet-
18 (He et al. 2016), VGG-11 (Simonyan and Zisserman
2014), and Densenet (Huang et al. 2017). For equi-tuning,
we use two different groups for constructing M¢: ¢4 (90°
rotations) and d4 (90° rotations and horizontal flips). In the
test sets, we apply random c4 augmentations to check the

3Obtained from https://www.kaggle.com/datasets/ajayrana/
hymenoptera-data. More details provided in § G in the appendix.
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Task  Group Model Val. Acc.  Test Acc.
Add - LSTM  99.1(0.3) 0.0 (0.0)
i Verb  G-LSTM _ 99.4 (0.8) 98.3 (1.4)
P ~Verb EquiLSTM 98.9(0.7) 97.9(1.0)
Around = LSTM  98.9(0.7) 0.4 (0.7)
Rl?”h ¢ _Dir___GLSTM _984(06) 89.6(1.9)
8 Dir.  EquiLSTM 99.8(0.2) 95.7 (3.6)

Table 2: Equi-tuning LSTM for SCAN. LSTM and G-LSTM
were trained for 200K iterations with relevant groups for
each task. EquiLSTM models are LSTM models equi-tuned
for 10K iterations using group relevant to each task. Results
are over three random seeds.

robustness of the fine-tuned models. In the training sets, we
experiment both without any data augmentation, and with
c4 augmentations. We use stochastic gradient descent as the
optimizer with momentum 0.9 and learning rate 3 x 10~

Results. Table 1 shows the results for fine-tuning and
equi-tuning the four models with c4 and d4 group equiv-
ariances. The models were fine-tuned with batchsize 8 for
10 epochs over 5 different random seeds. Results show that
equi-tuning outperforms fine-tuning with and without data
augmentation. Alexnet and Densenet obtain the best perfor-
mance using c4 equivariance whereas the other two models
perform best using d4 equivariance. Thus, suggesting that
the choice of group is dependent on both the dataset and the
architecture. Table 6 in § G in the appendix gives the equi-
tuning results for CIFAR-10. We find that equi-tuning with
d4 group equivariance gives the best results across all mod-
els, with or without data augmentation.

6.2 Compositional Generalization in Language

Experimental setting. We use the SCAN dataset (Gor-
don et al. 2019) for our compositional generalization exper-
iments. For training all the recurrent models (RNNs, GRUs,
and LSTMs) and their equivariant counterparts (G-RNNs,
G-GRUs, and G-LSTMs), we closely follow the setup of
Gordon et al. (2019). All models contain a single layer
cell of the recurrent model with 64 hidden units. We train
these models on the Add jump task and the Around right
task for 200k iterations using Adam optimizer (Kingma and
Ba 2015) with learning rate 10~ and teacher-forcing ra-
tio (Williams and Zipser 1989) 0.5. Then, we equi-tune pre-
trained non-equivariant models (RNNs, GRUs, and LSTMs)
using appropriate groups for only 10K iterations and the
Adam optimizer. We use learning rates 2 x 1075 and 5 x
1075 for Add jump and Around right tasks, respectively,
with a teacher-forcing ratio of 0.5. Experimental results are
reported for three random seeds. We use the same seed to
equi-tune a model as is used for its training.

Results. Table 2 shows our results for LSTMs. We first re-
produce the insights obtained by Gordon et al. (2019) show-
ing that (non-equivariant) LSTMs fail miserably on SCAN
tasks. When these LSTMs are equi-tuned to obtain Equi-
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Figure 3: The plots (a), (b), and (c) show the distribution of regard scores for the respect task for the set of demographic groups
gender, race, and sexual orientation respectively. For GPT2 we observe clear disparity in regard scores amongst different
demographic groups. Each bar in the plots correspond to 500 generated samples. R-EquiGPT2 and Equi-GPT2 reduces the
disparity in the regard scores. Note that the small disparity in regard scores for EquiGPT?2 is due to bias in the regard classifier
itself, which was manually verified and the samples are shared in the paper.

LSTMs, they produce competitive results compared to G-
LSTMs trained from scratch and even outperform them in
several cases, thus showing the compositional generaliza-
tion ability of equi-tuned models. Results for EQuiRNNs and
EquiGRUs are shown in Table 7 and 8, respectively, in § G in
the appendix. All equi-tuned models are able to benefit from
equivariance while also retaining pretrained knowledge.

6.3 Fairness in Natural Language Generation

Experimental setting. We use GPT2 (Radford et al. 2019)
with 117M parameters as our pretrained language model.
We construct R-EquiGPT2 and EquiGPT?2 by applying the
equi-tune transform (3) on GPT2 and no fine-tuning is per-
formed on the pretrained GPT2 model. This is because we
found no difference in quality of generated text and negligi-
ble drop in perplexity on Wikitext-2 and Wikitext-103 test
sets as shown in Table 9 in the appendix. The £, N sets for
EquiGPT2 and &€, NV, G sets for R-EquiGPT?2 are described
in § E. Recall from § 3.3, we have two different tasks: re-
spect and occupation. For each task we have five different
contexts. For each context, we generate 100 samples of gen-
erated texts from fixed seeds for each model. Thus, for each
task and for each demographic group, each model generates
500 samples of texts, each with a maximum of 15 tokens.
Generated sentences were truncated when a new line was
generated to ensure proper functioning of the regard classi-
fier of Sheng et al. (2019).

Results and observations. Fig. 3 and 5 show the scores
obtained by the regard classifier of Sheng et al. (2019) on
500 generated samples for each demographic group for the
respect and occupation tasks, respectively. (Fig. 5 is in the
appendix.) As observed in the figures, both R-EquiGPT2
and EquiGPT?2 reduce the bias between each pair of demo-
graphic groups compared to GPT2. We look more closely
at the generated texts for the respect task for the set of de-
mographic groups [“gay”, “straight”] in Tables 10, 11, and
12 in the appendix for GPT2, R-EquiGPT2, and EquiGPT2
models, respectively. We observe that the quality of gener-
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ated texts is not affected, but, now the regard scores across
the demographic groups are more well balanced.

Note that the definition of group-theoretic fairness in (4)
requires probabilistic equivariance. Thus, fixing the random
seed results in perfect equivariance in generated texts. This
results in interesting implications for gauging fairness in
NLG. For EquiGPT2, we expect perfectly equal regard score
for each set of demographic groups in Fig. 3 and 5. But, in-
terestingly, we find slight difference in regard scores, imply-
ing that the regard classifier itself is slightly biased towards
certain demographic groups. An instance of this bias can be
observed in Table 12, where for the same sentence, if we
replace the word “straight” by “gay”, we obtain different re-
gard scores from the regard classifier.

7 Conclusion

We propose equi-tuning, a novel fine-tuning method that
transforms pretrained models into an equivariant version
while minimizing the distance between features from pre-
trained models and equivariant models. The method ob-
tained is very general in terms of the models, datasets, and
applications that it can be used with. To show this, we use it
in diverse applications: image classification, compositional
generalization, and fairness in NLG. Across these topics, we
use a variety of model architectures such as CNNs (Alexnet,
Resnet, VGG, and Densenet), RNNs, GRUs, LSTMs, and
transformers (GPT2). For image classification, we obtain
superior performance using equi-tuning compared to fine-
tuning. For compositional generalization in languages, we
find that equi-tuning performs at par with group equivari-
ant models but is more efficient since it can work on top
of non-equivariant pretrained models. Finally, for fairness,
we define group-theoretic fairness in NLG and propose two
methods towards achieving group-theoretic fairness. These
methods are based on equi-tuning pretrained language mod-
els such as GPT2. The effectiveness of this definition and the
proposed methods is shown using existing empirical meth-
ods for finding bias in NLG.
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