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Abstract

Learning on evolving(dynamic) graphs has caught the at-
tention of researchers as static methods exhibit limited per-
formance in this setting. The existing methods for dynamic
graphs learn spatial features by local neighborhood aggre-
gation, which essentially only captures the low pass signals
and local interactions. In this work, we go beyond current ap-
proaches to incorporate global features for effectively learn-
ing representations of a dynamically evolving graph. We pro-
pose to do so by capturing the spectrum of the dynamic graph.
Since static methods to learn the graph spectrum would not
consider the history of the evolution of the spectrum as the
graph evolves with time, we propose a novel approach to
learn the graph wavelets to capture this evolving spectra. Fur-
ther, we propose a framework that integrates the dynamically
captured spectra in the form of these learnable wavelets into
spatial features for incorporating local and global interac-
tions. Experiments on eight standard datasets show that our
method significantly outperforms related methods on various
tasks for dynamic graphs.

Introduction
Recently there has been tremendous progress in the do-
main of Graph Representation Learning (Khoshraftar and
An 2022). The aim here is to develop novel methods to learn
the features of graphs in a vector space. Such approaches
have successful applications in the domain of image recogni-
tion (Han et al. 2022), computational chemistry (Ying et al.
2021), drug discovery (Stärk et al. 2022) and Natural Lan-
guage processing (Wu et al. 2021a). Although effective, the
underlying graphs are static in nature.

In many real-world scenarios, graphs are dynamic, for ex-
ample, social networks, citation graphs, bank transactions,
etc. For such cases, various approaches have been devel-
oped (see survey by Kazemi et al. (2020)). Broadly, these
methods aim to learn the evolving nature of graphs through
spatial features relying on local neighborhood aggregation
(local dependencies) (Pareja et al. 2020; Goyal, Chhetri, and
Canedo 2020). For example, researchers (Pareja et al. 2020;
Shi et al. 2021) have resorted to using GNNs along with
RNNs to capture the dynamic evolving nature of graphs.
With initial successes, these methods are inherently limited
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to capturing local interactions, missing out on other impor-
tant information. For example, in the case of a dynamic
money transaction graph, having a skewed representation
of fraud users among genuine users, there would exist links
between these fraud and genuine users, thus, giving rise to
high-frequency signals. In the case of local neighborhood
aggregation (attending to low-frequency signals), the major-
ity node(genuine) pattern will cause the fraudulent pattern
to diminish. Thus, capturing global properties becomes nec-
essary. Here, the global information would help identify the
fraud pattern eventually assisting in identifying the crimi-
nal. Similarly, in the citation graph, the local properties will
help to understand the category of paper. In contrast, global
properties will help to understand the amount of interdis-
ciplinary research across research domains. Hence, learning
the global dependencies is crucial for dynamic graphs which
is a relatively unexplored area in its scientific literature.

In this paper we aim to encompass global dependencies
in dynamic graphs, beyond local neighborhood aggrega-
tion, and view it through the lens of spectral graph theory
(Hammond, Vandergheynst, and Gribonval 2019). For the
same, we introduce a novel concept of learnable spectral
graph wavelets to capture global interactions of dynamic
graph. The concept of learnable wavelet has following mo-
tivation: (i) Computing the spectra using full eigen decom-
position is computationally expensive and requires O(N3)
time. Moreover, this gets even more computationally costly
by a factor of the number of timesteps(T ) considered for dy-
namic graphs that evolve over every timestep. Spectral graph
wavelets can be computed efficiently in O(N + |E|) as we
shall see in the following sections. (ii) Wavelets are sparser
as compared to the graph Fourier transform adding to the
computational benefits (Tremblay and Borgnat 2014). (iii)
Wavelets give a sense of localization in the vertex domain
of the graphs thus enabling interpretability of the convolu-
tions while also being able to capture the global properties
of the graph by changing the scale parameter (c.f., Figure 1).
iv) Focusing on dynamic learnable wavelets helps in captur-
ing global properties in that evolving spectra as the graph
changes with time, where static and non-learnable wavelet
methods (Xu et al. 2019a) show empirical limitations.

Furthermore, build on the recent success of capturing
neighborhood features for evolving graphs, we propose to
learn homogeneous representation of spatial and spectral
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Figure 1: For Brain dataset (Xu et al. 2019b) at a given timestep, the figure (a) shows the learned filter functions at different
scales by our proposed framework resembling band reject, low pass and all pass filters. The three diagrams to the right show the
corresponding wavelets for a node (colored in yellow in figures (b,c,d) at lowest tip of the Brain) in the brain stem region. The
graph nodes indicate the Regions of Interest(ROI) in brain. As scales change, the ROIs that the wavelet focuses on change from
concentrated(local interactions) to diffused(global interactions). Moreover, the wavelets respect the brain structure and focus
on the concerned region(brain stem in this case) thus mitigating noise due to interactions from unrelated regions.

features to apprehend both local and global dependencies.
Our approach is very intuitive as it keeps the proven local in-
formation intact whilst adding the global properties through
learnable graph wavelet approach. Similar approaches have
been proven in computer vision (Srinivas et al. 2021) and
NLP (Prasad and Kan 2019) where such restrictive induc-
tive bias work well on learning local properties but miss out
on global interactions. Also, the local aggregation leads to
problems such as over smoothing and may not work well
on heterophilic graphs (Wu et al. 2021b). Thus, using our
methods will help to alleviate the drawbacks of the existing
popular methods on dynamic graphs.

Our key contributions are two-fold: 1) a novel approach
to learning spectral wavelets on dynamic graphs for captur-
ing global dependencies (with its theoretical foundations),
2) a novel framework named DEFT that combines spectral
features obtained using learnable wavelets into spatial fea-
ture of the evolving graphs. For effective use in downstream
tasks, DEFT integrates the spatial and spectral features into
homogeneous representations which allows capturing shift
invariance (Oppenheim and Schafer 1975) among the node
features that could arise from the temporal nature.

Related Works
There has been considerable work on static graphs from the
spatial and spectral domain perspective. Some works such
as (Kipf and Welling 2017; Hamilton, Ying, and Leskovec
2017; Veličković et al. 2018) focus on effectively learning
spatial properties. Similarly, efforts such as (Levie et al.
2018; Balcilar et al. 2020; Bastos et al. 2022) have looked at
graphs from a spectral perspective. GWNN (Xu et al. 2019a)
has proposed to use spectral graph wavelets on static graphs.
However, it obtains static wavelets using heat kernel-based
filters. Unlike GWNN, we learn spectral graph wavelets for
dynamically evolving graphs. We observe in the experiment
section that learnable wavelets perform significantly better
for dynamic graphs compared to static wavelet methods.

One straight-forward way to use methods developed for
static graphs on evolving dynamic graphs is to use RNN
modules such as GRU and LSTM in addition to GNN mod-
ules to capture the evolving graph dynamism. This idea has

been explored in works such as (Seo et al. 2016; Narayan
and Roe 2018; Manessi, Rozza, and Manzo 2020). However,
these models suffer a performance drop if new nodes are in-
troduced in the graph; the GNNs may not be able to adapt to
the evolving graph structure. Thus, EvolveGCN (Pareja et al.
2020) has introduced to use RNNs to learn the parameters
of the evolving GNN. The GNN, a GCN (Kipf and Welling
2017) in this case, is thus used ahead of the RNN module
that captures the graph dynamism and offers promising re-
sults on dynamic graphs. EvolveGCN has limitation that it
generalizes to unseen nodes in future timesteps, which is not
always the case in real-world scenarios. Xu et al. (2019c)
proposed similar approach by learning parameters of a GAT
with an RNN that focus on graph topology discrepancies.

Furthermore, autoencoder-based methods have been in-
troduced, such as in (Goyal et al. 2017; Goyal, Chhetri, and
Canedo 2020; Xu, Singh, and Karniadakis 2022) that focus
on reconstructing the graphs in future timesteps as an ob-
jective. Xiang, Huang, and Wang (2022) proposed a meta-
learning framework in which the objective is to predict the
graph at future timestep. However, these works focus only
on learning spatial properties to capture local dependencies
and ignores the global dependencies that may emerge due to
dynamic nature of the graph.

Preliminaries

Consider a graph with vertices and edges as (V, E) and adja-
cency matrix A. The laplacian(L = D − A) can be decom-
posed into its orthogonal basis, namely the eigenvectors(U )
and eigenvalues(Λ) as:L = UΛU∗. Let X ∈ RN×d be the
signal on the nodes of the graph. The Fourier Transform X̂

of X is then given as: X̂ = U∗X .
Spectral graph wavelet transforms (Hammond, Van-

dergheynst, and Gribonval 2011) are obtained by func-
tions of the laplacian L. Consider a linear self-adjoint
operator(g(L)) that acts on each component in the spectral
space. We define a parameter s for the scaling in the spectral
space. The spectral graph wavelet at any given vertex n is
defined as the impulse(δn) response of the wavelet operator
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at vertex n:

ψs,n(m) =
N∑

k=1

g(sλk)U
∗
k (n)Uk(m)

The n-th wavelet coefficients at scale s represented as
Wf (s, n) can be obtained by taking the inner product of the
function f in the vertex domain with these wavelets as

Wf (s, n) = ⟨ψs,n, f⟩ =
N∑

k=1

g(sλk)f̂(k)Uk(m) (1)

In our work, we propose to learn the wavelet coefficients
for dynamic graphs, where the exact form of the scaling
function g(sλk) is parameterized.

Method
Figure 2 illustrates the proposed DEFT (Dynamic wavElets
For global inTeractions) framework that comprises the fol-
lowing modules: 1) Spectral component: focuses on global
features of the graph in the form of learnable spectral graph
wavelets. 2) Spatial component: the necessity of this com-
ponent is to mitigate the unsmooth spectrum phenomenon
i.e. the node features gets correlated with eigenvectors corre-
sponding to high frequencies causing information loss (Yang
et al. 2022). To resolve this, spatial module focus on the lo-
cal neighborhood of the graph in addition to that captured
by the wavelets. 3) Integration module: Finally, for a homo-
geneous representation of the global properties captured by
the spectral component and the local properties learned by
the spatial component, we propose to learn invariant repre-
sentations and use these in an aggregation module.

Spectral Module
We aim to capture global features without requiring the full
eigen decomposition of the laplacian. Here, we propose to
approximate the wavelet operator using some function. We
use the Chebyshev polynomials to be consistent with the lit-
erature (Hammond, Vandergheynst, and Gribonval 2011). It
is known that for any function h with domain y ∈ [−1, 1]
there exists a convergent Chebyshev series:

h(y) =
∞∑
k=0

ckTk(y)

with the Chebyshev polynomials satisfying the recurrence
relation Tk(y) = 2yTk−1(y) − Tk−2(y), T0 = 1, T1 = y
and the coefficients ck are given by:

ck =
2

π

∫ 1

−1

Tk(y)h(y)√
1− y2

dy =
2

π

∫ π

0

cos(kθ)h(cos(θ))dθ

In order to approximate the function g(sjx) for each scale
j, we need to bring the domain x in [−1, 1]. Noting that
0 ≤ x ≤ λmax for the laplacianL, we perform the transform
y = x−a

a , a = λmax

2 . We now define Tk(x) = Tk(y) =

Tk(
x−a
a ) and the approximation for g looks as below

g(sjx) =
∑∞

k=0
cj,kTk(x) (2)

with the coefficients given by,

cj,k =
2

π

∫ π

0

cos(kθ)g(sj(a(cos(θ) + 1)))dθ

We truncate the polynomial to M terms, which is the filter
order. The coefficients cj,k which are analytical coefficients
of the filter function as desired are approximated using func-
tions parameterized by GNNs and MLPs, as we shall see
next. fsc is the parameterized form of it, obtained in spectral
module at scale s. A GNN is used to perform message pass-
ing over the input graph along with the node features v at
layer l for neighborhood N .

vlim = Af (v
l
j |vj ∈ N (vi)), vl+1

i = Uf (v
l
i, v

l
im)

Here, Af , Uf are the aggregation and update functions, re-
spectively. The update function could contain a non-linearity
such as leaky ReLU for better expressivity of the learned
function. Since we intend to learn the filter coefficients
fc ∈ RM for the concerned graph(G), we apply a pooling
layer to get an intermediate vector representation(vG ∈ Rd1 )
from the output of the GNN. The pooling layer converts a set
of vectors(one for each node of the graph) to a single vector
representation. For the final filter coefficients fc, we apply a
two-layer MLP with activation(σ) to vg

fc =W2 σ (W1vg) (3)

where W1 ∈ Rd2×d1 ,W2 ∈ Rd2×M are learnable
weights. Since the two-layer MLP is a universal approxi-
mator (Hornik 1991) we can be assured of the existence
of a function in this space that learns the desired mapping
to the filter coefficients. In principle, any message passing
GNN can be used to perform the update and aggregation
steps. This process can be repeated with multiple GNNs for
learning multiple filter functions. As we consider dynamic
graphs, we would like to evolve the parameters of the GNN
with time (Dynamic Parameter learning Module of Figure 2,
common for both spectral and spatial components). Inspired
from (Pareja et al. 2020), we use an RNN module for gener-
ating the parameters for the GNN in layer l at time t:

W l
t = RNN(H l

t ,W
l
t−1) (4)

where W l
t and H l

t are the hidden state and input at layer l
and time t of the RNN. In the below pseudo code, we outline
our method to evolve the Spectral Module(ESpectral) for
dynamically learning filter coefficients per timestep

1: function fct = ESpectral(At, H
(l)
t ,W

(l)
t−1)

2: W
(l)
t = RNN(W

(l)
t−1)

3: H
(l+1)
t = GNN(At, H

(l)
t ,W

(l)
t )

4: vgt = Pool(At, H
(l+1)
t )

5: fct = W2 σ (W1vgt)

6: end function
After learning GNN parameters, we need to learn filter coef-
ficients for evolving graph. Learning the filter coefficients fsc
at a given timestep, we can obtain the wavelet operator g(L)
at scale s = 1 using equation 2. For operators at a given scale
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(a) (b)

Figure 2: Figure (a) shows the DEFT architecture with tensor dimensions on the arrows. The yellow outer box shows the
modules that learn the weight parameters of the GNNs in an evolving manner. These parameters are then given to the spectral
and spatial modules to learn the corresponding features. The learned features then propagates to the homogeneous representation
module (HRM) followed by the aggregation module(AM) which together forms the integration module (red outer box) of our
framework. Figure (b) explains the components of the spectral module. Similar to image (a), the yellow outer box learns the
filter functions for the wavelet approximators. Wsi is the wavelet coefficient (vector representation) at scale si.

.

s > 0, we could learn different parameterizations of the fil-
ter function at every scale. Note that approximating the func-
tions at different scales in this manner would incur a storage
cost of O(JN) for the filter coefficients. Along with this
the storage and computation complexity would increase J
times for dynamically computing the filter coefficients from
the GNNs. Thus we propose a “rescaling trick” wherein to
obtain the operator at any scale s > 0, we perform the appro-
priate change of variables in equation 2 to get g(sL), keep-
ing the coefficients cj,k fixed. That is for a scale s, instead
of mapping λ −→ g(λ) it would be mapped to λ −→ g(sλ).
It helps maintain parameter efficiency(by a factor of J) as
the GNN weights(and also filter coefficients) are tied across
all the scales. Note here the exact filter learned would vary
since the maximum frequency is the same. Hence, a band-
pass at scale ‘one’ may get converted to a highpass at scale
‘two’. Once we approximate g(λ), we use it in learning the
wavelet coefficients (output of spectral module)Wf (s, n) as
described in equation 1.

.

Lemma 1. Consider Gt(λ) to be the filter function at time
t. Assume the Markov property to hold in the dynamic set-
ting where the desired filter function(Gt+1(Λ)) at time t+1
depends on the past state at time t(Gt(Λ)). Consider this
mapping between the past state and the current states to be
captured by an arbitrary functional f such that Gt+1(λ) =
f(Gt(λ1), G

t(λ2), . . . G
t(λN ), λ) and we assume f to be

L lipschitz continuous. Further, let Ct = UtG
t(λ)UT

t ∈
RN×N represents the convolution support of the desired
spectral filter and Ca

t be the learnt convolution support at
time t. Then, we have:

(i)
∥∥Ca

t+1 − Ct+1

∥∥
F
≤ LN2

√
∥Ca

t − Ct∥2F + ϵ2ca + ϵfa

(ii)
∥∥Ca

t+1 − Ca
t

∥∥
F
≤ ∥Ct+1 − Ct∥F + 2

√
Nϵca

where ϵca and ϵfa are the filter polynomial(Chebyshev) and
function approximation errors and depends on the order of
the polynomial, number of training samples, model size etc.

Above result gives us a relation between the error at times
t and t+1 and has a factor ofN2L. Thus it requires the filter

function to be smooth(L < 1
N2 ) for convergence because

under the given Markov assumptions, the past errors could
accumulate in future timesteps. Hence, GRU/LSTM in the
Dynamic Parameter Generation module is used to decouple
the approximation of the filter function at a given timestep
from the error in previous timesteps.

Spatial Module
Yang et al. (2022) concluded that high-frequency compo-
nents of the signal on the graph get strengthened with a
high correlation with each other, and the smooth signals
become weak (unsmooth spectrum) i.e., the cosine similar-
ity between the transformed signal and the low eigenvec-
tor reduces with the layers. In our setting, we illustrate that
the factor by which the signal corresponding to the low-
frequency component gets weakened is directly proportional
to the magnitude of the frequency response at that frequency.

Lemma 2. LetG(λ) be the frequency response at frequency
λ. Let λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues in descending
order and p1, p2, . . . pn be the corresponding eigenvectors of
the laplacian of the graph. Define λmax to be the eigenvalue
at whichG(λ) is maximum. LetCl represent the convolution
support(UG(Λ)UT ) of the spectral filter at layer l. Then the
factor by which the cosine similarity between consecutive

layers dampens is lim
l−→∞

|cos(⟨Cl+1h,pn⟩)|
|cos(⟨Clh,pn⟩| = G(λn)

G(λmax)
.

If λmax belongs to higher regions of the spectrum and
G(λn) is lower, then as the layers increase, the signals will
lose the low-frequency information. Since the Spectral Mod-
ule aims to capture the high-frequency components that may
lead to an unsmooth spectrum, we explicitly strengthen the
low-frequency components by using local neighborhood ag-
gregation. For this, we inherit the message passing GNNs,
the parameters of which are generated using the RNN mod-
ule inspired from (Pareja et al. 2020). The process to evolve
the spatial module(ESpatial) is:

1: function [H
(l+1)
t ,W

(l)
t ] = ESpatial(At, H

(l)
t ,W

(l)
t−1)

2: W
(l)
t = RNN(W

(l)
t−1)
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3: H
(l+1)
t = GNN(At, H

(l)
t ,W

(l)
t )

4: end function

Integration Module
Homogeneous representation Module(HRM): aims to
achieve homogeneous representations from the spatial and
spectral properties along with time features, which is essen-
tial for its usage in downstream tasks. A straightforward way
is by concatenating two representations. However, due to the
dynamic nature of the graph that evolves with time, we pro-
pose a learnable module that provides a notion of distance
between the representations and helps induce position/struc-
ture information. Due to graph dynamism, it is important for
the features to satisfy the shift invariance property:
Definition 1 (Shift Invariance (Li et al. 2021)). Any two vec-
tors vi = f1(v

′

i) and vj = f1(v
′

j) satisfy the shift invariance
property if the inner product ⟨vi, vj⟩ is a function of v

′

i − v
′

j

i.e. ⟨vi, vj⟩ = f2(v
′

i − v
′

j).
f1 is an arbitrary function and f2 is a linear transformation
of f1. Above property ensures that the relative distance be-
tween two nodes is maintained in the inner product space
even if their absolute positions change(for example with ad-
dition of new nodes in the graph with time). Inspired from
Fourier features (Rahimi and Recht 2007, 2008), for a node
i, the spectral(vgi ∈ Rdg ) and spatial(vli ∈ Rdl ) embed-
dings are concatenated(∥) along with the timestamp(t ∈
Rdt ) information if available. Then, it is passed to an MLP.

vgli =MLP (vgi∥vli∥t)
In order to obtain Fourier features(vffi) from above
intermediate representation, we take the element-wise
sine,cosine and concatenate the two as:

vffi = sin(vgli)∥cos(vgli)
Property 1. The vector v obtained by concatenation of the
element wise sine and cosine of another vector v

′
i.e. v =

(sin(v
′
)∥cos(v′

)), satisfies the shift invariance property.
The property 1 can be readily noted by observing that

cos(a−b) = cos(a)cos(b)+sin(a)sin(b). Taking the inner
product(⟨.⟩) of the above features for two nodes(i, j) gives

⟨vffi, vffj⟩ =
∑

cos(Wr(vgli−vglj)) = ffWr (vgli−vglj)

Property 1 is beneficial if these representations are used
in an attention-based model such as (Vaswani et al. 2017;
Veličković et al. 2018) as we get a notion of close-
ness(similarity) in the embedding space. The final homoge-
neous representation for node i (vhri) is obtained as:

vhri =Whr2 σ(Whr1(sin(vgli)∥cos(vgli)))

where Whr2 ∈ Rd×d,Whr1 ∈ Rd×(dg+dl+dt) are learnable
weights and σ is the activation function.
Aggregation(AM): Once we achieve homogeneous repre-
sentations for the features, we can use these in the down-
stream task by applying a layer of MLP. However, we also
perform another level of aggregation to learn effective rep-
resentations. While, in principle, we could use any of the

existing message passing frameworks for this aggregation,
we adopt a sparse variant of the attention mechanism in-
spired by (Vaswani et al. 2017) for computational benefits.
Specifically, consider X ∈ RN×df to be the node feature
learned from the spatial and spectral modules. Now we de-
fine for the l-th layer, W l

Q,W
l
K ∈ Rdout×df to be the learn-

able weight matrices for the query and key of the self at-
tention respectively. We apply self attention on the trans-
formed features followed by softmax to get the aggrega-
tion weights wl

ij = softmax(
∑

dk
ŵl

ij) between nodes i, j,

where ŵl
ij =

W l
QX[i]T⊙W l

KX[j]T

dout
if nodes i and j are con-

nected in the graph and 0 otherwise.

Overall Complexity
The complexity of spectral module is O(|E| +

N
∑J

j=0Mj)(cf., appendix) where Mj is the order of the
polynomial of the j-th filter head. The spatial modules can
compute the features in a O(|E|+N) complexity. The inte-
gration module further has two components: HRM and AM.
The HRM module would have a computational complexity
of O(N) whereas for the AM, it depends on the underlying
aggregator. In our choices, it would be an O(|E| + N)
complexity. Thus the overall computational complexity
comes to O(3|E|+N(3 +

∑J
j=0Mj)) = O(|E|+N), for

bounded degree graphs further reduces to O(N) for a given
snapshot at time t.

Experiments
Now, we present comprehensive experiments to evaluate our
proposed framework. We borrow datasets and its preprocess-
ing/splitting settings used in previous best baselines (Xiang,
Huang, and Wang 2022; Pareja et al. 2020).
Datasets: Table ?? summarizes eight datasets for link pre-
diction, edge classification, and node classification. Each
dataset contains a sequence of time-ordered graphs. SBM
is a synthetic dataset to simulate evolving community struc-
tures. BC-OTC is a who-trusts-whom transaction network
where the node represents users, and the edges represent
the ratings that a member gives others in a range of -
10(maximum distrust) to +10(maximum trust). BC-Alpha is
similar to BC-OTC, albeit the transactions are on a different
bitcoin network. UCI dataset is a student community net-
work where nodes represent the students, and the edges rep-
resent the messages exchanged between them. AS dataset
summarizes a temporal communication network indicating
traffic flow between routers. In the Reddit dataset, nodes are
the source and target subreddits, and the edges represent the
sentiment’s polarity between users. The Elliptic dataset rep-
resents licit vs illicit transactions on the elliptic network of
bitcoin transactions. The nodes represent transactions and
edges represent payment flows. Finally, for Brain dataset,
nodes represent tiny regions/cubes in the brain, and the
edges are their connectivity.
Baselines: In order to show the efficacy of our frame-
work, we compare with the following competitive base-
lines: (1) Static graph methods: GCN (Kipf and Welling
2017), GAT (Veličković et al. 2018). (2) Dynamic graph
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# Nodes # Edges # Time Steps Task
(Train / Val / Test)

BC-OTC 5,881 35,588 95 / 14 / 28 EC
BC-Alpha 3,777 24,173 95 / 13 / 28 EC

Reddit 55,863 858,490 122 / 18 / 34 EC
SBM 1,000 4,870,863 35 / 5 / 10 LP
UCI 1,899 59,835 62 / 9 / 17 LP
AS 6,474 13,895 70 / 10 / 20 LP

Elliptic 203,769 234,355 31 / 5 / 13 NC
Brain 5,000 1,955,488 10 / 1 / 1 NC

Table 1: Data set statistics and details. In the task column, LP
refers to Link Prediction, EC refers to Edge Classification
and NC is Node Classification.

methods such as GCN-GRU (Pareja et al. 2020), DynGEM
(Goyal et al. 2017), GAEN (Shi et al. 2021), the vari-
ants of dyngraph2vec (Goyal, Chhetri, and Canedo 2020):
DG2vec v1 and DG2vec v2, the best performing variants of
EvolveGCN (Pareja et al. 2020): EGCN-O and EGCN-H,
and the two variants of LEDG (Xiang, Huang, and Wang
2022): LEDGCN and LEDGAT.
Task and Experiment Settings: For the link prediction
task, we report mean reciprocal rank(MRR) and mean av-
erage precision(MAP) as in the baselines. For each of the
given nodes u, v, our model gives embeddings in the final
layer htu, h

t
v respectively. We predict the link between these

nodes by concatenating the vectors for the corresponding
nodes. Following the standard practices, we perform nega-
tive sampling and optimize the cross entropy loss function.
For edge classification, our model classifies the edges be-
tween two nodes(u, v) by concatenating the vectors for the
corresponding nodes(htu, h

t
v) at time t and we report the mi-

cro F1 score. For node classification similar to the baselines,
our model reports micro F1 (Brain dataset) or minority class
F1 (Elliptic dataset) by classifying given node nodes(u) as
belonging to a certain class at time t.

The best hyperparameters search has the range as: Num-
ber of layers ∈ {1, 2}, Hidden dimension ∈ {32, 64, 128},
Number of heads ∈ {4, 8, 16}, Filter order ∈ {4, 8, 16},
Wavelet scales ∈ [0.1, 10]. The rest of the parameters and
settings are borrowed from previous works (Pareja et al.
2020; Xiang, Huang, and Wang 2022).
Variants of our Framework: In the main results we show
three variants of our method with different aggregators. We
use the MLP(DEFT-MLP), GAT(DEFT-GAT) and sparse
Transformer(DEFT-T) as aggregators. The rationale behind
selecting GAT and MLP in addition to the proposed trans-
former aggregator is to contrast it with a less expressive
static attention mechanism in GAT and a control in MLP.

Results
Results on Link Prediction
Table 2 summarizes link prediction results. The key results
are: 1) across datasets, our model (DEFT-T) significantly
outperform all baselines which focus on learning local de-
pendencies (in static and dynamic graph settings). It illus-
trates our framework’s effectiveness in learning homoge-

Datasets SBM UCI AS
Metrics MAP MRR MAP MRR MAP MRR
GCN 0.189 0.014 0.0001 0.047 0.002 0.181
GAT 0.175 0.013 0.0001 0.047 0.020 0.139

DynGEM 0.168 0.014 0.021 0.106 0.053 0.103
GCN-GRU 0.190 0.012 0.011 0.099 0.071 0.339
DG2vec V1 0.098 0.008 0.004 0.054 0.033 0.070
DG2vec V2 0.159 0.012 0.021 0.071 0.071 0.050

GAEN 0.183 0.008 0.0001 0.049 0.130 0.051
EGCN-H 0.195 0.014 0.013 0.090 0.153 0.363
EGCN-O 0.199 0.014 0.027 0.138 0.114 0.275

LEDG-GCN 0.196 0.015 0.032 0.163 0.193 0.469
LEDG-GAT 0.182 0.012 0.026 0.149 0.233 0.384
DEFT-MLP 0.166 0.012 0.054 0.172 0.174 0.357
DEFT-GAT 0.097 0.008 0.050 0.170 0.031 0.093

DEFT-T 0.242 0.022 0.050 0.201 0.588 0.647

Table 2: Link prediction results where mean average preci-
sion (MAP) and mean reciprocal rank (MRR) are displayed.
Best values are bold, second bests are underlined.

Figure 3: Performance of edge classification and node clas-
sification, with F1 scores on the y-axis.

neous representations of local and global dependencies in
evolving graphs. 2) Interestingly, a simple MLP aggregator
(DEFT-MLP) on the learned spectral and spatial properties
already achieves better results than most of the baselines on
UCI and AS datasets (including ones for dynamic graphs).
3) The transformer variant (DEFT-T) gives consistently bet-
ter results than the GAT and MLP variants indicating the
aggregation using the sparse self-attention of transformers
is essential for the framework on these datasets.

Results on Edge Classification
The results of edge classification on the three datasets (BC-
OTC, BC-Alpha, Reddit) are given in Figure 3 and show the
micro averaged F1 score. We observe from the results that at
least one variant of our method outperforms the best base-
lines variants: EvolveGCN and LEDG. Our MLP-based con-
figuration achieves better results than baselines on BC-OTC
and BC-Alpha, whereas DEFT-T consistently outperforms
the baselines and other DEFT variants.

Results on Node Classification
Figure 3 shows the results of node classification on
Brain(homophily ratio (Zhu et al. 2020): 26%) and Ellip-
tic(homophily ratio: 96%) datasets. DEFT would consider
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the brain structure on the Brain dataset while capturing
global interactions. DEFT has a substantial performance
gain on the Brain dataset, which has a high heterophily ratio
requiring capturing global interactions in graphs compared
to existing models that only perform local aggregation. On
the homophilic Elliptic dataset, DEFT also performs good
by capturing low-frequency signals. It confirms that when
the spatial and spectral properties are combined using an op-
timal aggregator to learn the local and global dependencies,
the model results in robust performance across tasks.

Ablation Studies

Datasets SBM UCI
Metrics MAP MRR MAP MRR
GWNN 0.1789 0.0121 0.0076 0.0820

Transformer 0.2052 0.0174 0.0308 0.1441
GT 0.2166 0.01805 0.0310 0.1414

SAN 0.2143 0.0180 0.0388 0.1822
DEFT-woSpectral 0.2123 0.0171 0.0460 0.1764
DEFT-woSpatial 0.2083 0.0171 0.0421 0.1806
DEFT-woHRM 0.2410 0.0217 0.0429 0.1588

DEFT-staticSpectral 0.2297 0.0198 0.0419 0.1506
DEFT-T 0.2421 0.0220 0.0501 0.2007

Table 3: Table shows the link prediction results for the static
wavelet and transformer architectures along with ablations
of individual components of our model.

Model Ablation Study: To study the effect of each mod-
ule of DEFT, we systematically remove modules and cre-
ate several sub-configuration of our best performing model
(DEFT-T): (i) DEFT-woSpectral does not have the spectral
module (ii) DEFT-woSpatial does not have the spatial mod-
ule (iii) DEFT-woHRM with the Homogeneous Represen-
tation Module removed(the spatial and spectral features are
simply added), (iv) DEFT-staticSpectral has the spectral
wavelets that are learnable but do not evolve with time and
in a graph-specific manner. We also compare our best model
with recent transformer-based models used for static graphs
such as transformer (Vaswani et al. 2017), SAN (Kreuzer
et al. 2021), GT (Dwivedi and Bresson 2020), and static
wavelet baseline GWNN (Xu et al. 2019a).

The ablation study (Table 3) provides several key insights
to understand proposed DEFT framework. Firstly, the lesser
values reported by static (non-learnable) wavelet GNN (i.e.,
GWNN) and the static (but learnable) variant of our model
(i.e., DEFT-staticSpectral) conclude that learning dynamic
wavelets benefits in the case of evolving graphs. Secondly,
the significant drop in performance when the spatial or spec-
tral module is removed provides an essential finding that for
dynamic graphs, these modules learn useful and orthogonal
representations. When these modules are combined using an
effectively learned homogeneous representation, the model
(DEFT-T) provides significantly superior performance than
its variants. Lastly, the static transformer models consis-
tently report lesser values than our model.

Filter parameter selection: In spectral module, there are
two parameters to be tuned: filter(polynomial) order and
the wavelet scale. In this study, we try to understand how

Figure 4: Effect of the parameters wavelet scale (plotted in
log scale) and filter order on the performance of the model.

selection of parameters affects model performance. From
Figure 4 illustrating results on Brain and Elliptic datasets,
we make the following observations: (1) Wavelet scales: In
Brain dataset, the result dips with higher scale and then in-
creases. For Elliptic, a general increasing trend is observed.
In the case of the learnt filters for the given graphs, it seems
that as the scales decrease the aggregation range of the spec-
tral GNN increases(as in figure 1). Thus, brain dataset being
heterophilic seems to benefit from scales in the lower re-
gion. Larger scales may work well for the homophilic Ellip-
tic dataset as the aggregation focuses on a relatively smaller
neighborhood, while also capturing the heterophily signals
in the minority illicit transactions. (2) Filter order: On Brain
dataset, there is a decreasing trend with increasing filter or-
der, whereas, for Elliptic, an optimal result is attained in the
middle region. This could be because the Brain dataset being
small needs simpler filters(such as single mode band reject
etc.); with higher filter order, it may have overfit. The larger
Elliptic dataset, on the other hand, benefits from a larger fil-
ter order. Despite being homophilic for the majority nodes,
it may need complex filters to handle the minority nodes due
to the peculiar and global nature of illicit transactions. Thus,
it benefits from relatively higher filter orders. These observa-
tions conclude that the parameters of the order of polynomial
and the wavelet scales are dataset dependent.

Conclusion
Our work proposes a concept of learnable spectral graph
wavelets to capture global dependencies by omitting the
need for full eigen decomposition of dynamic graphs. Fur-
thermore, we implement it in the DEFT framework that in-
tegrates the graph’s spectral and spatial properties for dy-
namic graphs. From the results on a wide range of tasks for
dynamic graphs, we infer that the proposed method is able
to capture the local(short range) and global(extended range)
properties effectively. Also, it can capture a broad range
of interactions respecting the graph structure, thus avoiding
noise while being sparse(computationally efficient). Future
works could build upon frameworks for joint time and graph
Fourier transform for dynamic graphs to generate wavelets
and study if these could be used for graph sampling to pro-
vide computational efficiency on extremely large graphs.
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