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Abstract
We extend the notion of regret with a welfarist perspective.
Focussing on the classic multi-armed bandit (MAB) frame-
work, the current work quantifies the performance of ban-
dit algorithms by applying a fundamental welfare function,
namely the Nash social welfare (NSW) function. This corre-
sponds to equating algorithm’s performance to the geomet-
ric mean of its expected rewards and leads us to the study
of Nash regret, defined as the difference between the—a pri-
ori unknown—optimal mean (among the arms) and the algo-
rithm’s performance. Since NSW is known to satisfy fairness
axioms, our approach complements the utilitarian considera-
tions of average (cumulative) regret, wherein the algorithm is
evaluated via the arithmetic mean of its expected rewards.
This work develops an algorithm that, given the horizon of

play T , achieves a Nash regret of O
(√

k log T
T

)
, here k de-

notes the number of arms in the MAB instance. Since, for any
algorithm, the Nash regret is at least as much as its average
regret (the AM-GM inequality), the known lower bound on
average regret holds for Nash regret as well. Therefore, our
Nash regret guarantee is essentially tight. In addition, we de-
velop an anytime algorithm with a Nash regret guarantee of

O

(√
k log T

T
log T

)
.

1 Introduction
Regret minimization is a pre-eminent objective in the study
of decision making under uncertainty. Indeed, regret is
a central notion in multi-armed bandits (Lattimore and
Szepesvári 2020), reinforcement learning (Sutton and Barto
2018), game theory (Young 2004), decision theory (Peterson
2017), and causal inference (Lattimore, Lattimore, and Reid
2016). The current work extends the formulation of regret
with a welfarist perspective. In particular, we quantify the
performance of a decision maker by applying a fundamen-
tal welfare function—namely the Nash social welfare—and
study Nash regret, defined as the difference between the (a
priori unknown) optimum and the decision maker’s perfor-
mance. We obtain essentially tight upper bounds for Nash
regret in the classic multi-armed bandit (MAB) framework.

Recall that the MAB framework provides an encapsulat-
ing abstraction for settings that entail sequential decision
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making under uncertainty. In this framework, a decision
maker (online algorithm) has sample access to k distribu-
tions (arms), which are a priori unknown. For T rounds, the
online algorithm sequentially selects an arm and receives a
reward drawn independently from the arm-specific distribu-
tion. Here, ex ante, the optimal solution would be to select,
in every round, the arm with the maximum mean. However,
since the statistical properties of the arms are unknown, the
algorithm accrues—in the T rounds—expected rewards that
are not necessarily the optimal. The construct of regret cap-
tures this sub-optimality and, hence, serves as a key perfor-
mance metric for algorithms. A bit more formally, regret is
defined as the difference between the optimal mean (among
the arms) and the algorithm’s performance.

Two standard forms of regret are average (cumulative)
regret (Lattimore, Lattimore, and Reid 2016) and instanta-
neous (simple) regret (Slivkins 2019). Specifically, average
regret considers the difference between the optimal mean
and the average (arithmetic mean) of the expected rewards
accumulated by the algorithm. Hence, in average regret the
algorithm’s performance is quantified as the arithmetic mean
of the expected rewards it accumulates in the T rounds.
Complementarily, in simple regret the algorithm’s perfor-
mance is equated to its expected reward precisely in the T th
round, i.e., the algorithm’s performance is gauged only after
(T − 1) rounds.

We build upon these two formulations with a welfarist
perspective. To appreciate the relevance of this perspective
in the MAB context, consider settings in which the algo-
rithm’s rewards correspond to values that are distributed
across a population of T agents. In particular, one can revisit
the classic motivating example of clinical trials (Thompson
1933): in each round t ∈ {1, . . . , T} the decision maker
(online algorithm) administers one of the k drugs to the tth
patient. The observed reward in round t is the selected drug’s
efficacy for patient t. Hence, in average regret one equates
the algorithm’s performance as the (average) social welfare
across the T patients. It is pertinent to note that maximiz-
ing social welfare (equivalently, minimizing average regret)
might not induce a fair outcome. The social welfare can in
fact be high even if the drugs are inconsiderately tested on
an initial set of patients. By contrast, in instantaneous regret,
the algorithm’s performance maps to the egalitarian (Rawl-
sian) welfare (which is a well-studied fairness criterion) but
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only after excluding an initial set of test subjects.
The work aims to incorporate fairness and welfare con-

siderations for such MAB settings, in which the algorithm’s
rewards correspond to agents’ values (e.g., drug efficacy,
users’ experience, and advertisers’ revenue). Towards this,
we invoke a principled approach from mathematical eco-
nomics: apply an axiomatically-justified welfare function
on the values and thereby quantify the algorithm’s per-
formance. Specifically, we apply the Nash social welfare
(NSW), which is defined as the geometric mean of agents’
values (Moulin 2004); note that, in the current framework,
for each round t ∈ [T ] of the algorithm, we have a dis-
tinct agent t ∈ [T ]. Hence, we equate the algorithm’s per-
formance to the geometric mean of its T expected rewards.
This leads us to the notion of Nash regret, defined as the
difference between the optimal mean, µ∗, and the geomet-
ric mean of the expected rewards (see equation (1)). Note
that here we are conforming to an ex-ante assessment–the
benchmark (in particular, µ∗) is an expected value and the
value associated with each agent is also an expectation; see
Section 5 for discussions on variants of Nash regret.

NSW is an axiomatically-supported welfare objective
(Moulin 2004). That is, in contrast to ad-hoc constraints
or adjustments, NSW satisfies a collection of fundamental
axioms, including symmetry, independence of unconcerned
agents, scale invariance, and the Pigou-Dalton transfer prin-
ciple (Moulin 2004). At a high level, the Pigou-Dalton prin-
ciple ensures that NSW will increase under a policy change
that transfers, say, δ reward from a well-off agent t to an
agent t̃ with lower current value.1 At the same time, if the
relative increase in t̃’s value is much less than the drop in t’s
value, then NSW would not favor such a transfer (i.e., it also
accommodates for allocative efficiency). The fact that NSW
strikes a balance between fairness and economic efficiency
is also supported by the observation that it sits between egal-
itarian and (average) social welfare: the geometric mean is
at least as large as the minimum reward and it is also at most
the arithmetic mean (the AM-GM inequality).

In summary, Nash social welfare induces an order among
profiles of expected rewards (by considering their geometric
means). Profiles with higher NSW are preferred. Our well-
justified goal is to develop an algorithm that induces high
NSW among the agents. Equivalently, we aim to develop an
algorithm that minimizes Nash regret.

It is relevant here to note the conceptual correspondence
with average regret, wherein profiles with higher social wel-
fare are preferred. That is, while average regret is an appro-
priate primitive for utilitarian concerns, Nash regret is fur-
thermore relevant when fairness is an additional desidera-
tum.

At a conceptual level, Nash regret provides a novel quan-
tification of the proverbial explore-vs-exploit tradeoff: Each
round t ∈ [T ] corresponds to a distinct agent t. On the ex-
plore end of the tradeoff, one can pull near-optimal arms for
later agents by first inconsiderately exploring in the initial

1Recall that NSW is defined as the geometric mean of rewards
and, hence, a more balanced collection of rewards will have higher
NSW.

rounds. Such an approach, however, can hamper the rewards
of a significant fraction of the initial agents. Complementar-
ily, towards the other end of the tradeoff, the algorithm can
explore less and continue to follow its best estimate. Indeed,
Nash welfare provides an axiomatically-justified quantifica-
tion (as the geometric mean) towards balancing this funda-
mental tradeoff.

1.1 Our Results and Techniques
We develop an algorithm that achieves Nash regret of

O

(√
k log T
T

)
; here, k denotes the number of arms in the

bandit instance and T is the given horizon of play (Theorem
1 and Theorem 2). Note that, for any algorithm, the Nash
regret is at least as much as its average regret.2 Therefore,

the known Ω

(√
k
T

)
lower bound on average regret (Auer

et al. 2002) holds for Nash regret as well. This observation
implies that, up to a log factor, our guarantee matches the
best-possible bound, even for average regret.

We also show that the standard upper confidence bound
(UCB) algorithm (Lattimore and Szepesvári 2020) does not
achieve any meaningful guarantee for Nash regret (see the
full version of the paper (Barman et al. 2022)). This bar-
rier further highlights that Nash regret is a more challeng-
ing benchmark than average regret. In fact, it is not obvious
if one can obtain any nontrivial guarantee for Nash regret
by directly invoking upper bounds known for average (cu-
mulative) regret. For instance, a reduction from Nash regret
minimization to average regret minimization, by taking logs
of the rewards (i.e., by converting the geometric mean to
the arithmetic mean of logarithms), faces the following hur-
dles: (i) for rewards that are bounded between 0 and 1, the
log values can be in an arbitrarily large range, and (ii) an
additive bound for the logarithms translates back to only a
multiplicative guarantee for the underlying rewards.

Our algorithm (Algorithm 1) builds upon the UCB tem-
plate with interesting technical insights; see Section 3 for a
detailed description. The two distinctive features of the al-
gorithm are: (i) it performs uniform exploration for a judi-
ciously chosen number of initial rounds and then (ii) it adds
a novel (arm-specific) confidence width term to each arm’s
empirical mean and selects an arm for which this sum is
maximum (see equation (2)). Notably, the confidence width
includes the empirical mean as well. These modifications en-
able us to go beyond standard regret analysis.3

The above-mentioned algorithmic result focusses on set-
tings in which the horizon of play (i.e., the number of
rounds) T is given as input. Extending this result, we also
establish a Nash regret guarantee for T -oblivious settings.

2This follows from the AM-GM inequality: The average regret
is equal to the difference between the optimal mean, µ∗, and the
arithmetic mean of expected rewards. The arithmetic mean is at
least the geometric mean, which in turn is considered in Nash re-
gret.

3Note that the regret decomposition lemma (Lattimore and
Szepesvári 2020), a mainstay of regret analysis, is not directly ap-
plicable for Nash regret.
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In particular, we develop an anytime algorithm with a Nash

regret of O
(√

k log T
T log T

)
(Theorem 3). This extension

entails an interesting use of empirical estimates to identify
an appropriate round at which the algorithm can switch out
of uniform exploration.

1.2 Additional Related Work and Application
Given that learning algorithms are increasingly being used to
guide socially sensitive decisions, there has been a surge of
research aimed at achieving fairness in MAB contexts; see,
e.g., (Joseph et al. 2016; Celis et al. 2019; Patil et al. 2020;
Bistritz et al. 2020) and references therein. This thread of re-
search has predominantly focused on achieving fairness for
the arms. By contrast, the current work establishes fairness
(and welfare) guarantees across time.

In addition, (Hossain, Micha, and Shah 2021) considers a
multi-agent setting: each arm pull generates a (possibly dis-
tinct) reward amongN agents. The goal in (Hossain, Micha,
and Shah 2021) is to find a distribution (over the arms) that
is fair for the N agents. This objective differs from identify-
ing an arm with a high mean reward, since, for each arm, the
rewards can vary across the agents. On the other hand, our
work conforms to the classic MAB setup and considers fair-
ness across rounds; each round t ∈ [T ] represents a distinct
agent.

The significance of Nash social welfare and its axiomatic
foundations (Kaneko and Nakamura 1979; Nash Jr 1950)
in fair division settings are well established; see (Moulin
2004) for a textbook treatment. Specifically in the context of
allocating divisible goods, NSW is known to uphold other
important fairness and efficiency criteria (Varian 1974). In
fact, NSW corresponds to the objective function considered
in the well-studied convex program of Eisenberg and Gale
(Eisenberg and Gale 1959). NSW is an object of active in-
vestigation in discrete fair division literature as well; see,
e.g., (Caragiannis et al. 2019).

While the focus of the current paper is to develop provable
algorithmic guarantees for Nash regret, we provide here an
example to highlight the applicability of this fairness met-
ric: Consider the use of MAB methods for displaying ad
impressions (Schwartz, Bradlow, and Fader 2017). In this
application, different ad configurations correspond to differ-
ent arms, and the online users are the T agents. In round
t ∈ [T ], the tth user visits the website and is shown an ad
configuration (i.e., a chosen arm). The reward, for every user
t ∈ [T ], is stochastic and based on the selected arm (i.e., the
selected ad configuration). In this application, maximizing
Nash welfare of rewards is a meaningful objective, since it
qualitatively supports an online algorithm that is fair across
the T agents. Indeed, Nash regret would dissuade sacrificing
the experience of an initial set of users for overall utilitarian
benefits.

2 Notation and Preliminaries
We study the classic (stochastic) multi-armed bandit prob-
lem. Here, an online algorithm (decision maker) has sam-
ple access to k (unknown) distributions, that are supported

on [0, 1]. The distributions are referred to as arms i ∈
{1, . . . , k}. The algorithm must iteratively select (pull) an
arm per round and this process continues for T ≥ 1 rounds
overall. Successive pulls of an arm i yield i.i.d. rewards from
the ith distribution. We will, throughout, write µi ∈ [0, 1]
to denote the (a priori unknown) mean of the the ith arm
and let µ∗ be maximum mean, µ∗ := maxi∈[k] µi. Fur-
thermore, given a bandit instance and an algorithm, the ran-
dom variable It ∈ [k] denotes the arm pulled in round
t ∈ {1, . . . , T}. Note that It depends on the draws observed
before round t.

We address settings in which the rewards are distributed
across a population of T agents. Specifically, for each agent
t ∈ {1, . . . , T}, the expected reward received is E[µIt ] and,
hence, the algorithm induces rewards {E[µIt ]}

T
t=1 across all

the T agents. Notably, one can quantify the algorithm’s per-
formance by applying a welfare function on these induced
rewards. Our focus is on Nash social welfare, which, in the
current context, is equal to the geometric mean of the agents’

expected rewards:
(∏T

t=1 E[µIt ]
)1/T

. Here, the overarch-
ing aim of achieving a Nash social welfare as high as pos-
sible is quantitatively captured by considering Nash regret,
NRT ; this metric is defined as

NRT := µ∗ −

(
T∏
t=1

E[µIt ]

)1/T

(1)

Note that the optimal value of Nash social welfare is µ∗, and
our objective is to minimize Nash regret.

Furthermore, the standard notion of average (cumulative)
regret is obtained by assessing the algorithm’s performance
as the induced social welfare 1

T

∑T
t=1 E[µIt ]. Specifically,

we write RT to denote the average regret, RT := µ∗ −
1
T

∑T
t=1 E[µIt ]. The AM-GM inequality implies that Nash

regret, NRT , is a more challenging benchmark than RT ; in-

deed, for our algorithm, the Nash regret is O
(√

k log T
T

)
and the same guarantee holds for the algorithm’s average re-
gret as well.

3 The Nash Confidence Bound Algorithm
Our algorithm (Algorithm 1) consists of two phases. Phase I

performs uniform exploration for T̃ := 16
√

kT log T
log k rounds.

In Phase II, each arm is assigned a value (see equation (2))
and the algorithm pulls the arm with the highest current
value. Based on the observed reward, the values are updated
and this phase continues for all the remaining rounds.

We refer to the arm-specific values as the Nash confidence
bounds, NCBi-s. For each arm i ∈ [k], we obtain NCBi by
adding a ‘confidence width’ to the empirical mean of arm i;
in particular, NCBi depends on the number of times arm i
has been sampled so far and rewards experienced for i. For-
mally, for any round t and arm i ∈ [k], let ni ≥ 1 denote the
number of times arm i has been pulled before this round.4

4Note that ni is a random variable.
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Also, for each 1 ≤ s ≤ ni, random variable Xi,s be the
observed reward when arm i is pulled the sth time. At this
point, arm i has empirical mean µ̂i := 1

ni

∑ni

s=1Xi,s and we
define the Nash confidence bound as

NCBi := µ̂i + 4

√
µ̂i log T

ni
(2)

It is relevant to observe that, in contrast to standard UCB
(see, e.g., (Lattimore and Szepesvári 2020)), here the con-
fidence width includes the empirical mean (i.e., the addi-
tive term has µ̂i under the square-root). This is an important
modification that enables us to go beyond standard regret
analysis. Furthermore, we note that the Nash regret guaran-
tee of Algorithm 1 can be improved by a factor of

√
log k

(see Theorem 1 and Theorem 2). The initial focus on Algo-
rithm 1 enables us to highlight the key technical insights for
Nash regret. The improved guarantee is detailed in the full
version of the paper (Barman et al. 2022).

Algorithm 1: Nash Confidence Bound Algorithm
Input: Number of arms k and horizon of play T .

1: Initialize empirical means µ̂i = 0 and counts ni = 0,

for all arms i ∈ [k]. Also, set T̃ := 16
√

kT log T
log k .

Phase I
2: for t = 1 to T̃ do
3: Select It uniformly at random from {1, 2, . . . , k}.
4: Pull arm It and observe reward Xt.
5: For arm It, increment the count nIt (by one) and up-

date the empirical mean µ̂It .
6: end for

Phase II
7: for t = (T̃ + 1) to T do
8: Pull the arm It with the highest Nash confidence

bound, i.e., It = arg maxi∈[k] NCBi.
9: Observe reward Xt and update µ̂It .

10: Update the Nash confidence bound for It (see equa-
tion (2)).

11: end for

The following theorem is the main result of this section
and it establishes that Algorithm 1 achieves a tight—up to
log factors—guarantee for Nash regret.
Theorem 1. For any bandit instance with k arms and given
any (moderately large) time horizon T , the Nash regret of
Algorithm 1 satisfies

NRT = O

(√
k log k log T

T

)
.

3.1 Regret Analysis
We first define a “good” event G and show that it holds
with high probability (Lemma 1); our Nash regret analysis
is based on conditioning onG. In particular, we will first de-
fine three sub-eventsG1, G2, G3 and setG := G1∩G2∩G3.
For specifying these events, write µ̂i,s to denote the empiri-
cal mean of arm i’s rewards, based on the first s samples (of
i).

G1: Every arm i ∈ [k] is sampled at least T̃
2k times in Phase

I,5 i.e., for each arm i we have ni ≥ T̃
2k at the end of

the first phase in Algorithm 1.

G2: For all arms i ∈ [k], with µi > 6
√
k log k log T√

T
, and all

sample counts T̃
2k ≤ s ≤ T we have |µi − µ̂i,s| ≤

3
√

µi log T
s .

G3: For all arms j ∈ [k], with µj ≤ 6
√
k log k log T√

T
, and all

T̃
2k ≤ s ≤ T , we have µ̂j,s ≤ 9

√
k log k log T√

T
.

Here,6 all the events are expressed as in the canonical ban-
dit model (see, e.g., (Lattimore and Szepesvári 2020, Chap-
ter 4)). In particular, for events G2 and G3, one considers a
k × T reward table that populates T independent samples
for each arm i ∈ [k]. All the empirical means are obtained
by considering the relevant entries from the table; see (Bar-
man et al. 2022) for a more detailed description of the as-
sociated probability space. Also note that, conceptually, the
algorithm gets to see the (i, s)th entry in the table only when
it samples arm i the sth time.

The lemma below lower bounds the probability of event
G; its proof appears in the full version of the paper (Barman
et al. 2022).

Lemma 1. P {G} ≥
(
1− 4

T

)
.

Next, we state a useful numeric inequality; for complete-
ness, we provide its proof in the full version of the paper
(Barman et al. 2022).

Claim 1. For all reals x ∈
[
0, 12

]
and all a ∈ [0, 1], we have

(1− x)a ≥ 1− 2ax.

Now, we will show that the following key guarantees
(events) hold under the good event G:

• Lemma 2: The Nash confidence bound of the optimal
arm i∗ is at least its true mean, µ∗, throughout Phase II.

• Lemma 3: Arms j with sufficiently small means (in par-
ticular, µj ≤ 6

√
k log k log T√

T
) are never pulled in Phase

II.
• Lemma 4: Arms i that are pulled many times in Phase

II have means µi close to the optimal µ∗. Hence, such
arms i do not significantly increase the Nash regret.

The proofs of these three lemmas are deferred to the full
version of the paper (Barman et al. 2022). In these results,
we will address bandit instances wherein the optimal mean
µ∗ ≥ 32

√
k log k log T√

T
. Note that in the complementary case

(wherein µ∗ < 32
√
k log k log T√

T
) the Nash regret directly sat-

isfies the bound stated in Theorem 1.

Lemma 2. Let NCBi∗,t be the Nash confidence bound of
the optimal arm i∗ at round t. Assume that the good event

5Recall that T̃ := 16
√

kT log T
log k

.
6Note that if, for all arms i ∈ [k], the means µi ≤

6
√
k log k log T√

T
, then, by convention, P{G2} = 1. Similarly, if all

the means are sufficiently large, then P{G3} = 1.
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G holds and also µ∗ ≥ 32
√
k log k log T√

T
. Then, for all rounds

t > T̃ (i.e., for all rounds in Phase II), we have NCBi∗,t ≥
µ∗.

Lemma 3. Consider a bandit instance with optimal mean
µ∗ ≥ 32

√
k log k log T√

T
and assume that the good event G

holds. Then, any arm j, with mean µj ≤ 6
√
k log k log T√

T
, is

never pulled in all of Phase II.

Lemma 4. Consider a bandit instance with optimal mean
µ∗ ≥ 32

√
k log k log T√

T
and assume that the good event G

holds. Then, for any arm i that is pulled at least once in
Phase II we have

µi ≥ µ∗ − 8

√
µ∗ log T

Ti − 1
,

where Ti is the total number of times that arm i is pulled in
the algorithm.

3.2 Proof of Theorem 1
For bandit instances in which the optimal mean µ∗ ≤
32
√
k log k log T√

T
, the theorem holds directly; specifically, the

Nash regret NRT = µ∗ −
(∏T

t=1 E[µIt ]
)1/T

≤ µ∗. There-
fore, in the remainder of the proof we will address instances
wherein µ∗ ≥ 32

√
k log k log T√

T
.

The Nash social welfare of the algorithm satisfies7

(
T∏
t=1

E [µIt ]

) 1
T

=

 T̃∏
t=1

E [µIt ]

 1
T
 T∏
t=T̃+1

E [µIt ]

 1
T

.

In this product, the two terms account for the rewards
accrued in the two phases, respectively. Next, we will lower
bound these two terms.

Phase I: In each round of the first phase, the algorithm se-
lects an arm uniformly at random. Hence, E[µIt ] ≥

µ∗

k , for
each round t ≤ T̃ . Therefore, for Phase I we have T̃∏

t=1

E[µIt ]

 1
T

≥
(
µ∗

k

) T̃
T

= (µ∗)
T̃
T

(
1

k

) 16
√

k log T√
T log k

= (µ∗)
T̃
T

(
1

2

) 16
√

k log T log k√
T log k

= (µ∗)
T̃
T

(
1− 1

2

) 16
√

k log k log T√
T

≥ (µ∗)
T̃
T

(
1− 16

√
k log k log T√

T

)
(3)

To obtain the last inequality we note that the exponent
16
√
k log k log T√

T
< 1 (for appropriately large T ) and, hence,

7Recall that T̃ := 16
√

kT log T
log k

.

the inequality follows from Claim 1.

Phase II: For the second phase, the product of the expected
rewards can be bounded as follows T∏

t=T̃+1

E [µIt ]

 1
T

≥ E


 T∏
t=T̃+1

µIt

 1
T


≥ E


 T∏
t=T̃+1

µIt

 1
T

∣∣∣∣∣∣∣ G
P{G}

(4)

Here, the first inequality follows from the multivariate
Jensen’s inequality and the second one is obtained by condi-
tioning on the good event G. To bound the expected value in
the right-hand-side of inequality (4), we consider the arms
that are pulled at least once in Phase II. In particular, with
reindexing, let {1, 2, . . . , `} denote the set of all arms that
are pulled at least once in the second phase. Also, letmi ≥ 1
denote the number of times arm i ∈ [`] is pulled in Phase II
and note that

∑`
i=1mi = T − T̃ . Furthermore, let Ti denote

the total number of times any arm i is pulled in the algo-
rithm. Indeed, (Ti −mi) is the number of times arm i ∈ [`]
is pulled in Phase I. With this notation, the expected value in
the right-hand-side of inequality (4) can be expressed as

E


 T∏
t=T̃

µIt

 1
T

∣∣∣∣∣∣∣ G
 = E

[(∏̀
i=1

µ
mi
T
i

) ∣∣∣∣∣ G
]
.

Moreover, since we are conditioning on the good eventG,
Lemma 4 applies to each arm i ∈ [`]. Hence,

E


 T∏
t=T̃

µIt

 1
T

∣∣∣∣∣∣∣ G
 = E

[(∏̀
i=1

µ
mi
T
i

) ∣∣∣∣∣ G
]

≥ E

∏̀
i=1

(
µ∗ − 8

√
µ∗ log T

Ti − 1

)mi
T

∣∣∣∣∣∣ G


(Lemma 4)

= (µ∗)1−
T̃
T E

∏̀
i=1

(
1− 8

√
log T

µ∗(Ti − 1)

)mi
T

∣∣∣∣∣∣ G

(5)

For the last equality, we use
∑`
i=1mi = T − T̃ . Now, re-

call that, under event G, each arm is pulled at least T̃
2k =

8
k

√
kT log T
log k times in Phase I. Hence, Ti > T̃

2k for each arm

i ∈ [`]. Furthermore, since µ∗ ≥ 32
√
k log k log T√

T
, we have

8
√

log T
µ∗(Ti−1) ≤ 8

√
1

256 = 1
2 for each i ∈ [`]. Therefore, we

can apply Claim 1 to reduce the expected value in inequality
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(5) as follows

E

∏̀
i=1

(
1− 8

√
log T

µ∗(Ti − 1)

)mi
T

∣∣∣∣∣∣ G


≥ E

[∏̀
i=1

(
1− 16mi

T

√
log T

µ∗(Ti − 1)

) ∣∣∣∣∣ G
]

≥ E

[∏̀
i=1

(
1− 16

T

√
mi log T

µ∗

) ∣∣∣∣∣ G
]

(as Ti ≥ mi + 1)

We can further simplify the above inequality by noting that
(1− x)(1− y) ≥ 1− x− y, for all x, y ≥ 0.

E

[∏̀
i=1

(
1− 16

T

√
mi log T

µ∗

) ∣∣∣∣∣ G
]

≥ E

[
1−

∑̀
i=1

(
16

T

√
mi log T

µ∗

) ∣∣∣∣∣ G
]

= 1−

(
16

T

√
log T

µ∗

)
E

[∑̀
i=1

√
mi

∣∣∣∣∣ G
]

≥ 1−

(
16

T

√
log T

µ∗

)
E

√`
√√√√∑̀

i=1

mi

∣∣∣∣∣∣ G


(Cauchy-Schwarz inequality)

≥ 1−

(
16

T

√
log T

µ∗

)
E
[√

` T
∣∣∣ G] (as

∑
imi ≤ T )

= 1−

(
16

√
log T

µ∗T

)
E
[√

`
∣∣∣ G]

≥ 1−

(
16

√
k log T

µ∗T

)
(6)

Here, the final inequality holds since ` ≤ k. Using (6),
along with inequalities (4), and (5), we obtain for Phase II:

 T∏
t=T̃+1

E [µIt ]

 1
T

≥(µ∗)1−
T̃
T

(
1− 16

√
k log T

µ∗T

)
P{G}

(7)

Inequalities (7) and (3) provide relevant bounds for Phase II
and Phase I, respectively. Hence, for the Nash social welfare

of the algorithm we have(
T∏
t=1

E [µIt ]

) 1
T

≥ µ∗
(

1− 16
√
k log k log T√

T

)(
1− 16

√
k log T

µ∗T

)
P{G}

≥µ∗
(

1− 16
√
k log k log T√

T

)(
1−16

√
k log T

µ∗T

)(
1− 4

T

)
(via Lemma 1)

≥ µ∗
(

1− 32
√
k log k log T√
µ∗T

)(
1− 4

T

)
≥ µ∗ − 32

√
µ∗k log k log T√

T
− 4µ∗

T

≥ µ∗ − 32
√
k log k log T√

T
− 4

T
(since µ∗ ≤ 1)

Therefore, the Nash regret of the algorithm satisfies

NRT = µ∗ −

(
T∏
t=1

E [µIt ]

) 1
T

≤ 32
√
k log k log T√

T
+

4

T
.

Overall, we get that NRT = O

(√
k log k log T

T

)
. The theo-

rem stands proved.

Remark. Algorithm 1 is different from standard UCB,
in terms of both design and analysis. For instance,
here the empirical means appear in the confidence width
and impact the concentration bounds utilized in the analysis.

3.3 Improved Nash Regret Guarantee
As mentioned previously, the Nash regret guarantee ob-
tained in Theorem 1 can be improved by a factor of

√
log k.

To highlight the key technical insights, in Algorithm 1 we
fixed the number of rounds in Phase I (to T̃ ). However,
with an adaptive approach, one can obtain a Nash regret of

O

(√
k log T
T

)
, as stated below in Theorem 2. A detailed

description of the modified algorithm and the proof of The-
orem 2 are deferred to the full version of the paper (Barman
et al. 2022).

Theorem 2. For any bandit instance with k arms and given
any (moderately large) T , there exists an algorithm that
achieves Nash regret

NRT = O

(√
k log T

T

)
.
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4 Anytime Algorithm
The section provides a Nash regret guarantee for settings in
which the horizon of play T is not known in advance. Here,
in addition to the doubling trick, multiple new ideas are re-
quired. A key insight in the anytime algorithm8 appears in
the subroutine Modified NCB (see the full version of the pa-
per (Barman et al. 2022)). This subroutine is different from
Algorithm 1. Recall that in Algorithm 1 we uniformly sam-
ple the arms for essentially

√
T initial rounds. To achieve

similar sampling estimates in the anytime setting, we would
need to uniformly sample about

√
T times, whenever the

window size W (guessed via doubling) is greater than
√
T .

This, however, is no longer possible, since we do not know T
to begin with, i.e., we do not know how the current window
size W compares with T .

We overcome this barrier via a novel idea: we uniform
sample until the sum of rewards for any arm i exceeds a
judiciously chosen threshold. Specifically, let ni denote the
number of times an arm i has been pulled so far and Xi,s

denote the reward observed for arm i when it is pulled
the sth time. The anytime exploration continues as long as
maxi

∑ni

s=1Xi,s ≤ 420c2 logW ; here c is an absolute con-
stant.

Moreover, in the Nash context, one needs to modify the
standard doubling trick as well. In the standard doubling-
trick method, the algorithm calls a time-dependent subrou-
tine with an initial guess for the time horizon, W , and sub-
sequently doubles this guess if the number of rounds ex-
ceeds W . In the case of standard (cumulative) regret, this
idea works because, even if an algorithm performs poorly
for an initial guess of W , it could cover up in later rounds
due to the additive nature of the net reward. We do not have
this luxury in the case of Nash regret, and a direct implemen-
tation of the doubling trick would perform poorly. Hence, in
addition to doubling the guess W , the algorithm also per-
forms uniform exploration with probability 1− 1

W 2 .
We develop an algorithm in the full version of the paper

(Barman et al. 2022) that builds on these ideas and leads to
the following theorem.
Theorem 3. There exists an anytime algorithm that, at any
(moderately large) round T , achieves a Nash regret

NRT = O

(√
k log T

T
log T

)
.

5 Ostensible Alternative
Recall that each round t ∈ [T ] corresponds to a distinct
agent t and this work followed a standard ex-ante assess-
ment; the value associated with each agent t is the expected
reward in round t, i.e., E [µIt ]. With the hindsight optimal (in
particular, µ∗) being an expected value as well, we obtained
the construct of Nash regret, NRT , by considering the differ-
ence between µ∗ and the geometric mean of the agents’ ex-

pected rewards: NRT := µ∗ −
(∏T

t=1 E[µIt ]
)1/T

. As men-
tioned previously, NRT is a more challenging benchmark

8Recall that a bandit algorithm is said to be anytime iff does not
need to know horizon of play T in advance.

than average regret (the AM-GM inequality) and, hence, our
algorithm provably strengthens standard regret guarantees.

Now, from a technical point of view, one can also define
the following variant of Nash regret

NR(1)
T := µ∗ − EI1,...IT

( T∏
t=1

µIt

) 1
T

 .
While NR(1)

T upper bounds Nash regret NRT (see the full
version of the paper (Barman et al. 2022)), it does not con-
form to a per-agent ex ante assessment. Instead, NR(1)

T di-
rectly considers the expected value of the Nash welfare gen-
erated across the population.

Moreover, one cannot obtain bounds for NR(1)
T that hold

through all the rounds: consider a bandit instance in which
all, expect one of the arms (i.e., all except the optimal arm),
have zero rewards. As soon as, in the initial (say k) rounds
one of these arms get pulled, NR(1)

T becomes as high as µ∗
and cannot be salvaged.

At the same time, we note the regret guarantee we ob-
tain for Phase II of Algorithm 1 in fact holds for NR(1)

T ; see
inequality (4) and the following analysis. This observation
implies that Algorithm 1 obtains a guarantee even in terms
of NR(1)

T for the last
(
T − T̃

)
agents.

6 Conclusion and Future Work
This work considers settings in which a bandit algorithm’s
expected rewards, {E [µIt ]}Tt=1, correspond to values dis-
tributed among T agents. In this ex ante framework, we ap-
ply Nash social welfare (on the expected rewards) to eval-
uate the algorithm’s performance and thereby formulate the
notion of Nash regret. Notably, in cumulative regret, the al-
gorithm is assessed by the social welfare it generates. That
is, while cumulative regret captures a utilitarian objective,
Nash regret provides an axiomatically-supported primitive
for achieving both fairness and economic efficiency.

We establish an instance-independent (and essentially
tight) upper bound for Nash regret. Obtaining a Nash re-
gret bound that explicitly depends on the gap parameters,
∆i := µ∗ − µ, is an interesting direction of future work.
It would also be interesting to formulate regret under more
general welfare functions. Specifically, one can consider the
generalized-mean welfare (Moulin 2004) which—in the cur-
rent context and for parameter p ∈ (−∞, 1]—evaluates to(
1
T

∑
t E [µIt ]

p)1/p. Generalized-means encompass various
welfare functions, such as social welfare (p = 1), egalitar-
ian welfare (p → −∞), and Nash social welfare (p → 0).
Hence, these means provide a systematic tradeoff between
fairness and economic efficiency. Studying Nash regret in
broader settings—such as contextual or linear bandits—is a
meaningful research direction as well.
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