
Towards Efficient and Domain-Agnostic Evasion Attack
with High-Dimensional Categorical Inputs

Hongyan Bao1, Yufei Han2, Yujun Zhou1, Xin Gao1, Xiangliang Zhang3,1,*

1King Abdullah University of Science and Technology
2INRIA

3University of Notre Dame
hongyan.bao@kaust.edu.sa, yfhan.hust@gmail.com, yujun.zhou@kaust.edu.sa, xin.gao@kaust.edu.sa, xzhang33@nd.edu

Abstract

Our work targets at searching feasible adversarial perturbation
to attack a classifier with high-dimensional categorical inputs
in a domain-agnostic setting. This is intrinsically a NP-hard
knapsack problem where the exploration space becomes ex-
plosively larger as the feature dimension increases. Without the
help of domain knowledge, solving this problem via heuristic
method, such as Branch-and-Bound, suffers from exponential
complexity, yet can bring arbitrarily bad attack results. We
address the challenge via the lens of multi-armed bandit based
combinatorial search. Our proposed method, namely FEAT,
treats modifying each categorical feature as pulling an arm in
multi-armed bandit programming. Our objective is to achieve
highly efficient and effective attack using an Orthogonal Match-
ing Pursuit (OMP)-enhanced Upper Confidence Bound (UCB)
exploration strategy. Our theoretical analysis bounding the
regret gap of FEAT guarantees its practical attack performance.
In empirical analysis, we compare FEAT with other state-of-
the-art domain-agnostic attack methods over various real-world
categorical data sets of different applications. Substantial
experimental observations confirm the expected efficiency and
attack effectiveness of FEAT applied in different application
scenarios. Our work further hints the applicability of FEAT for
assessing the adversarial vulnerability of classification systems
with high-dimensional categorical inputs.

Introduction
Adversarial evasion attacks have been witnessed in many
real-world data analytical applications(Goodfellow, Shlens,
and Szegedy 2014; Cartella et al. 2021; Suciu, Coull, and
Johns 2019; Stringhini, Kruegel, and Vigna 2010; Imam and
Vassilakis 2019), including text processing (Yang et al. 2020;
Papernot et al. 2016) and image recognition (Goodfellow,
Shlens, and Szegedy 2014; Szegedy et al. 2013). Despite the
flourish efforts on evasion attacks with continuous inputs,
such as image and video contents (Goodfellow, Shlens, and
Szegedy 2014; Szegedy et al. 2013; Carlini and Wagner 2018;
Biggio, Nelson, and Laskov 2012), much less attention has
been paid to explore the adversarial threat against on machine
learning systems with categorical inputs. Categorical data
exist prevalently in real-world trust-critical applications, like
cyber attack detection (Shu et al. 2020; Wang 2017; van Ede

*Corresponding author.
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

et al. 2022) and medical diagnosis. For instance, detecting
cyber attacks usually depends on categorical behavioral
signatures of the target IT infrastructures, including malware
execution traces, malicious network communication logs,
and system event logs (van Ede et al. 2022; Pendlebury et al.
2019). Machine Learning-based medical diagnosis is often
conducted by combining and encoding qualitative results of
various medical tests. Unlike continuous measurements such
as pixel intensities, each categorical feature is valued with
mutually exclusively category values. These optional category
values have no intrinsic ordering. Conducting adversarial
perturbations on categorical features is therefore in nature an
NP-hard knapsack problem (Wang et al. 2020). On one hand,
popular gradient-guided evasion attack methods against deep
learning models (Goodfellow, Shlens, and Szegedy 2015)
become infeasible as computing gradients directly over
categorical variables is not applicable. On the other hand,
classic heuristic search solutions, e.g., Branch-and-Bound and
trial-and-error methods, suffer from high complexity and lack
guaranteed quality of the derived attack results, which can lead
to arbitrarily bad attack performances. It is therefore difficult
to define a computationally efficient strategy to produce
effective adversarial perturbations over categorical inputs.

The current study in solving the adversarial attack problem
over categorical inputs falls into two groups. First, domain-
specific knowledge is applied to narrow down the combina-
torial perturbation space, and used as constraints to preserve
semantic/function integrity of the perturbed instances (Li et al.
2020; Zang et al. 2020; Gao et al. 2018; Li et al. 2018; Jin et al.
2020; Samanta and Mehta 2017; Papernot et al. 2016; Ma
et al. 2018a; Wang et al. 2020; Suciu, Coull, and Johns 2019;
Narodytska and Kasiviswanathan 2017; Croce and Hein 2019;
Pierazzi et al. 2020). Such domain-specific dependency limits
the adaptive potential of the attack method across different ap-
plications. Moreover, domain-specific knowledge may not be
always readily available. For example, the threat settings of cy-
ber attacks vary drastically across different attack techniques
and IT system architectures (van Ede et al. 2022). Encoding
domain-specific contexts of various intrusion incidents require
expensive investigation overheads on a case-by-case basis.
Besides, system threats may stay unknown to security analysts
when an attack is delivered. It is impossible to define domain-
specific rules for the zero-day attack events. The absence of
a principled and domain-agnostic adversarial attack protocol

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

6753



makes it difficult to provide an attack-as-a-service pipeline to
evaluate the adversarial vulnerability of different trust-critical
applications. Second, forward stepwise greedy search (FSGS)
has been adopted in (Ebrahimi et al. 2018; Wang et al. 2020)
as a domain-agnostic method to generate feasible adversarial
modifications to categorical data. Domain-specific constraints
over the feasible adversarial modifications can be used as a
plug-in to FSGS. However, the greedy search method induces
prohibitively expensive computational cost as the number of
categorical features and/or the optional category values in the
target input become large. The intense overheads prevent the
adversary from organizing efficient attacks and/or makes it
inapplicable to assess the adversarial vulnerability of a target
machine learning system in practices.

To address the limits of current study, we propose an
orthogonal matching pursuit (OMP)-boosted multi-armed
bandit search to deliver a fast and effective adversarial attack
in a high-dimensional combinatorial search space, named as
FEAT hereafter. FEAT adopts orthogonal matching pursuit
(Elenberg et al. 2018; Wang et al. 2020) to identify the most
sensitive categorical features to perturb in each round of
the iterative attack process. Over the selected candidate
features, FEAT considers modifying each categorical feature
as triggering an arm in a multi-armed bandit game. Exploring
the feasible combinations of categorical feature modifications
can thus be guided with Upper Confidence Bound (UCB)-
driven exploration in a computationally efficient way. The
advantages of FEAT are summarized as follows.

• Computationally-economic attack with high-
dimensional categorical inputs. The computational
complexity of FEAT is linear to the number of modified
features. In contrast, the complexity of the state-of-the-art
domain-agnostic attack methods proposed by (Qi et al.
2019) and (Wang et al. 2020) grow as a geometric series of
the number of modified features. Empirically FEAT costs
1/10 – 1/3 of the overheads compared to the state-of-the-art
domain-agnostic and domain-specific attack methods,
while requiring less features to modify to deliver highly
successful attacks.

• Theoretical guaranteed attack performance. We set up an
upper bound of the expected regret of FEAT in our analysis.
It applies to a general Lipschitz-smooth deep learning-based
target classifier with categorical inputs, which guarantees
the attack performance of FEAT in general attack scenarios.

• Domain-agnostic adaption to various different applica-
tions. We evaluate FEAT over 4 categorical data sets col-
lected from various real-world applications. The empirical
observations confirm FEAT is well adapted to different ap-
plication domains and show its consistently superior attack
effectiveness and efficiency, comparing to the state-of-the-
art domain-agnostic and domain specific attack baseline
methods. The results also reconcile with the theoretical guar-
antee to the success of FEAT attacking general classifiers.

Related Work
(Wang et al. 2020; Qi et al. 2019; Yang et al. 2020; Ebrahimi
et al. 2018) proposed to adopt forward stepwise greedy search

(FSGS) based methods in generating discrete adversarial sam-
ples in a domain-agnostic way. FSGS is an iterative process.
In each iteration, it considers all possible combination of each
candidate categorical feature with the subsets of the adver-
sarially modified features in previous rounds. FSGS then
chooses the candidate feature that can achieve the largest
marginal gain of the attack objective. Though FSGS plays as
a domain-agnostic attack method, it can also use additional
domain-specific constraints to reduce the size of feasible fea-
ture modifications. However, the bottleneck of FSGS is that its
computational cost grows as a geometric series of the number
of the modified features. It becomes prohibitively expensive
as the dimension of the target discrete instance is high.

Domain-specific adversarial attack mostly target at text
classifiers (Papernot et al. 2016; Miyato, Dai, and Goodfellow
2016; Samanta and Mehta 2017; Yang et al. 2018; Gao et al.
2018; Li et al. 2018; Jia and Liang 2017; Jin et al. 2020).
(Gao et al. 2018) developed scoring functions to evaluate
the importance of each word in a sentence and proposed
to modify the top-ranked words identified by the scoring
functions. Similarly, (Papernot et al. 2016) selected the word
to replace where the variation of the word’s embedding vector
is best aligned to the gradient direction of the target model. In
contrast, (Jia and Liang 2017) proposed to insert distraction
sentences into a target text sample with a human-involved loop
to fool a reading comprehension system. (Samanta and Mehta
2017) added linguistic constraints over the pool of candidate-
replacing words. Recently, TextBugger (Li et al. 2018) used
typo-based perturbation for each word to get the candidates
of feasible modifications over each word. TextFooler (Jin et al.
2020) used the similarity of word embedding to select the
candidates of each words to attack. These methods depend
on semantic/syntactic rules to shrink the feasible set of text
modifications. Besides, they adopt trial-and-error search to
explore possible text modifications. They lack the guarantee
to the solution quality to the knapsack based discrete evasion
attack problem. Their attack performances, i.e., the success
of attack complying to the attack budget constraint, may thus
vary drastically over different target inputs.

Preliminaries
Let x= {x1,x2,x3,...,xN} denote a discrete input instance
withN categorical features. Each xi may take any ofM (M≥
1) categorical values. We cast each optional category value of a
discrete feature xi to a D-dimensional pre-trained embedding
vector, e.g., eji ∈RD,j=1,2,...,M . We introduce binary indi-
cators b={bji}, i=1,2,...,N , j=1,2,...,M , where bji =1 when
the i-th categorical feature xi takes the j-th categorical value
of xi, and bji =0 otherwise. One instance x can then be repre-
sented by stacking the embedding vectors of each categorical
variable xi as an RN∗M∗D tensor with x{i,j,:}=bjie

j
i .

With this setting, the adversarial perturbation over x is to
modify b to b̂. b̂ji =bji denotes xi is not perturbed. Otherwise,
b̂ji ̸= bji indicates the corresponding feature xi is changed.
Depending on the type of attacks, i.e., insertion, deletion or
substitution, b̂ji can be valued in different ways. Insertion is to
let b̂ji =1, given bji =0,∀j=1,...,m. Deletion is to let b̂ji =0,

6754



given bji =1. Substitution is to let b̂ji =1,b̂j
′

i =0, given bji =0,
bj

′

i =1,j ̸= j′. A modified instance x̂ can thus be written as
x̂{i,j,:} = b̂ji eji . The classifier f outputs decision confidence
fyk

(k = 1,2,3,...,K) with respect to different class labels.
Without loss of generality, let yK denote the true class label
of x and all the other yk (k={1,...,K−1}) are the potential
targets of an evasion attack. Given an input x, the goal of
evasion attack is to increase the misclassification risk of f
over x, i.e., making fyK

(x,b̂) as low as possible and fyk
(x,b̂)

of any of the k except K (non-targeted attack) as high as
possible simultaneously. The combinatorial optimization
problem of evasion attack is defined below:

Definition 1 f :x→ y denotes a classifier with categorical
inputsx. The adversary aims to maximize the misclassification
confidence f complying the constraint of the attack budget
ε, i.e. the maximum number of modified categorical variables
in x.

b̂∗= argmax
b̂,|diff(b,b̂)|≤ε

fyk (x̂{i,j,:}= b̂jie
j
i ), yk ̸=yK (1)

where x{i,j,:}=bjie
j
i and x̂{i,j,:}= b̂jie

j
i are the unperturbed

and the adversarially tuned instance.

The Algorithm Design of FEAT
Our design of FEAT illustrated in Algorithm 1 is inspired by
the analogy between Multi-Armed Bandit (MAB)-based com-
binatorial search and the attack problem given in Definition.1.
Finding one categorical feature xi in the input instance x to
perturb is analogous to selecting one arm to pull in an MAB
game. Each arm is characterized by the distribution of the
received rewards. Similarly, taking an action to modify the cat-
egory value of one discrete feature can also cause the variation
of the decision output of the target classifier f as a feedback.

More specifically, FEAT defines an iterative MAB search in
the discrete feature space to solve the knapsack optimization
problem in Eq.1 (see Algorithm 1 Line 6-15). Given
a categorical feature xl of x, tl denotes the number of
times when xl is selected to perturb after t iterations of the
MAB-driven search.Inheriting the terms used in Eq.1, the
reward of modifying each xl in current tc iteration (noted as
Gl,tc in Eq(2)) is defined as the maximum gap mf between
the classifier’s output over any wrong label k and the correct
label K by modifying xl.

Gl,tc =maxfyk (x̂l,tc)−fyK (x)+Λ (2)

where x̂l,tc denotes the adversarially perturbed input instance
at the current iteration tc with xl changed. A constant Λ is
added to Eq.2 to ensure the non-negativeness of the received
rewards. In practices, we set Λ = 1. In each iteration, the
Upper Confidence Bound (UCB) score of each candidate
discrete feature can be computed following Eq.(3):

Bl,tl,t= µ̄l,t+

√
αδ̄2l,tl ∗logt

tl
+
logt

tl
(3)

where µ̄l,t
def
= 1

t

∑t
tc=1Gl,tc and δ̄2l,t

def
= 1

t

∑t
tc=1(Gl,tc−µ̄l,t)

2

are the empirical mean and variance of the obtained rewards

Algorithm 1: FEAT: Fast and Effective Adversarial aTtack
Input: The input x to perturb, the trained model fy ,

the attack budget ε, the time limit TL,
the number of features to select L,
the number of UCB loops τ ;

Output: the chain of features selected to attack S;
1: S0←∅, x̂←x
2: while len(St)≤ε and TimeCost <TL do
3: gradi← The gradient∇fy(x̂i) for each feature x̂i

4: Weight of each feature wi=gradi/
∑N

j=1gradj
5: Select top-L features based on wi from N features
6: for l=1,2,...,L, do
7: x̂l← the l-th selected feature
8: Gl,t0 =maxfyk

(x̂l,t0)−fyK
(x)+Λ

9: end for
10: for t=1,2,...,τ do
11: Update µ̄l,t−1 and δ̄2l,t−1 in Eq.(3)
12: It= argmax

l∈{1,2...,L}
Bl,(t−1)l,t−1

13: St ← St−1 ∪ It
14: Modify It in x̂
15: end for
16: end while

(increase of the classification confidence produced by f ) by
changing xl after t iterations of search. In each iteration, the
adversary chooses the candidate feature with the highest UCB
score as the target to perturb. The parameter α is tunable to
make a trade-off between exploration and exploitation of the
search for discrete feature perturbations. On the one hand, a
larger α extends the exploration covering more new candidate
features that have never been tried before. On the other hand,
an extremely small α drives the search to lean more towards
the highly sensitive features. Modifying any of these features
can cause drastic variation of f ’s decision. We traverse differ-
ent choices of α in FEAT to empirically observe the impact of
α over the attack performance.According to Theorem.2 in (Au-
dibert, Munos, and Szepesvári 2007), choosing the UCB score
as in Eq.3 ensures that the event of drawing sub-optimal candi-
date features in the attack process has a decreasingly smaller
probability after increasingly more iterations of search. The ad-
versary then conducts the UCB-guided exploration of feasible
discrete perturbations to avoid exhaustive search over all the
possible combinations of the candidate categorical features.

The popular heuristic search methods, e.g., the standard
UCB and Thompson Sampling (TS), share similar com-
putational complexity according to (Agrawal and Goyal
2013; Auer, Cesa-Bianchi, and Fischer 2002). In the high-
dimensional feature space, applying these methods directly is
prone to fast increasing of the computational cost as the num-
ber of the categorical features (noted as N ) and/or the number
of the optional categorical values per feature (noted as M ) be-
come higher (Agrawal and Goyal 2013; Auer, Cesa-Bianchi,
and Fischer 2002). Besides, the regret of TS does not scale
polynomially in the feature dimension. TS can perform strictly
worse than random choice in the high dimensional case (Zhang
and Combes 2021). The complexity bottleneck of both meth-

6755



ods motivates us to adopt a more efficient strategy adapted
to the high-dimensional search problem. Previously, (Wang,
Audibert, and Munos 2008) chooses to randomly sample a
subset of features to perform the UCB subroutine to reduce the
cost. However, blindly sampling subsets of features may miss
effective feature perturbations that bring large variation of the
classifier’s output, eventually hurting the attack performance,
as shown in (Wang, Audibert, and Munos 2008).

In the proposed FEAT method, we aim to optimise
the balance between the exploration coverage and the
computational overheads by boosting the UCB-guided search
with an orthogonal matching pursuit (OMP)-based feature
ranking strategy (Buchbinder et al. 2014; Wang et al. 2020).
Each iteration of the search is composed by first conducting
the OMP computing to rank the candidate categorical features
according to their influence over the classifier’s decision
given the current input instance (see Algorithm 1 Line 3-5)
and then performing τ rounds of UCB search as the inner
iterations over the top L influential features selected by
the OMP computation (see Algorithm 1 Line 6-15). τ is a
tunable parameter, adjusting the number of search rounds
within the selected top L features. We choose τ empirically
to 1/3 of the attack budget, which presents consistently good
attack success rate with low attack budget cost.

To perform the OMP-based feature ranking, we relax the
binary indicators bji attached to each categorical feature xi

to be continuous and valued within the range [0,1]. We then
take the gradient of f(x,b) with respect to b, denoted as
∇b(fy(b)). The selected candidate categorical features are
those with the largest gradient magnitudes ∥∇b(fy(b))∥.
We reason the rationality of using the OMP-boosted UCB
search by establishing the theoretical study first in Theorem.1.
The theoretical study shows the OMP-based ranking can
select highly influential features over the classifier’s decision.
Furthermore, we build the regret bound of the OMP-boosted
UCB search of FEAT in Theorem.2, which further explains
the merit of the OMP-ranking in enhancing the efficiency of
UCB search. The regret analysis in Theorem.2 also provides
a theoretical guarantee to the attack performance of FEAT
against a general classifier with categorical inputs. We state
the two theorems in the followings. Via the theoretical study,
we discuss further how the the designed balance between
exploration and exploitation is achieved in FEAT.

The reward distribution may drift during the attack process,
which poses a challenge of non-stationary rewards to the prac-
tices of FEAT. We adapt the UCB-based search to the scenario
from two aspects. On one hand, The OMP operation of FEAT
restricts the search range to the potentially sensitive features.
The rewards of those sensitive features remain relatively more
stable than the rest features within a few iterations of search.
On the other hand, FEAT re-initialise the UCB-based search
every τ rounds and recompute the OMP-based feature ranking.
Via this way, the UCB-based search is conducted only within
the consecutive τ inner iterations. The reward distribution
of the selected L sensitive features can be considered
approximately stationary within the τ inner iterations.
Though lack of proof, FEAT provides an empirically feasible
environment for the use of the UCB-based search.

The Indicator of Feature Importance
Theorem 1 Gradient as an Indicator. Let b indicate the
category value assignment of an unperturbed data instance
x. b̂ and b̂′ indicate the two different sets of the modification
over the same unperturbed input x. We further assume
|diff(b,b̂)|≤ ζ,|diff(b,b̂′)|≤ ζ,|diff(b̂,b̂′)|≤ ζ,ζ≥1. Given
a smooth target classifier f with a finite Lipschitz constant,
fyk

(x) denotes the decision output of f over any incorrect
class label, i.e. yk ̸=yK in Definition.1. Let ∇fy(x,b̂)ν denote
the elements of ∇fy(x, b̂) corresponding to the difference
between b̂ and b̂′, where ν=diff(b̂,b̂′).

|fyk (x,b̂′)−fyk (x,b̂)|≤ max{ 1

2mk,ζ
∥∇fyk (x,b̂)ν∥

2
2,

∥∇fyk (x,b̂)ν∥2+Mk,Ωζ |ζ|/2}
(4)

where mk,ζ and Mk,Ωζ
are the local strong convexity factor

and local Lipschitz constant of the target classifier f around
the unperturbed input x.

As corroborated by Theorem 1, the magnitude of each
element in ∇b(fy(b)) provides a bounded estimator to
the marginal contribution of attacking the corresponding
categorical feature. The top-ranked candidate features with
the highest gradient magnitudes ∥∇b(fy(b))∥ are more likely
to be the most sensitive features with respect to the adversarial
perturbation, compared to those at the tail of the ranking list.
We therefore use the OMP-based ranking strategy to narrow
down the search regime within the selected top-ranked and po-
tentially sensitive features. Perturbing more sensitive features
can produce higher adversarial risk over categorical inputs,
according to Theorem.2 in (Bao et al. 2022). The rationality
of integrating this feature ranking step is thus to encourage the
UCB-guided search to concentrate more on manipulating the
sensitive features, which is more likely to cause larger change
to the classifier’s output with only a few feature changed.

The Expected Regret Bound of FEAT
Definition 2 For one feature l out of the top-ranked L
features, the expected regret of perturbing l is

△l=µ∗−µl (µ∗= max
1≤l≤L

µl) (5)

whereµl andµ∗ are the expected and optimal reward received
by changing l.

Theorem 2 Perturbing highly sensitive features helps
shrink the regret bound of FEAT. Let△l>0 and δ2l >0 be
the expected regret and the expected variance of the rewards
received by modifying each of the top-L candidate features.
The expected regret bound of FEAT after T iterations can be
given as:

E[RT ]≤
L∑

l=1

[8(
δ2l
△l

+2)logT+
α

α−2
△l], (6)

where E[RT ]
def
=
∑L

l=1E[Tl]△l. Tl is the number of times that
feature l is selected after T iterations.

6756



Empirically, we observe that the variances δ2l of the
received rewards for each top-ranked sensitive features remain
low in the attack process. It is possible that these highly
sensitive features play important roles in classification. Any
modification over such features (e.g., switching the category
value of these features) thus produces consistently large
change to the classification output (i.e., obtaining consistently
high rewards). As a result, the variance of the reward obtained
by perturbing these features is low.

According to Theorem.2, as δ2l is generally small, the lower
regret for each selected feature (△l) in the attack leads to a
lower regret bound of FEAT. Intuitively, FEAT tends to search
for feasible perturbation within the highly sensitive features
via the OMP-based feature ranking step. These features have
a significantly lower △l compared to the rest. Perturbing
these features then help FEAT reduce the expected regret,
which guarantees in theory a more successful attack after T
iterations of exploration. Compared to randomly sampling
subsets of features in (Auer, Cesa-Bianchi, and Fischer 2002;
Wang, Audibert, and Munos 2008), FEAT is destined to
achieve a better balance between narrowing down the search
range to save the computational overheads and maintaining
the attack effectiveness.

Experimental Evaluation
We use 4 categorical datasets with high-dimensional combi-
natorial search space (N and/or M are large) to measure the
effectiveness and efficiency of FEAT. They are collected from
diverse real-world applications, including text classification,
cyber intrusion and digital health service.
Yelp-5 (Yelp) (Asghar 2016). The Yelp-5 dataset was obtained
from the Yelp Review Dataset Challenge in 2015. We use
650K training and 50K testing samples with the classes from
1 star to 5 stars for training and testing a classifier. Each word
is encoded as categorical feature with a 300-dimensional
embedding vector.
Intrusion Prevention System Dataset (IPS) (Wang et al.
2020). Collected by a cyber-security vendor, the IPS dataset
contains 242,467 instances of network attack reports. Each is
composed by a sequence of 20 incident logs and categorised
into any of the 3 threatening levels (’common’, ’intermediate’
and ’urgent’). At each log, the adversary may choose to
replace it with 1,103 candidate logs. We randomly select 80%
of the IPS data for training and rest for testing.
Windows PE Malware Detection (PEDec). PEDec consists
of dynamic analysis reports of 20,000 benignwares and
10,972 PE malwares. The malware samples of 152 families
are randomly selected from those submitted to VirusTotal
between 2018 and 2020. Each of the executables is classified
as benign or malicious by more than 21 antivirus engines.
In our work, each executable of the dataset is encoded into
a binary feature vectors with 5000 signatures selected by
human experts. We randomly select 80% of each dataset for
training and others for testing.
Electronic Health Records (EHR) (Ma et al. 2018b). The
EHR dataset consists of time-ordered medical visit records of
7,314 patients. Each patient has from 4 to 200 medical visits.
Each visit record is composed by a subset of 4,130 categorical

ICD9 diagnosis codes1. Each diagnosis code represents
occurrence of a disease, a symptom, or an abnormal finding.
Using the historical EHR data of patients, our target is to
predict whether a patient will suffer heart failure disease
in the future. We randomly select 80% of the EHR data for
training and others for testing. Each EHR data instance is
organized as a tensor x∈R200∗4130∗70 with each of the 4130
diagnosis codes projected to a 70-dimensional embedding
vector. For the patients with less than 200 visits, we pad the
empty observations by setting the corresponding bji =0.

For each of IPS, EHR and PEDec datasets, we choose ran-
domly 80% of the dataset to train the target classifier. The rest
20% of the data instances are used to test attack performances.
On Yelp data, we choose 650k text instances for training the
target text classification model. The rest 50k instances are used
for performing different attacks and evaluating the attack per-
formances. For PEDec dataset, we adopt a simple CNN model
composed of one convolution layer followed by two linear
layers. The rest datasets contain sequential instances, we thus
apply standard LSTM as the classifier. Without loss of gen-
erality, we use ReLu activation function in both the CNN and
LSTM classifier with the dropout module. We conduct all the
experiments on Linux server with 2 GPUs (GeForce 1080Ti)
and 16-core CPU (Intel Xeon). Implementations of the ex-
periments are available at https://github.com/xnudinfc/FEAT.

Performance Benchmark
We include three state-of-the-art domain-agnostic attack
methods as the baselines.
FSGS (Elenberg et al. 2018). FSGS is a greedy search-based
method. In each round, it traverse the combination of each
candidate feature with each subset of the already modified
features. The candidate feature bringing the highest value of
the attack objective function is selected to modify. FSGS only
needs to query the target classifier f to obtain the decision
confidence. It is thus a black-box attack method.
OMPGS (Wang et al. 2020). It is a white-box extension of
FSGS by adopting the OMP-based ranking to constraint the
greedy search within the top-ranked features in each round
of the attack process.
GradAttack (Qi et al. 2019). GradAttack is a white-box
evasion attack method originally proposed to generate
adversarial text samples. It treats each word in a sentence as a
categorical feature and uses gradients of the word embeddings
to select feasible candidate words to attack. However, since
it doesn’t evaluate the combination patterns composed by the
candidate words and the subset of words already modified,
GradAttack requires to change much more features to deliver
attacks than FSGS and OMPGS (Wang et al. 2020).
FEAT-B is an variant of FEAT. It randomly samples L out
of the total M features to conduct the UCB-guided search as
in (Wang, Audibert, and Munos 2008). Compared to FEAT,
FEAT-B does not use the OMP computing to select the top
influential features. The purpose of involving FEAT-B, as well
as OMPGS, into the comparative study is to demonstrate the
necessity of combing the OMP-based feature ranking and the
UCB-based search together in FEAT.

1http://www.icd9data.com/

6757



Attack Algo. Computational Complexity
FSGS

∑T
t=0((N−t)∗M ∗2t)

GradAttack T ∗
∑L

k=0(C
k
L∗Mk)

OMPGS
∑T

t=0(L∗2t)
FEAT-B L∗M+T

FEAT (L∗M+τ)∗T

Table 1: Complexity of the domain-agnostic attack methods

We also involve two domain-specific attack methods
TextFooler (Jin et al. 2020) and TextBugger (Li et al. 2018)
into the test over the text data of Yelp-5. They have been
popularly adopted in various attacks against text classification.
We focus on showing FEAT, as an universally applicable
method, can achieve similar applicability to the text-formatted
categorical data, compared to these specially designed attack
methods for NLP tasks based on semantic integrity/similarity-
based knowledge. Demonstrating FEAT as a novel attack
against text classification is beyond our scope.

Evaluation metrics. We measure the average number
of the confidence computing operations required to deliver
successful attack on one input instance (noted as No.query)
as the metric of computational cost of the attack. In addition,
we also show the averaged running time needed to attack one
instance, noted as Runtime and measured in seconds. Both
metrics indicate the computational efficiency level of each
attack method. To evaluate the effectiveness of the attack, we
use the attack success rate (SR) over all the testing instances.
With the similar level of SR, if Runtime and No.query
of an attack method are significantly lower than the other
opponents, it indicates that this attack method could attack
the high-dimensional instances faster.

Attack Performance on Four Datesets
Computational Complexity Analysis. We compare the
computational complexity of all the involved domain-agnostic
attack methods by counting the number of times evaluating the
decision confidence f(x̂) during attacking one input instance.
In Table. 1,T denotes the overall number of iterations required
to reach successful attack.N andM are the number of features
of x and category values of each xi. L denotes the number of
selected features to explore in GradAttack, OMPGS, FEAT-B
and FEAT. In each iteration, FSGS and OMPGS only pick one
feature to perturb. Therefore T equals to the total number of
changed features for these two methods. OMPGS, GradAttack
and FEAT all use gradient information to shrink the size of the
candidate features. Then, L in the three methods denotes the
number of the top-ranked candidate features selected by OMP.

As given in Table. 1, the cost of FSGS and OMPGS in-
creases as the sum of a geometric sequence of the number of
changed features. In the high-dimensional problem with large
N and/or M , applying FSGS and OMPGS is prohibitively
expensive. Similarly, GradAttack is expensive to conduct if
M becomes large. In contrast, the complexity of FEAT and
FEAT-B is significantly lower, as L ≪ N (only the top L
ranked candidate features are considered) and it grows linearly
as the number of the attack iterations increases. FEAT-B re-

duces to the standard UCB if L equals to N . To initialize the
exploration, the standard UCB needs to draw each candidate
categorical feature at least once. In the high-dimensional case,
perturbing each feature once can induce an expensive over-
head of O(NM) to query the variation of the decision output
of the target classifier by changing each feature. Compared to
the standard UCB, the cost of FEAT is significantly lower.

Overall Performance. The results in Table. ?? illustrate
that FEAT achieves generally both highly efficient com-
putation (low Runtime and low No.query) and effective
attack (high SR), comparing with the other baseline attack
methods on Yelp-5, IPS, EHR and PEDec. We organize the
detailed comparison results with suitable attack budgets (the
maximum number of the modified features) on each dataset.
We highlight the performance metrics of the proposed FEAT
with bold fonts in the followings.

On Yelp-5 data, within the same attack budget, FEAT
obtains very close SR level to those of the two domain-
agnostic attack methods, FSGS and OMPGS. At the same
time, FEAT’s No.query and Runtime) are significantly lower
than than those of FSGS and OMPGS, showing much higher
efficiency for attack. The two greedy search methods (FSGS
and OMPGS) exhaustively evaluate the combination of every
candidate feature and the features that have been modified in
previous iterations. In contrast, FEAT avoids the exhaustive
search by balancing exploring rarely modified features and
exploiting the features that show consistently high influence
to the classifier’s output in the search. The results validates
that FEAT maintains attack effectiveness, while running in a
much more efficient way.

Compared to the domain-specific baselines (TextFooler
and TextBugger), FEAT achieves 10% to 40% higher SR
than those of TextFooler (0.97 v.s. 0.88), TextBugger (0.96
v.s. 0.64) and GradAttack (0.96 v.s. 0.78) on one hand. On
the other hand, FEAT’s Runtime is 33% and 11% of those
of TextFooler and TextBugger respectively, while achieving
higher SR. This indicates faster attack speed using FEAT.
No.query of TextFooler and TextBugger is lower than that
of FEAT. The reason is they incrementally modify words
and evaluate the corresponding attack effects. On the contrary,
FEAT evaluates all the candidate words at the initial step of
the search, which is the origin of the increased computational
overheads. However, via the initial per-word evaluation,
FEAT can conduct the exploration in a more comprehensive
way, which helps FEAT achieve much higher SR.

SR of FEAT-B performs worse than baselines, e.g. the two
greedy search-based methods, as randomly selecting features
to explore is likely to miss influential features thus cause
ineffective perturbation. The comparison between FEAT-B
and FSGS/OMPGS shows that locating highly influential fea-
tures to perturb is the key-to-success of attack. Nevertheless,
FEAT-B always has orders of magnitude lower Runtime and
No.query compared to FSGS. Both downsampling of the
candidate feature set and conducting the UCB search help
FEAT-B avoid exhaustive search in FSGS. The result implies
the benefit of heuristically shrinking down the search range in
the high-dimensional feature space. the key question to deliver
simultaneously fast and effective attack is thus how to iden-
tify the most influential / sensitive features, where the UCB

6758



(a) The results on Yelp-5 data

Yelp-5 Budget = 6
Attack Type & Algo. Runtime (sec) ↓ No.query ↓ SR ↑
Domain
Specific

TextBugger 1.18 23 0.64
TextFooler 0.42 167 0.88

Black
Box

FSGS 0.52 24000 0.97
FEAT-B 0.14 2057 0.90

White
Box

GradAttack 0.15 10000 0.78
OMPGS 1.25 7000 0.96
FEAT 0.14 887 0.97

(b) The results on IPS data

IPS Budget = 5
Attack Type & Algo. Runtime (sec) ↓ No.query ↓ SR ↑
Black
Box

FSGS 136 37000 0.80
FEAT-B 19.5 2500 0.74

White
Box

GradAttack 21.2 2100 0.59
OMPGS 1.99 127 0.77
FEAT 0.28 111 0.92

(c) The results on PEDec data

PEDec Budget = 14
Attack Type & Algo. Runtime (sec) ↓ No.query ↓ SR ↑
Black
Box

FSGS 435 213256 0.88
FEAT-B 3.65 9959 0.87

White
Box

GradAttack 3.51 18563 0.67
OMPGS 360 27758 0.80
FEAT 2.89 5923 0.91

(d) The results on EHR data

EHR Budget = 6
Attack Type & Algo. Runtime (sec) ↓ No.query ↓ SR ↑
Black
Box

FSGS 482 58000 0.84
FEAT-B 167 7108 0.94

White
Box

GradAttack 2.34 204 0.94
OMPGS 27.5 35 0.94
FEAT 0.35 20 0.94

Table 2: Attack performances evaluated on efficiency and effectiveness metrics: The attack time limit TL=1000 sec.

search is performed. The OMP-boosted UCB search of FEAT
answers this question and addresses the balance between the
attack efficiency and effectiveness.

On IPS and PEDec data, we can observe that FEAT
consistently achieves the highest SR, significantly higher
than the secondly ranked baseline. Meanwhile, Runtime and
No.query of FEAT remain to be the lowest among all the
attack methods. The results confirm the benefit of balancing
exploration and exploitation in FEAT. On Yelp-5, IPS and
PEDec data, GradAttack’s SR is less than 80% of that of
FEAT. The reason is GradAttack requires more features to
modify than the attack budget to deliver successful attacks
over the testing inputs. Therefore, GradAttack is terminated
when the number of modified features reaches the attack
budget even before before it achieves successful attacks on the
testing samples. On EHR data, with the similar level of the SR
performance, FEAT obtains lower Runtime and No.query
than other methods. Because of the sensitivity of the specific
features in EHR, GradAttack and OMPGS can use the gradient
of features to evaluate the importance of the features and
select the most sensitive features very fast compared with the
type of back-box adversarial attack. It is worth noting that the
OMPGS and FEAT both use the OMP-based feature ranking
to shrink the search range, the superior attack effectiveness
and efficiency of FEAT confirm the merit of conducting the
query-efficient UCB search over the top-ranked features,
instead of the exhaustive greedy search in OMPGS. The total
computational overheads of OMPGS and FEAT are composed
of the cost for the OMP computation and the query evaluating
the classifier’s output. OMPGS (greedy-based attack) needs
to conduct significantly more OMP operations in each
iteration than FEAT. Hence we can observe a much larger gap

regarding the runtime measurement between OMPGS and
FEAT, compared to that regarding the query number.

Discussion and Conclusion
The proposed FEAT method explores how to deliver both effec-
tive and computationally efficient domain-agnostic adversarial
attack in a high-dimensional categorical feature space. FEAT
first conducts the orthogonal matching pursuit-based feature
ranking to narrow down the search range to the most sensitive
candidate features. After that, FEAT performs a MAB-driven
combinatorial search over the shrinked set of candidate
features. Through this way, FEAT maintains the effectiveness
of the adversarial perturbation, while boosting the search effi-
ciency to reach a fast yet successful attack. The comprehensive
cross-application evaluation shows the superior domain-
agnostic adaptivity of FEAT to different applications than the
other state-of-the-art baselines, which makes FEAT a generally
applicable tool to assess the adversarial risk of different ap-
plications with high-dimensional categorical inputs. However,
FEAT still needs soft decision scores of the target classifier
to evaluate different search paths. Perturbation-based defense,
e.g. differential privacy, may help mitigate the attack. We will
thus focus on the threat model with only hard labels accessible.

Acknowledgements
The research reported in this paper was partially supported
by funding from King Abdullah University of Science and
Technology (KAUST).

6759



References
Agrawal, S.; and Goyal, N. 2013. Further Optimal Regret
Bounds for Thompson Sampling. In Carvalho, C. M.; and
Ravikumar, P., eds., Proceedings of the Sixteenth International
Conference on Artificial Intelligence and Statistics, volume 31
of Proceedings of Machine Learning Research, 99–107.
Scottsdale, Arizona, USA: PMLR.
Asghar, N. 2016. Yelp dataset challenge: Review rating
prediction. arXiv preprint arXiv:1605.05362.
Audibert, J.-Y.; Munos, R.; and Szepesvári, C. 2007. Tuning
Bandit Algorithms in Stochastic Environments. In Hutter,
M.; Servedio, R. A.; and Takimoto, E., eds., Algorithmic
Learning Theory, 150–165. Berlin, Heidelberg: Springer
Berlin Heidelberg. ISBN 978-3-540-75225-7.
Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite-time
analysis of the multiarmed bandit problem. Machine learning,
47(2): 235–256.
Bao, H.; Han, Y.; Zhou, Y.; and Zhang, X. 2022. Towards
understanding the robustness against evasion attack on
categorical inputs. In ICLR.
Biggio, B.; Nelson, B.; and Laskov, P. 2012. Poisoning
attacks against support vector machines. In Proceedings of
the 29th International Coference on International Conference
on Machine Learning, 1467–1474.
Buchbinder, N.; Feldman, M.; Naor, J.; and Schwartz, R. 2014.
Submodular maximization with cardinality constraints. In
Proceedings of the twenty-fifth annual ACM-SIAM symposium
on Discrete algorithms, 1433–1452. SIAM.
Carlini, N.; and Wagner, D. 2018. Audio Adversarial
Examples: Targeted Attacks on Speech-to-Text. In SPW.
Cartella, F.; Anunciacao, O.; Funabiki, Y.; Yamaguchi, D.;
Akishita, T.; and Elshocht, O. 2021. Adversarial Attacks for
Tabular Data: Application to Fraud Detection and Imbalanced
Data. arXiv preprint arXiv:2101.08030.
Croce, F.; and Hein, M. 2019. Sparse and Imperceivable
Adversarial Attacks. In ICCV, 4723–4731.
Ebrahimi, J.; Rao, A.; Lowd, D.; and Dou, D. 2018. HotFlip:
White-Box Adversarial Examples for Text Classification. In
ACL.
Elenberg, E. R.; Khanna, R.; Dimakis, A. G.; and Negah-
ban, S. 2018. Restricted strong convexity implies weak
submodularity. The Annals of Statistics, 46(6B): 3539–3568.
Gao, J.; Lanchantin, J.; Soffa, M. L.; and Qi, Y. 2018.
Black-box generation of adversarial text sequences to evade
deep learning classifiers. In 2018 IEEE Security and Privacy
Workshops (SPW), 50–56. IEEE.
Goodfellow, I.; Shlens, J.; and Szegedy, C. 2015. Explaining
and Harnessing Adversarial Examples. In ICLR.
Goodfellow, I. J.; Shlens, J.; and Szegedy, C. 2014. Explain-
ing and harnessing adversarial examples. arXiv preprint
arXiv:1412.6572.
Imam, N. H.; and Vassilakis, V. G. 2019. A survey of attacks
against twitter spam detectors in an adversarial environment.
Robotics, 8(3): 50.

Jia, R.; and Liang, P. 2017. Adversarial examples for
evaluating reading comprehension systems. arXiv preprint
arXiv:1707.07328.
Jin, D.; Jin, Z.; Zhou, J. T.; and Szolovits, P. 2020. Is bert
really robust? a strong baseline for natural language attack on
text classification and entailment. In Proceedings of the AAAI
conference on artificial intelligence, volume 34, 8018–8025.
Li, J.; Ji, S.; Du, T.; Li, B.; and Wang, T. 2018. Textbugger:
Generating adversarial text against real-world applications.
arXiv preprint arXiv:1812.05271.
Li, L.; Ma, R.; Guo, Q.; Xue, X.; and Qiu, X. 2020. Bert-attack:
Adversarial attack against BERT using BERT. In EMNLP.
Ma, F.; Gao, J.; Suo, Q.; You, Q.; Zhou, J.; and Zhang, A.
2018a. Risk prediction on electronic health records with
prior medical knowledge. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery
& Data Mining, 1910–1919.
Ma, F.; Gao, J.; Suo, Q.; You, Q.; Zhou, J.; and Zhang, A.
2018b. Risk Prediction on Electronic Health Records with
Prior Medical Knowledge. In KDD.
Miyato, T.; Dai, A. M.; and Goodfellow, I. 2016. Adversarial
Training Methods for Semi-Supervised Text Classification.
In ICLR.
Narodytska, N.; and Kasiviswanathan, S. 2017. Simple
Black-Box Adversarial Attacks on Deep Neural Networks.
In 2017 IEEE Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), 1310–1318.
Papernot, N.; McDaniel, P.; Swami, A.; and Harang, R.
2016. Crafting adversarial input sequences for recurrent
neural networks. In MILCOM 2016-2016 IEEE Military
Communications Conference, 49–54. IEEE.
Pendlebury, F.; Pierazzi, F.; Jordaney, R.; Kinder, J.; and
Cavallaro, L. 2019. TESSERACT: Eliminating experimental
bias in malware classification across space and time. In
USENIX Security.
Pierazzi, F.; Pendlebury, F.; Cortellazzi, J.; and Cavallaro,
L. 2020. Intriguing Properties of Adversarial ML Attacks in
the Problem Space. 2020 IEEE Symposium on Security and
Privacy, 1332–1349.
Qi, L.; Wu, L.; P, C.; A, D.; Dhillon, I.; and Witbrock, M.
2019. Discrete Attacks and Submodular Optimization with
Applications to Text Classification. In SysML.
Samanta, S.; and Mehta, S. 2017. Towards crafting text
adversarial samples. arXiv preprint arXiv:1707.02812.
Shu, K.; Mahudeswaran, D.; Wang, S.; Lee, D.; and Liu, H.
2020. Fakenewsnet: A data repository with news content,
social context, and spatiotemporal information for studying
fake news on social media. Big data, 8(3).
Stringhini, G.; Kruegel, C.; and Vigna, G. 2010. Detecting
spammers on social networks. In Proceedings of the 26th
annual computer security applications conference, 1–9.
Suciu, O.; Coull, S. E.; and Johns, J. 2019. Exploring
adversarial examples in malware detection. In 2019 IEEE
Security and Privacy Workshops (SPW), 8–14. IEEE.

6760



Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.;
Goodfellow, I.; and Fergus, R. 2013. Intriguing properties
of neural networks. arXiv preprint arXiv:1312.6199.
van Ede, T.; Aghakhani, H.; Spahn, N.; Bortolameotti, R.;
Cova, M.; Continella, A.; van Steen, M.; Peter, A.; Kruegel,
C.; and Vigna, G. 2022. DeepCASE: Semi-Supervised
Contextual Analysis of Security Events. In IEEE S&P.
Wang, W. Y. 2017. " liar, liar pants on fire": A new
benchmark dataset for fake news detection. arXiv preprint
arXiv:1705.00648.
Wang, Y.; Audibert, J.-y.; and Munos, R. 2008. Algorithms
for Infinitely Many-Armed Bandits. In Koller, D.; Schu-
urmans, D.; Bengio, Y.; and Bottou, L., eds., Advances in
Neural Information Processing Systems, volume 21. Curran
Associates, Inc.
Wang, Y.; Han, Y.; Bao, H.; Shen, Y.; Ma, F.; Li, J.; and Zhang,
X. 2020. Attackability Characterization of Adversarial
Evasion Attack on Discrete Data. In Proceedings of the
26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, 1415–1425.
Yang, P.; Chen, J.; Hsieh, C.; Wang, J.; and Jordan, M. I. 2018.
Greedy Attack and Gumbel Attack: Generating Adversarial
Examples for Discrete Data. ArXiv, abs/1805.12316.
Yang, P.; Chen, J.; Hsieh, C.-J.; Wang, J.-L.; and Jordan,
M. I. 2020. Greedy Attack and Gumbel Attack: Generating
Adversarial Examples for Discrete Data. J. Mach. Learn.
Res., 21(43): 1–36.
Zang, Y.; Qi, F.; Yang, C.; Liu, Z.; Zhang, M.; Liu, Q.; and
Sun, M. 2020. Word-level Textual Adversarial Attacking as
Combinatorial Optimization. In ACL.
Zhang, R.; and Combes, R. 2021. On the Suboptimality of
Thompson Sampling in High Dimensions. In Ranzato, M.;
Beygelzimer, A.; Dauphin, Y.; Liang, P.; and Vaughan, J. W.,
eds., Advances in Neural Information Processing Systems,
volume 34, 8345–8354. Curran Associates, Inc.

6761


