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Abstract
Decision trees are widely used for their low computational
cost, good predictive performance, and ability to assess the
importance of features. Though often used in practice for fea-
ture selection, the theoretical guarantees of these methods
are not well understood. We here obtain a tight finite sample
bound for the feature selection problem in linear regression
using single-depth decision trees. We examine the statistical
properties of these “decision stumps” for the recovery of the
s active features from p total features, where s ≪ p. Our
analysis provides tight sample performance guarantees on
high-dimensional sparse systems which align with the finite
sample bound of O(s log p) as obtained by Lasso, improving
upon previous bounds for both the median and optimal split-
ting criteria. Our results extend to the non-linear regime as
well as arbitrary sub-Gaussian distributions, demonstrating
that tree based methods attain strong feature selection proper-
ties under a wide variety of settings and further shedding light
on the success of these methods in practice. As a byproduct of
our analysis, we show that we can provably guarantee recovery
even when the number of active features s is unknown. We
further validate our theoretical results and proof methodology
using computational experiments.

Introduction
Decision trees are one of the most popular tools used in ma-
chine learning. Due to their simplicity and interpretability,
trees are widely implemented by data scientist, both indi-
vidually, and in aggregation with ensemble methods such as
random forests and gradient boosting (Friedman 2001).

In addition to their predictive accuracy, tree based methods
are an important tool used for the variable selection problem:
identifying a relevant small subset of a high-dimensional fea-
ture space of the input variables that can accurately predict
the output. When the relationship between the variables is
linear, it has long been known that LASSO achieves the op-
timal sample complexity rate for this problem (Wainwright
2009a). In practice, however, tree-based methods have been
shown to be preferable as they scale linearly with the size of
the data and can capture non-linear relationships between the
variables (Xu et al. 2014).

Notably, various tree structured systems are implemented
for this variable selection task across wide-spanning domains.
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For example, tree based importance measures have been used
for prediction of financial distress (Qian et al. 2022), wireless
signal recognition (Li and Wang 2018), credit scoring (Xia
et al. 2017), and the discovery of genes in the field of bioin-
formatics (Breiman 2001; Bureau et al. 2005; Huynh-Thu
et al. 2012; Lunetta et al. 2004) to name a small fraction.

Despite this empirical success however, the theoretical
properties of these tree based methods for feature selection
are not well understood. While several papers have consid-
ered variants of this problem (see the Related Work section
for an overview), even in the simple linear case, the sample
complexity of the decision tree is not well-characterized.

In this paper, we attempt to bridge this gap and analyze
the variable selection properties of single-level decision trees,
commonly referred to as “decision stumps” (DSTUMP ). Con-
sidering both linear and non-linear settings, we show that
DSTUMP achieves nearly-tight sample complexity rates for a
variety of practical sample distributions. Compared to prior
work, our analysis is simpler and applies to different variants
of the decision tree, as well as more general function classes.

The remainder of the paper is organized as follows: in the
next section we introduce our main results on the finite sam-
ple guarantees of DSTUMP , in the Related Work section we
discuss important prior results in the field of sparse recovery
and where they fall flat, in the Algorithm Description section
we present the recovery algorithm, and in the subsequent
section we provide theoretical guarantees for the procedure
under progressively more general problem assumptions. The
proofs of these results are provided in the so-labeled section.
We supplement the theoretical results with computational
simulations in the Experimental Results and provide conclud-
ing remarks in the final section.

Our Results
We assume that we are given a dataset D = {(Xi,:, Yi)}ni=1
consisting of n samples from the non-parametric regression
model Yi =

∑
k fk(Xi,k) +Wi where i denotes the sample

number, Xi,: ∈ Rp is the input vector with corresponding
output Yi ∈ R, Wi ∈ R are i.i.d noise values and fk : R→ R
are univariate functions that are s-sparse: A set of univariate
functions {fk}k∈[p] is s-sparse on feature set [p] if there
exists a set S ⊆ [p] with size s = |S| ≪ p such that fk =
0 ⇐⇒ k /∈ S. Given access to (Xi,:, Yi)

n
i=1, we consider

the sparse recovery problem, where we attempt to reveal the
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set S with only a minimal number of samples. Note that this
is different from the prediction problem where the goal is to
learn the functions fk. In accordance with prior work (Han
et al. 2020; Kazemitabar et al. 2017; Klusowski 2020) we
assume the Xi,j are i.i.d draws from the uniform distribution
on [0, 1] with Gaussian noise, Wi ∼ N (0, 1). In the Main
Results section, we will discuss how this assumption can be
relaxed using our non-parametric results to consider more
general distributions.

For the recovery problem, we consider the DSTUMP al-
gorithm as first proposed by (Kazemitabar et al. 2017). The
algorithm, shown in Algorithm 1, fits a single-level deci-
sion tree (stump) on each feature using either the “median
split” or the “optimal split” strategy and ranks the features
by the error of the corresponding trees. The median split pro-
vides a substantially simplified implementation as we do not
need to optimize the stump construction, further providing
an improved run time over the comparable optimal splitting
procedure. Indeed, the median and optimal split have time
complexity at most O(np) and O(np log(n)) respectively.

In spite of this simplification, we show that in the widely
considered case of linear design, where the fk are linear,
DSTUMP can correctly recover S with a sample complexity
bound of O(s log p), matching the minimax optimal lower
bound for the problem as achieved by LASSO (Wainwright
2009a,b). This result is noteworthy and surprising since the
DSTUMP algorithm (and decision trees in general) is not
designed with a linearity assumption, as is the case with
LASSO . For this reason, trees are in general utilized for their
predictive power in a non-linear model, yet our work proves
their value in the opposite. We further extend these results
for non-linear models and general sub-Gaussian distributions,
improving previously known results using simpler analysis.
In addition, our results do not require the sparsity level s
to be known in advance. We summarize our main technical
results as follows:

• We obtain a sample complexity bound of O(s log p) for
the DSTUMP algorithm in the linear design case, matching
the optimal rate of LASSO and improving prior bounds
in the literature for both the median and optimal split.
This is the first tight bound on the sample complexity of
single-depth decision trees used for sparse recovery and
significantly improves on the existing results.

• We extend our results to the case of non-linear fk, obtain-
ing tighter results for a wider class of functions compared
to the existing literature. We further use these results to
generalize our analysis to sub-Gaussian distributions via
the extension to nonlinear fk.

• As a byproduct of our improved analysis, we show that
our results hold for the case where the number of active
features s is not known. This is the first theoretical guar-
antee on decision stumps that does not require s to be
known.

• We validate our theoretical results using numerical simu-
lations that show the necessity of our analytic techniques.

Related Work
While our model framework and the sparsity problem as
a whole have been studied extensively (Fan and Lv 2006;
Lafferty and Wasserman 2008; Wainwright 2009a,b), none
have replicated the well known optimal lower bound for the
classification problem under the given set of assumptions.
Our work provides improved finite sample guarantees on
DSTUMP for the regression problem that nearly match that
of LASSO by means of weak learners.

Most closely related to our work is that of (Kazemitabar
et al. 2017), which formulates the DSTUMP algorithm and
theoretical approach for finite sample guarantees of these
weak learners. Unlike our nearly tight result on the number
of samples required for recovery, (Kazemitabar et al. 2017)
provides a weakerO(s2 log p) bound when using the median
splitting criterion. We here demonstrate that the procedure
can obtain the near optimal finite sample guarantees by high-
lighting a subtle nuance in the analysis of the stump splitting
(potentially of independent interest to the reader); instead of
using the variance of one sub-tree as an impurity measure,
we use the variance of both sub-trees. As we will show both
theoretically and experimentally, this consideration is vital
for obtaining tight bounds. Our analysis is also more general
than that of (Kazemitabar et al. 2017), with applications to
both median and optimal splits, a wider class of functions fk,
and more general distributions.

In a recent work, (Klusowski and Tian 2021) provide an in-
direct analysis of the DSTUMP formulation with the optimal
splitting criterion, by studying its relation to the SIS algo-
rithm of (Fan and Lv 2006). Designed for linear models
specifically, SIS sorts the features based on their Pearson
correlation with the output, and has optimal sample complex-
ity for the linear setting. (Klusowski and Tian 2021) show
that when using the optimal splitting criterion, DSTUMP is
equivalent to SIS up to logarithmic factors, which leads to a
sample complexity of

n ≳ s log(p) · (log(s) + log(log(p))) .

This improves the results of (Kazemitabar et al. 2017), though
the analysis is more involved. A similar technique is also used
to study the non-linear case, but the conditions assumed on
fk are hard to interpret and the bounds are weakened. Indeed,
instantiating the non-parametric results for the linear case
implies a sub-optimal sample complexity rate of O(s2 log p).
In addition, (Klusowski and Tian 2021) describe a heuristic
algorithm for the case of unknown |S|, though they fail to
prove any guarantees on its performance.

In contrast, we provide a direct analysis of DSTUMP .
This allows us to obtain optimal bounds for both the median
and optimal split in the linear case, as well as improved
and generalized bounds in the non-linear case. Our novel
approach further allows us to analyze the case of unknown
sparsity level, as we provide the first formal proof for the
heuristic algorithm suggested in (Klusowski and Tian 2021)
and (Fan, Feng, and Song 2011). Compared to prior work, our
analysis is considerably simpler and applies to more general
settings.

Additionally, various studies have leveraged the simplicity
of median splits in decision trees to produce sharp bounds
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on mean-squared error for the regression problem with ran-
dom forests (Duroux, Roxane and Scornet, Erwan 2018; Klu-
sowski 2021). In each of these studies, analysis under the
median split assumption allows for improvements in both
asymptotic and finite sample bounds on prediction error for
these ensemble weak learners. In the present work, we ex-
tend this intuition to the feature selection problem for high-
dimensional sparse systems, and further emphasize the utility
of the median split even in the singular decision stump case.

Algorithm Description
Notation and Problem Setup
For mathematical convenience, we adopt matrix notation and
use X = (Xij) ∈ Rn×p and Y = (Yi) ∈ Rn to denote the
input matrix and the output vector respectively. We use Xi,:

and Xk to refer the i-th row and k-th column of the matrix X.
We will also extend the definition of the univariate functions
fk to vectors by assuming that the function is applied to each
coordinate separately: for v ∈ Rd, we define fk(v) ∈ Rd as
(fk(v))i = fk(vi).

We let E [·] and Var(·) denote the expectation and variance
for random variables, with Ê [·] and V̂ar (·) denoting their
empirical counterparts i.e, for a generic vector v ∈ Rd,

Ê [v] =

∑d
i=1 vi
d

and V̂ar (v) =
∑d
i=1(vi − Ê [v])2

d
.

We will also use [d] to denote the set {1, . . . , d}. Finally, we
let Unif(a, b) denote the uniform distribution over [a, b] and
use C, c > 0 to denote generic universal constants.

Throughout the paper, we will use the concept of sub-
Gaussian random variables for stating and proving our results.
A random variable Z ∈ R is called sub-Gaussian if there
exists a t for which E

[
e(Z/t)

2
]
≤ 2 and its sub-Gaussian

norm is defined as

∥Z∥ψ2
= inf

{
t > 0 : E

[
e(Z/t)

2
]
≤ 2

}
.

Sub-Gaussian random variables are well-studied and have
many desirable properties, (see (Vershynin 2018) for a com-
prehensive overview), some of which we outline below as
they are leveraged throughout our analysis.

(P1) (Hoeffding’s Inequality) If Z is a sub-Gaussian random
variable, then for any t > 0,

Pr (|Z − E [Z]| ≥ t) ≤ 2e−c(t/∥Z∥ψ2
)
2

.

(P2) If Z1, . . . Zn are independent sub-Gaussian random
variables, then

∑
Zi is also sub-Gaussian with norm

satisfying ∥
∑

Zi∥2ψ2
≤

∑
∥Zi∥2ψ2

.

(P3) If Z is a sub-Gaussian random variable, then so is Z −
E [Z] and ∥Z − E [Z]∥ψ2

≤ c ∥Z∥ψ2
.

DSTUMP Algorithm
We here present the recovery algorithm DSTUMP. For each
feature k ∈ [p], the algorithms fits a single-level decision tree
or “stump” on the given feature and defines the impurity of
the feature as the error of this decision tree. Intuitively, the

Algorithm 1: Scoring using DSTUMP

Input: X ∈ Rn×p, Y ∈ Rn, s ∈ N
Output: Estimate of S

1: for k ∈ {1, ..., p} do
2: τk = argsort(Xk)
3: for nL ∈ {1, . . . , n} do
4: nR = n− nL
5: Y k

L = (Yτk(1), ...Yτk(nL))
T

6: Y k
R = (Yτk(nL+1), ...Yτk(n))

T

7: impk,nL = nL
n V̂ar(Y k

L ) +
nR
n V̂ar(Y k

R)

8: if median split then
9: impk = impk,⌊n2 ⌋.

10: else
11: impk = minℓ impk,ℓ.
12: return τ = argsort(imp)

active features are expected to be better predictors of Y and
therefore have lower impurity values. Thus, the algorithm
sorts the features based on these values, and outputs the |S|
features with smallest impurity. A formal pseudo-code of our
approach is given in Algorithm 1.
Formally, for each feature k, the k-th column is sorted in
increasing order such that Xk

τk(1) ≤ Xk
τk(2) · · · ≤ Xk

τk(n)

with ties broken randomly. The samples are then split into
two groups: the left half, consisting of Xk

i ≤ Xk
τk(nL)

and
the right half consisting of Xk

i > Xk
τk(nL)

. Conceptually,
this is the same as splitting a single-depth tree on the k-
th column with a nL to nR ratio and collecting the sam-
ples in each group. The algorithm then calculates the vari-
ance of the output in each group, which represents the op-
timal prediction error for this group with a single value as
V̂ar

(
Y k
L

)
= mint

1
nL
·
∑

(Y k
L,i − t)2. The average of these

two variances is taken as the impurity. Formally,

impk,nL =
nL
n

V̂ar(Y k
L ) +

nR
n

V̂ar(Y k
R). (1)

For the median split algorithm, the value of nL is simply
chosen as ⌊n2 ⌋ or ⌈n2 ⌉, where as for the optimal split, the
value is chosen in order to minimize the impurity of the split.
Lastly, the features are sorted by their impurity values and
the |S| features with lowest impurity are predicted as S. In
the Unknown Sparsity Level section, we discuss the case of
unknown |S| and obtain an algorithm with nearly matching
guarantees.

Main Results
Linear Design
For our first results, we consider the simplest setting of linear
models with uniform distribution of the inputs. Formally, we
assume that there is a vector βk ∈ Rp such that fk(x) =
βk · x for all k. This is equivalent to considering the linear
regression model Y =

∑
k βkX

k +W . We further assume
that each entry of the matrix X is an i.i.d draw from the
uniform distribution on [0, 1]. This basic setting is important
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from a theoretical perspective as it allows us to compare with
existing results from the literature before extending to more
general contexts. This initial result of Theorem 0.1, provides
an upper bound on the failure probability for DSTUMP in this
setting.
Theorem 0.1. Assume that each entry of the input matrix X
is sampled i.i.d from a uniform distribution on [0, 1]. Assume
further that the output vectors satisfy the linear regression
model Y =

∑
k βkX

k+W where Wi are sampled i.i.d from
N(0, σ2

w). Algorithm 1 correctly recovers the active feature
set S with probability at least

1− 4se−c·n − 4pe
−c·n mink β

2
k

∥β∥22+σ2w .

for the median split, and with probability at least

1− 4se−c·n − 4npe
−c·n mink β

2
k

∥β∥22+σ2w .

for the optimal split.
Moreover, the above theorem provides a finite sample guar-
antee for the DSTUMP algorithm and does not make any
assumptions on the parameters or their asymptotic relation-
ship. In order to obtain a comparison with existing literature,
(Kazemitabar et al. 2017; Klusowski and Tian 2021; Wain-
wright 2009a,b), we consider these bounds in the asymptotic
regime mink∈S β

2
k ∈ Ω( 1s ) and ∥β∥2 ∈ O(1).

Corollary 0.2. In the same setting as Theorem 0.1, assume
that ∥β∥22 ∈ O(1) and mink∈S β

2
k ∈ Ω( 1s ). Then Algorithm

1 correctly recovers the active feature set S with high proba-
bility as long as n ≳ s log p.
The proof of the Corollary is presented in Appendix. The
above result shows that DSTUMP is optimal for recovery
when the data obeys a linear model. This is interesting con-
sidering tree based methods are known for their strength in
capturing non-linear relationships and are not designed with
a linearity assumption like LASSO. In the next section, we
further extend our finite sample bound analysis to non-linear
models.

Additive Design
We here consider the case of non-linear fk and obtain theo-
retical guarantees for the original DSTUMP algorithm. Our
main result is Theorem 0.3 stated below.
Theorem 0.3. Assume that each entry of the input matrix
X is sampled i.i.d from a uniform distribution on [0, 1]
and Y =

∑
k fk(X

k) + W where Wi are sampled i.i.d
from N (0, σ2

w). Assume further that each fk is monotone
and fk(Unif(0, 1)) is sub-Gaussian with sub-Gaussian norm
∥fk(Unif(0, 1))∥2ψ2

≤ σ2
k. For k ∈ S, define gk as

gk := E
[
fk(Unif(

1

2
, 1))

]
− E

[
fk(Unif(0,

1

2
))

]
(2)

and define σ2 as σ2 = σ2
w +

∑
k σ

2
k. Algorithm 1 correctly

recovers the set S with probability at least

1− 4se−cn − 4pe−cn
mink g

2
k

σ2

for the median split and

1− 4se−cn − 4npe−cn
mink g

2
k

σ2

for the optimal split.

Note that, by instantiating Theorem 0.3 for linear models, we
obtain the same bound as in Theorem 0.1 implying the above
bounds are tight in the linear setting.

The extension to all monotone functions in Theorem 0.1
has an important theoretical consequence: since the DS-
TUMP algorithm is invariant under monotone transformations
of the input, we can obtain the same results for any distribu-
tion of Xi,:. As a simple example, consider Xij ∼ N (0, 1)
and assume that we are interested in bounds for linear mod-
els. Define the matrix Z as Zij = FN (Xij) where FN (.)
denotes the CDF of the Gaussian distribution. Since the
CDF is an increasing function, running the DSTUMP algo-
rithm with (Z, Y ) produces the same output as running it
with (X, Y ). Furthermore, applying the CDF of a random
variable to itself yields a uniform random variable. There-
fore, Zij are i.i.d draws of the Unif(0, 1) distribution. Setting
fk(t) = βk · F−1

N (t), the results of Theorem 0.3 for (Z, Y )
imply the same bound as Theorem 0.1. Notably, we can ob-
tain the same sample complexity bound of O(s log p) for the
Gaussian distribution as well. In the appendix, we discuss
a generalization of this idea, which effectively allows us to
remove the uniform distribution condition in Theorem 0.3.

Unknown Sparsity Level

A drawback of the previous results are that they assume |S|
is given when, in general, this is not the case. Even if |S| is
not known however, Theorem 0.3 guarantees that the active
features are ranked higher than non-active ones in τ , i.e,
τ(k) < τ(k′) for all k ∈ S, k′ /∈ S. In order to recover S, it
suffices to find a threshold γ such that maxk∈S impk ≤ γ ≤
mink/∈S impk.

To solve this, we use the so called “permutation algo-
rithm” which is a well known heuristic in the statistics liter-
ature (Barber and Candès 2015; Chung and Romano 2013,
2016; Fan, Feng, and Song 2011) and was discussed (with-
out proof) by (Klusowski and Tian 2021) as well. Formally,
we apply a random permutation σ on the rows of X , ob-
taining the matrix σ(X) where σ(X)ij = Xσ(i),j , We then
rerun Algorithm 1 with σ(X) and Y as input. The random
permutation means that X and Y were “decoupled” from
each other and effectively, all of the features are now inac-
tive. We therefore expect mini,t impi(σ(X), y) to be close to
mink/∈S impk(X, y). Since this estimate may be somewhat
conservative, we repeat the sampling and take the minimum
value across these repetitions. A formal pseudocode is pro-
vided in Algorithm 2. The STUMPSCORE method is the same
algorithm as Algorithm 1, with the distinction that it returns
imp in Line 12
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Algorithm 2: Unknown |S|
Input: X ∈ Rn×p, Y ∈ Rn
Output: γ ∈ [maxk∈S impk,mink/∈S impk]

1: for t← 1, . . . , T − 1 do
2: σ(t) ← Random permutation on [n].
3: imp(t) ← STUMPSCORE(σ(t)(X), y)

return mini,t imp(t)i

Assuming we have used T repetitions in the algorithm, the
probability that mink/∈S impk(X, y) ≤ γ is at most 1

T . While
we provide a formal proof in the appendix, the main intuition
behind the result is that imp(t)i and impk′ for k′ /∈ S are
all the impurities corresponding to inactive features. Thus,
the probability that the maximum across all of these im-
purities falls in [p]\S is at most p−s

Tp ≤
1
T . Ensuring that

maxk∈S impk(X, y) ≤ γ involves treating the extra T impu-
rity scores as (T − 1)p extra inactive features. This means
that we can use the same results of Theorem 0.3 with p set to
Tp since our sample complexity bound is logarithmic in p.
The formal result follows with proof in the appendix.
Theorem 0.4. In the same setting as Theorem 0.3, let γ be
the output of Algorithm 2 and set Ŝ to be {k : impk ≤ γ}.
The probability that Ŝ = S is at least

1− T−1 − 4se−cn − 4Tpe−cn
mink g

2
k

σ2

for the median split and at least

1− T−1 − 4se−cn − 4nTpe−cn
mink g

2
k

σ2

for the optimal split.
We note that if we set T = nc for some constant c > 0, we
obtain the same O(s log p) as before.

Proofs
In this section, we prove Theorem 0.3 as it is the more general
version of Theorem 0.1, and defer with remainder of the
proofs to the appendix.

To prove that the algorithm succeeds, we need to show
that impk < impk′ for all k ∈ S, k′ /∈ S. We proceed by first
proving an upper bound impk for all k ∈ S

Lemma 0.5. In the setting of Theorem 0.3, for any active
feature k ∈ S, impk ≤ V̂ar (Y ) − mink g

2
k

720 with probability
at least

1− 4e−c·n − 4e−c·n·
mink g

2
k

σ2 .

Subsequently, we need to prove an analogous lower bound
on impk′ for all k′ /∈ S.
Lemma 0.6. In the setting of Theorem 0.3, for any inactive
feature k′ /∈ S, impk′ > V̂ar (Y )− mink g

2
k

720 with probability
at least

1− 4e−c·n·
mink g

2
k

σ2

for the median split and

1− 4ne−c·n·
mink g

2
k

σ2

for the optimal split.

Taking the union bound over all k, k′, Lemmas 0.5 and 0.6
prove the theorem as they show that impk < impk′ for all
k ∈ S, k′ /∈ S with the desired probabilities.

We now focus on proving Lemma 0.5. We assume without
loss of generality that fk is increasing 1. We further assume
that E

[
fk(X

k
i )
]
= 0 as DSTUMP is invariant under constant

shifts of the output. Finally, we assume that n > 5, as for
n ≤ 5, the theorem’s statement can be made vacuous by
choosing large c.
We will assume {nL, nR} = {⌊n2 ⌋, ⌈

n
2 ⌉} throughout the

proof; as such our results will hold for both the optimal and
median splitting criteria. As noted before, a key point for
obtaining a tight bound is considering both sub-trees in the
analysis instead of considering them individually. Formally,
while the impurity is usually defined via variance as in (1), it
has the following equivalent definition.

impk = V̂ar(Y )− nL · nR
n2

·
(
Ê
[
Y k
L

]
− Ê

[
Y k
R

])2

. (3)

The above identity is commonly used for the analysis of
decision trees and their properties (Breiman et al. 1983; Li
et al. 2019; Klusowski 2020; Klusowski and Tian 2021).
From an analytic perspective, the key difference between (3)
and (1) is that the empirical averaging is calculated before
taking the square, allowing us to more simply analyze the
first moment rather than the second.

Intuitively, we want to use concentration inequalities to
show that Ê

[
Y k
L

]
and Ê

[
Y k
R

]
concentrate around their ex-

pectations and lower bound |E
[
Y k
L

]
− E

[
Y k
R

]
|. This is

challenging however as concentration results typically re-
quire an i.i.d assumption but, as we will see, Y k

L,i are not
i.i.d. More formally, for each k, define the random vari-
able Xk

L ∈ RnL as (Xk
τk(1), . . . , X

k
τk(nL)

)T and thus Y k
L,i =

fk(X
k
L,i) +

∑
j ̸=k fj(X

j
τk(i)

) +Wτk(i). While the random
vectors Xj ̸=k and W have i.i.d entries, Xk

L was obtained
by sorting the coordinates of Xk. Thus, its coordinates are
non-identically distributed and dependent. To solve the first
problem, observe that the empirical mean is invariant under
permutation and we can thus randomly shuffle the elements
of Y k

L in order to obtain a vector with identically distributed
coordinates. Furthermore, by De Finetti’s Theorem, any ran-
dom vector with coordinates that are identically distributed
(but not necessarily independent), can be viewed as a mix-
ture of i.i.d vectors, effectively solving the second problem.
Formally, the following result holds.
Lemma 0.7 (Lemma 1 in (Kazemitabar et al. 2017)). let τ̃ :
[nL]→ [nL] be a random permutation on [nL] independent
of (X,W ) and define X̃k

L ∈ RnL as X̃k
L,i := Xk

L,τ̃(i). The

random vector X̃k
L is distributed as a mixture of uniform i.i.d

uniform vectors of size nL on [0,Θ] with Θ sampled from
Beta(nL + 1, nR).

Defining Ỹ k
L ∈ RnL as Ỹ k

L,i := Y k
L,τ̃(i), it is clear that

Ê
[
Ỹ k
L

]
= Ê

[
Y k
L

]
and therefore we can analyze Ỹ k

L instead

1The case of decreasing fk follows by a symmetric argument or
by mapping Xk → −Xk
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of Y k
L as

Ỹ k
L,i := fk(X̃

k
L,i) +

∑
j ̸=k

fj(X
j
τk◦τ̃(i)) +Wτk◦τ̃(i)

which, given Lemma 0.7, can be seen as a mixture of i.i.d
random variables.

Lemma 0.7 shows that there are two sources of random-
ness in the distribution of Ỹ k

L,i: the mixing variable Θ and
the sub-Gaussian randomness of X̃k

L|Θ and (Xj ̸=k,W ). For
the second source, it is possible to use standard concentration
inequalities to show that conditioned on Θ, Ê

[
Ỹ k
L

]
concen-

trates around E
[
Ỹ k
L,1|Θ

]
. We will formally do this in Lemma

0.9. Before we do this however, we focus on the first source
and how Θ affects the distribution of Ỹ k

L,i.
Since Θ is sampled from Beta(nL + 1, nR), we can use

standard techniques to show that it concentrates around 1
2 .

More formally, we can use the following lemma, the proof of
which is in the appendix.
Lemma 0.8. If n ≥ 5, we have Θ ∈ [ 14 ,

3
4 ] with probability

at least 1− 2e−cn.
Given the above result, we can analyze Ỹ k

L assuming Θ ∈
[1/4, 3/4]. In this case, we can use concentration inequali-
ties to show that with high probability, Ê

[
Ỹ k
L

]
concentrates

around E [fk(Unif(0,Θ)]). Since fk was assumed to be in-
creasing, this can be further bounded by E

[
fk(Unif(0, 3

4 )
]
).

Formally, we obtain the following result.
Lemma 0.9. Let k ∈ S be an active feature. For any θ ∈
[ 14 ,

3
4 ],

Pr
[
Ê
[
Ỹ k
L

]
− E

[
Ỹ k
L,1|Θ = θ

]
≥ t|Θ = θ

]
≤ 2e−cn

t2

σ2 .

Furthermore, letting f
k

a,b denote E [fk(Unif(a, b))],

Pr
[
Ê
[
Y k
L

]
≥ f

k

0, 34
+ gk/8

]
≤ 2e−c·n + 2e−c·n·

g2k
σ2 . (4)

Proof. For ease of notation, we will fix θ ∈ [ 14 ,
3
4 ] and

let the random variables X̂k
L and Ŷ k

L denote X̃k
L|Θ = θ

and Ỹ k
L |Θ = θ respectively. Recall that for all j, fk(X

j
i )

was sub-Gaussian with parameter σj by assumption. It is
straightforward to show (see the Appendix) that this means
fk(X̂

k
L,i)− E

[
f(X̂k

L,i)
]

is also sub-Gaussian with norm at

most C · σ2
j . Thus,∥∥∥Ŷ k

L,i

∥∥∥
ψ2

=

∥∥∥∥∥∥fk(X̂k
L,i) +

∑
j ̸=k

fj(X
j
τk◦τ̃(i)) +Wτk◦τ̃(i)

∥∥∥∥∥∥
2

ψ2

(i)
=

∥∥∥∥∥∥fk(X̂k
L,i) +

∑
j ̸=k

fj(X
j
i ) +Wi

∥∥∥∥∥∥
2

ψ2

(ii)

≤
∥∥∥fk(X̂k

L,i)
∥∥∥2
ψ2

+
∑
j ̸=k

∥∥∥fj(Xj
i )
∥∥∥2
ψ2

+ ∥Wi∥2ψ2

≤ C · σ2
k +

∑
j ̸=k

σ2
j + σ2

w ≤ C · σ2.

In the above analysis, (i) follows from the independence as-
sumption of (X̂k

L, X
j ̸=k,W ) together with the i.i.d assump-

tion on (Xj ̸=k
i ,Wi). As for (ii), it follows from (P2) together

with the independence assumption of (X̂k
L, X

j ̸=k,W ). Prop-

erty (P3) further implies that
∥∥∥Ŷ k

L,i − E
[
Ŷ k
L,i

]∥∥∥2
ψ2

is upper

bounded by C · σ2, proving the first Equation in the Lemma.
Now, using Hoeffding’s inequality, we obtain

Pr
[
Ê
[
Ŷ k
L

]
− E

[
Ŷ k
L,i

]
≥ gk/8

]
≤ 2e−c·n·

g2k
σ2 .

Using Lemma 0.8 with Pr(A) ≤ Pr(B) + Pr(A|BC) for
any two events A,B, we obtain

Pr
[
Ê
[
Y k
L

]
− E

[
Ŷ k
L,i

]
≥ gk/8

]
≤ 2e−cṅ + 2e−c·n·

g2k
σ2 .

Note however that E
[
Ŷ k
L,i

]
= f

k

0,θ which as we show in the

appendix, can further be upper bounded by f
k

0, 34
, concluding

the proof.

Using the symmetry of the decision tree algorithm, we can
further obtain that

Pr
[
Ê
[
Y k
R

]
≥ f

k
1
4 ,1
− gk/8

]
≤ 2e−c·n + 2e−c·n·

g2k
σ2 (5)

from (4) with the change of variable Xk → −Xk and fk =
−fk. Taking union bound over (4) and (5), it follows that

with probability at least 1− 4e−c·n − 4e−c·n·
g2k
σ2 ,

Ê
[
Y k
R

]
− Ê

[
Y k
L

]
≥ f

k
1
4 ,1
− f

k

0, 34
− gk/4.

As we show in the appendix however, a simple application
of conditional expectations implies f

k
1
4 ,1
− f

k

0, 34
≥ gk/3.

Therefore, with probability at least 1− 4e−c·n − 4e−c·n·
g2k
σ2 ,

we have Ê
[
Y k
R

]
− Ê

[
Y k
L

]
≥ gk

12 . Assuming n ≥ 5, we can
further conclude that nL·nRn2 ≥ 1

5 which together with (3),
proves the lemma.

Experimental Results
In this section, we provide further justification of our theo-
retical results in the form of simulations on the finite sample
count for active feature recovery under different regimes, as
well as the predictive power of a single sub-tree as compared
to the full tree. We additionally contrast DSTUMP with the
widely studied optimal LASSO .

We first validate the result of Theorem 0.1 and consider
the linear design with p = 200 and design matrix entries
sampled i.i.d. from U(0, 1) with additive Gaussian noise
N (0, .1). Concretely, we examine the optimal number of
samples required to recover approximately 95% of the active
features s. This is achieved by conducting a binary search on
the number of samples to find the minimal such value that re-
covers the desired fraction of the active feature set, averaged
across 25 independent replications. In the leftmost plot of
Figure 1, we plot the sample count as a function of varying
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Figure 1: Optimal sample count to recover 95% of the active features where design matrix samples i.i.d from U(−1, 1) or
N (0, 1) with additive Gaussian noise N (0, 0.1), comparing three methods: DSTUMP with optimal split, DSTUMP with median
split, and LASSO .

sparsity levels s ∈ [5, 100] for DSTUMP with a median split,
DSTUMP with the optimal split, as well as LASSO for bench-
marking (with penalty parameter selected through standard
cross-validation). By fixing p, we are evaluating the depen-
dence of n on the sparsity level s alone. The results here
validate the theoretical O(s log p) bound that nearly matches
the optimal LASSO . Also of note, the number of samples re-
quired by the median splitting is less than that of the optimal.
Thus, in the linear setting, we see that DSTUMP with median
splitting is both more simplistic and computationally inex-
pensive. This optimal bound result is repeated with Gaussian
data samples in the right most plot of Figure 1. Notably, in
this setting the optimal split decision stumps perform better
than the median as it demonstrates their varied utility under
different problem contexts.

We additionally reiterate that the prior work of
(Kazemitabar et al. 2017) attempted to simplify the analysis
of the sparse recovery problem using DSTUMP by examin-
ing only the left sub-tree, which produced the non-optimal
O(s2 log p) finite sample bound. To analyze the effect of this
choice, the middle plot of Figure 1 presents the optimal sam-
ple recovery count when using only the left sub-tree subject
to the additive model of Theorem 0.1. In accordance with
our expectation and previous literature’s analysis, we see a
clear quadratic relationship between n and s when fixing the
feature count p.

Overall, these simulations further validate the practical-
ity and predictive power of decisions stumps. Benchmarked
against the optimal LASSO , we see a slight decrease in
performance but a computational reduction and analytic sim-
plification.

Conclusion
In this paper, we presented a simple and consistent feature
selection algorithm in the regression case with single-depth
decision trees, and derived the finite-sample performance

guarantees in a high-dimensional sparse system. Our theoret-
ical results demonstrate that this very simple class of weak
learners is nearly optimal compared to the gold standard
LASSO . We have provided strong theoretical evidence for
the success of binary decision tree based methods in practice
and provided a framework on which to extend the analysis of
these structures to arbitrary height, a potential direction for
future work.
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