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Abstract

We consider the problem of constrained Markov decision pro-
cess (CMDP) in continuous state actions spaces where the
goal is to maximize the expected cumulative reward sub-
ject to some constraints. We propose a novel Conservative
Natural Policy Gradient Primal Dual Algorithm (CNPGPD)
to achieve zero constraint violation while achieving state of
the art convergence results for the objective value function.
For general policy parametrization, we prove convergence of
value function to global optimal upto an approximation error
due to restricted policy class. We improve the sample com-
plexity of existing constrained NPGPD algorithm. To the best
of our knowledge, this is the first work to establish zero con-
straint violation with Natural policy gradient style algorithms
for infinite horizon discounted CMDPs. We demonstrate the
merits of proposed algorithm via experimental evaluations.

Introduction
Reinforcement learning problem is formulated as a Markov
Decision Process (MDP) and can be solved using different
algorithms in the literature (Sutton 1988). To deal with the
scalability issue to the the large state and action spaces, pol-
icy parametrization is widely used (Ding et al. 2020; Xu,
Liang, and Lan 2021; Agarwal et al. 2020). The problem be-
comes challenging when we have constraints and is called
constrained MDPs (CMDPs). The problem is popular across
various application domains such as robotics, communica-
tions, computer vision, autonomous driving, etc. (Arulku-
maran et al. 2017; Kiran et al. 2021). Mathematically, the
problem is sequential in nature, agent observes the state,
takes an action, and then transitions to next state. Further, an
agent also needs to satisfy a set of constraints as well such
as safety constraints, power constraints and maneuver con-
straints. CMDPs are challenging to solve specially in large
state action spaces (Ding et al. 2020; Xu, Liang, and Lan
2021) which is the focus of our work.

The constraint violations could be catastrophic in appli-
cations such as in power systems (Vu et al. 2020) or au-
tonomous vehicle control (Wen et al. 2020). In the liter-
ature, various algorithms are proposed to solve CMDP in
large actions spaces in a model free manner (See Table 1 for
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comparisons). The main performance metric here is the sam-
ple complexity, which is the number of samples required to
achieve ϵ-optimal objective and ϵ-constraint violation. How-
ever, there doesn’t exist literature which gives zero violation
gurantee on large state and action space. Hence, we ask this
question: “Is it possible to achieve zero constraint violations
for CMDP problems in large state action spaces while solv-
ing in a model free manner?”

We answer this question in an affirmative sense in this
work. We proposed a novel Conservative Natural Policy
Gradient Primal Dual Algorithm (C-NPG-PDA) in this pa-
per. We utilize a novel idea of conservative constraints to
policy gradient algorithms and establish convergence guar-
antees of global optima for general policy parametrization.
Our contributions are summarized as follows.

• We propose a Natural Policy Gradient algorithm which
achieves zero constraint violation for constrained
MDPs in large state and action space. The proposed
algorithm also converges to the neighborhood of the
global optima with general parametrization. It is chal-
lenging to establish the zero violation result with gen-
eral parametrization due to the lack of strong duality, and
hence we perform a novel analysis to establish a bound
between the conservative and original problems.

• We show that even if we don’t utilize the conservative
idea (proposed in this work), we are able to improve the

sample complexity from O
(

1
ϵ6

)
(Ding et al. 2020)[The-

orem 3] to O
(

1
ϵ4

)
. To achieve this, we utilize the first or-

der stationary result from (Liu et al. 2020) to bound the
NPG update direction. However, due to the introduction
of the constraint and the Lagrange function, the update
of the Lagrange multiplier needs to be considered in the
analysis.

• We perform initial proof of concepts experiments of the
proposed algorithm with a random CMDP model and
validate the convergence of the objective, with zero con-
straint violations.

1The detailed dependence on (1−γ) is not shown in the original
paper.

2In (Xu, Liang, and Lan 2021), the authors used a two layer
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Parametrization Algorithm Sample Complexity Constraint violation Generative Model

Softmax PMD-PD (Liu et al. 2021) O
(
1/ϵ3

)
1 Zero No

PD-NAC (Zeng, Doan, and Romberg 2022) O
(
1/ϵ6

)
1 Zero No

NPG-PD (Ding et al. 2020) O
(
1/(1− γ)5ϵ2

)
Õ(ϵ) Yes

CRPO (Xu, Liang, and Lan 2021) O
(
1/(1− γ)7ϵ4

)
Õ(ϵ) Yes

General NPG-PD (Ding et al. 2020) O
(
1/(1− γ)8ϵ6

)
Õ(ϵ) Yes

CRPO (Xu, Liang, and Lan 2021) O
(
1/(1− γ)13ϵ6

)
2 O(ϵ) Yes

C-NPG-PDA (This work, Theorem 1) Õ

(
1/(1− γ)6ϵ4

)
Zero No

Lower bound (Vaswani, Yang, and Szepesvári 2022) Ω̃

(
1/(1− γ)5ϵ2

)
Zero N/A

Table 1: This table summarizes the different state of the art policy-based algorithms available in the literature with softmax
or general Parametrization for CMDPs. We note that the proposed algorithm in this work is able to achieve the best sample
complexity among them all while achieving zero constraint violation as well.

Related Work
Policy Gradient for Reinforcement Learning: Reinforce-
ment Learning algorithms can be divided into policy-based
or value-based algorithm. Thanks to the Policy Gradient
Theorem (Sutton et al. 2000), it is possible to obtain the gra-
dient ascent direction for the standard reinforcement learn-
ing with the policy parameterization. However, in general,
the objective in the reinforcement learning is non-convex
with respective to the parameters (Agarwal et al. 2020),
which makes the theory of global convergence difficult to
derive and previous works (Papini et al. 2018; Xu, Gao, and
Gu 2020a,b) are focused on the first order convergence. Re-
cently, there is a line of interest on the global convergence re-
sult for reinforcement learning. The authors in (Zhang et al.
2020) apply the idea of escaping saddle points to the pol-
icy gradient and prove the convergence to the local optima.
Further, authors in (Agarwal et al. 2020) provide provable
global convergence result for direct parameterization and
softmax parameterization with convergence rate O(1/

√
T )

and sample complexity O(1/ϵ6) in the tabular setting. For
the restrictive policy parameterization setting, they propose
a variant of NPG, Q-NPG and analyze the global conver-
gence result with the function approximation error for both
NPG and Q-NPG. (Mei et al. 2020) improves the conver-
gence rate for policy gradient with softmax parameterization
from O(1/

√
t) to O(1/t) and shows a significantly faster

linear convergence rate O(exp(−t)) for the entropy regular-
ized policy gradient. However, no sample complexity result
is achievable because policy evaluation has not been consid-

neural network with m as the width of the neural network. Larger
width gives improved function approximation while increasing
sample complexity. In its Theorem 2, if we choose m = O(T 4),
then it gives ϵ-convergence to the global optima and the sample
complexity is T · Kin = O(1/(1 − γ)13ϵ6). We note that this is
the best choice (for sample complexity) that gives the error as ϵ.

ered. With actor-critic method (Konda and Tsitsiklis 2000),
(Wang et al. 2019) establishes the global optimal result for
neural policy gradient method. (Liu et al. 2020) proposes a
general framework of the analysis for policy gradient type
of algorithms and gives the sample complexity for PG, NPG
and the variance reduced version of them.

Policy Gradient for Constrained Reinforcement
Learning: Although there exists quite a few studies for
the un-constrained reinforcement learning problems, the
research for the constrained setting is in its infancy and
summarized in Table 1. The most famous method for the
constrained problem is to use a primal-dual based algo-
rithm. With the softmax-parametrization, (Liu et al. 2021)
proposed policy mirror descent-primal dual (PMD-PD)
algorithm to achieve zero constraint violation and achieve
O(1/ϵ3) sample complexity. (Zeng, Doan, and Romberg
2022) proposed an Online Primal-Dual Natural Actor-Critic
Algorithm and achieves zero constraint violation with
O(1/ϵ6) sample complexity without the generative model.
(Ding et al. 2020) proposed a primal-dual Natural Policy
Gradient algorithm for both the softmax parametrization
and general parametrization. However, the sample com-
plexity for general case in their paper is O(1/ϵ6) which is
quite high. (Xu, Liang, and Lan 2021) propose a primal
approach policy-based algorithm for both the softmax
parametrization and function approximation case. However,
none of them achieve the zero constraint violation for
the general parametrization case. As seen in Table 1 we
achieve the best result for sample complexity in CMDP with
general parametrization while also achieving zero constraint
violation.

Problem Formulation
We consider an infinite-horizon discounted Markov Deci-
sion Process M defined by the tuple (S,A,P, r, g, γ, ρ),
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where S and A denote the state and action space, respec-
tively. In this paper, we focus on large station and action
space, which means that the policy parametrization may not
be fully sufficient. P : S ×A → [0, 1] denotes the transition
probability distribution from a state-action pair to another
state. r : S × A → ∆S denotes the reward for the agent
and gi : S × A → [−1, 1], i ∈ [I] defines the ith constraint
function for the agent. γ ∈ (0, 1) is the discounted factor
and ρ : S → [0, 1] is the initial state distribution.

Define a joint stationary policy π : S → ∆A that maps a
state s ∈ S to a probability distribution of actions defined as
∆A with a probability assigned to each action a ∈ A. At the
beginning of the MDP, an initial state s0 ∼ ρ is given and
agent makes a decision a0 ∼ π(·|s0). The agent receives its
reward r(s0, a0) and constraints gi(s0, a0), i ∈ [I]. Then
it moves to a new state s1 ∼ P(·|s0, a0). We define the
reward value function Jr(π) and constraint value function
Jgi(π), i ∈ [I] for the agent following policy π as a dis-
counted sum of reward and constraints over infinite horizon

V π
r (s) = E

[ ∞∑
t=0

γtr(st, at)

∣∣∣∣s0 = s

]
,

V π
gi(s) = E

[ ∞∑
t=0

γtgi(st, at)

∣∣∣∣s0 = s

]
.

(1)

where at ∼ π(·|st) and st+1 ∼ P(·|st, at). Denote Jπ
r and

Jπ
gi as the expected value function w.r.t. the initial distribu-

tion such as

Jr(π) = Es0∼ρ[V
π
r (s0)],

and Jgi(π) = Es0∼ρ[V
π
gi(s0)].

(2)

The agent aims to maximize the reward value function and
satisfies constraints simultaneously. Formally, the problem
can be formulated as

max
π

Jr(π)

s.t. Jgi(π) ≥ 0, ∀i ∈ [I].
(3)

Define π∗ as the optimal-policy for the above problem. Here,
we introduce the Slater Condition, which means the above
problem is strictly feasible.

Assumption 1 (Slater Condition). There exists a φ > 0 and
π̄ that Jgi(π̄) ≥ φ, ∀i ∈ [I].

Proposed Approach
We consider a policy-based algorithm on this problem and
parameterize the policy π as πθ for some parameter θ ∈ Θ
such as softmax parametrization or a deep neural network.
In this section, we first give the form of the true gradient and
introduce some properties of it. Then, we propose the Con-
servative Natural Policy Descent Primal-Dual Algorithm (C-
NPG-PD), where the conservative idea is utilized to achieve
zero constraint violation.

Gradient of Value Function and Properties
For the analysis of the convergence for the proposed algo-
rithm, it is necessary to establish the form of the true and

its properties. Here, we utilize the Policy Gradient Theorem
and write the gradient for the objective function as

∇θJr(πθ) =

Eτ∼p(τ |θ)

[ ∞∑
t=0

∇θ log(πθ(at|st))
( ∞∑

h=t

γhr(sh, ah)

)]
(4)

The computation of the gradient is well known and the
proof is removed to the Appendix for completeness. We note
that the log-policy function log πθ(a|s) is also called log-
likelihood function in statistics (Kay 1997) and we make the
following assumption.
Assumption 2. The log-likelihood function is G-Lipschitz
and M -smooth. Formally,

∥∇θ log πθ(a|s)∥ ≤ G ∀θ ∈ Θ, ∀(s, a) ∈ S ×A,

∥∇θ log πθ1(a|s)−∇θ log πθ2(a|s)∥ ≤ M∥θ1 − θ2∥
∀θ1, θ2 ∈ Θ, ∀(s, a) ∈ S ×A.

(5)

Remark 1. The Lipschitz and smoothness properties for the
log-likelihood are quite common in the field of policy gradi-
ent algorithm (Agarwal et al. 2020; Zhang et al. 2021; Liu
et al. 2020). Such properties can also be verified for simple
parametrization such as Gaussian policy.

The following two lemmas give the property of the value
functions and its gradient, which are useful in the conver-
gence proof. The detailed proof can be found in Appendix.
1

Lemma 1. Under Assumption 2, both the objective function
Jπθ
r and the constraint function Jπθ

gi are LJ -smooth w.r.t. θ.
Formally,

∥∇θJr(θ1)−∇θJr(θ2)∥2 ≤ LJ∥θ1 − θ2∥2 ∀θ1, θ2 ∈ Θ
(6)

where LJ = M
(1−γ)2 + 2G2

(1−γ)3

Lemma 2. Under Assumption 2, both the gradient of ob-
jective function ∇θJ

πθ
r and that of the constraint function

∇θJ
πθ

gi are bounded. Formally,

∥∇θJr(θ)∥2 ≤ G

(1− γ)2

∥∇θJgi(θ)∥2 ≤ G

(1− γ)2
∀i ∈ [I].

Natural Policy Gradient Primal-Dual Method with
Zero Constraint Violation
In order to achieve zero constraint violation, we consider the
conservative stochastic optimization framework proposed in
(Akhtar, Bedi, and Rajawat 2021) and define the conserva-
tive version of the original problem as

max
π

Jr(π)

s.t. Jgi(π) ≥ κ, ∀i ∈ [I]
(7)

where κ > 0 is the parameter to control the constraint vi-
olation which we will explicitly mention in Theorem 1 in

1The appendix is uploaded to https://arxiv.org/abs/2206.05850
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Sec. . The idea here to achieve zero constraint violation is
to consider the tighter problem to make it less possible to
make violation for the original problem. Notice that it is ob-
vious that κ must be less than 1

1−γ to make the conservative
problem still feasible. Combining this idea, we introduce the
Natural Policy Gradient method. The NPG Method utilizes
the Fisher information matrix defined as

Fρ(θ) = Es∼d
πθ
ρ
Ea∼πθ

[∇θ log πθ(a|s)∇θ log πθ(a|s)T ]
(8)

where dπρ is the state visitation measure defined as

dπρ := (1− γ)Es0∼ρ

[ ∞∑
t=0

γtPrπ(st = s|s0)
]

(9)

We define the Lagrange function as

JL(πθ,λ) = Jr(πθ) +
∑
i∈[I]

λi(πθ)Jgi(πθ) (10)

For simplicity, we denote Jr(θ), Jgi(θ), JL(θ,λ) as the
short for Jr(πθ), Jgi(πθ), JL(πθ,λ) and the Natural Policy
Gradient method is written as

θk+1 = θk + η1Fρ(θ
k)†∇θJL(θ

t,λk)

λk+1
i = P(0,σλ]

(
λk
i − η2

(
Jgi(θk)− κ

)) (11)

For the projection of the Lagrange multiplier, we make the
following assumption.
Assumption 3. The Lagrange multiplier λi is bounded. For-
mally, λi ∈ (0,Λ], ∀i ∈ [I]

Remark 2. For the direct parametrization or softmax
parametrization, it can be proved that the Lagrange mul-
tiplier is bounded by utilizing the strong duality. However,
strong duality doesn’t hold for the general parametrization
(see Assumption 6). To prove the global convergence the
boundedness of the Lagrange multiplier is required in the
convergence analysis of the global convergence (Zeng et al.
2021), and a similar assumption has been made in (Zeng
et al. 2021).

We note that the pseudo-inverse of the Fisher information
matrix is difficult to calculate. However, the NPG update di-
rection can be related to the compatible function approxima-
tion error defined as

Ldπ
ρ ,π(ω, θ,λ) = Es∼dπ

ρ
Ea∼π(·|s)[(

∇θ log πθ(a|s) · (1− γ)ω −Aπθ

L,λ(s, a)

)2] (12)

Given a fixed λk and θk, it can be proved that the minimizer
ωk
∗ of Ldπ

ρ ,π(ω, θ
k,λk) is exact the NPG update direction.

Thus, it is possible to utilize the Stochastic Gradient Descent
(SGD) algorithm to achieve the minimizer ωk

∗ . The gradient
of Ldπ

ρ ,π(ω, θ
k,λk) can be computed as

∇ωLdπ
ρ ,π(ω, θ

k,λk) = 2(1− γ)∇θ log π
k
θ (a|s) ·Es∼dπ

ρ

Ea∼π(·|s)

[
∇θ log π

k
θ (a|s) · (1− γ)ω −A

πk
θ

L,λk(s, a)

]
(13)

Where A
πk
θ

L,λk(s, a) is the advantage function for the La-
grange function and is defined as

A
πk
θ

L,λk(s, a) =

[
Q

πk
θ

r (s, a)− V
πk
θ

r (s)

]
+

∑
i∈[I]

λi
k

[
Q

πk
θ

gi (s, a)− V
πk
θ

gi (s)

] (14)

However, it is challenging to achieve the exact value of the

advantage function and thus we estimate it as Â
πk
θ

L,λk(s, a)

using the following procedure. The stochastic version of gra-
dient can be written as

∇̂ωLdπ
ρ ,π(ω, θ

k,λk) = 2(1− γ)∇θ log π
k
θ (a|s)·[

∇θ log π
k
θ (a|s) · (1− γ)ω − Â

πk
θ

L,λk(s, a)

] (15)

Based on the stochastic version of the gradient mentioned
above, we propose the Natural Gradient Descent Primal
Dual with Zero Violation in Algorithm 1. In line 1, we ini-
tialize the parameter θ and Lagrange multiplier λ. From
Line 3 to Line 10, we use SGD to compute the Natural Pol-
icy gradient. From Line 11 to Line 15, we estimate an un-
biased value function for constraint. Finally, in Line 16, we
perform the conservative primal-dual update.

Convergence Rate Results
Before stating the convergence result for the policy gradi-
ent algorithm, we describe the following assumptions which
will be needed for the main result.
Assumption 4. For all θ ∈ Rd, the Fisher information ma-
trix induced by policy πθ and initial state distribution ρ sat-
isfies

Fρ(θ) = Es∼d
πθ
ρ
Ea∼πθ

[∇θ log πθ(a|s)∇θ log πθ(a|s)T ]
⪰ µF · Id

(18)
for some constant µF > 0

Remark 3. The positive definiteness assumption is stan-
dard in the field of policy gradient based algorithms (Kakade
2001; Peters and Schaal 2008; Liu et al. 2020; Zhang et al.
2020). A common example which satisfies such assumption
is Gaussian policy with mean parameterized linearly (See
Appendix B.2 in (Liu et al. 2020)).
Assumption 5. Define the transferred function approxima-
tion error as below

Ldπ∗
ρ ,π∗(ω, θ,λ) = Es∼dπ∗

ρ
Ea∼π∗[(

∇θ log πθ(a|s) · (1− γ)ω −Aπθ

L,λ(s, a)

)2] (19)

We assume that this error satisfies Ldπ∗
ρ ,π∗(ω

θ,λ
∗ , θ,λ) ≤

ϵbias for any θ ∈ Θ,λ ∈ Λ, where ωθ,λ
∗ is given as

ωθ,λ
∗ = argmin

ω
L
dπθ
ρ ,πθ (ω, θ,λ) = argmin

ω
Es∼d

πθ
ρ
Ea∼πθ[(

∇θ log πθ(a|s) · (1− γ)ω −Aπθ

L,λ(s, a)

)2]
(20)
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Algorithm 1: Conservative Natural Gradient Descent
Primal-Dual Algorithm (C-NPG-PDA)
Input: Sample size K, SGD learning iteration N , Initial dis-
tribution ρ. Discounted factor γ.
Parameter: Step-size η1, η2, SGD learning rate α, Slater
variable φ, Conservative variable κ
Output: θk, k ∈ [0,K − 1]

1: Initialize λ1 = 0, θ1 = 0, ω0 = 0
2: for k = 1, 2, ...,K do
3: for n = 1, 2, ..., N do
4: Sample s ∼ d

π
θk

ρ and a ∼ πθk(·|s)
5: Sample Qπk

θ (s, a) and V πk
θ (s) for reward function

and constraint functions following Algorithm 2

6: Estimate the Advantage Function Â
πk
θ

L,λk(s, a) fol-
lowing Eq. (14)

7: Estimate SGD gradient ∇̂ωLdπ
ρ ,π(ωn, θ

k,λk) fol-
lowing Eq. (15)

8: SGD update ωn+1 = ωn−α·∇̂ωLdπ
ρ ,π(ωn, θ

k,λk)
9: end for

10: Compute NPG update direction as ω = 1
N

∑N
n=1 ωn

11: for n = 1, 2, ..., N do
12: Sample s ∼ ρ and a ∼ πθk(·|s)
13: Sample constraint value functions V π

θk

gi,n (s) follow-
ing Algorithm 2

14: end for
15: Estimate expected constraint value function

Ĵgi(πk
θ ) =

1
N

∑N
n=1 V

π
θk

gi,n , ∀i ∈ [I]

16: Update the primal and dual variable as

θk+1 = θk + η1ω (16)

λk+1
i = P[0,σλ]

(
λk
i − η2(Ĵgi(πθk)− κ)

)
, ∀i ∈ [I]

(17)

17: end for

It can be shown that ωθ
∗ is the exact Natural Policy Gradient

(NPG) update direction.

Remark 4. By Eq. (19) and (20), the transferred function
approximation error expresses an approximation error with
distribution shifted to (dπ

∗

ρ , π∗). With the softmax parame-
terization or linear MDP structure (Jin et al. 2020), it has
been shown that ϵbias = 0 (Agarwal et al. 2020). When pa-
rameterized by the restricted policy class, ϵ > 0 due to πθ

not containing all policies. However, for a rich neural net-
work parameterization, the ϵbias is small (Wang et al. 2019).
Similar assumption has been adopted in (Liu et al. 2020) and
(Agarwal et al. 2020).

Global Convergence For NPG-PD Method
To analyze the global convergence of the proposed algo-
rithm, we firstly demonstrate the convergence of Lagrange
function for the conservative problem, which is shown in
the following Lemmas.

Algorithm 2: Estimate Value Function for objective or con-
straint function
Input: starting state and action s, a, reward function r or
constraint function gi (Here we denote as function h for sim-
plicity), policy π, discounted factor γ.
Output: state action value function Q̂H(s, a) or state value
function V̂h(s)

1: Estimate state action value function as Q̂h(s, a) =∑T−1
t=0 h(st, at), where s0 = s,a0 = a,at ∼ π(·|st),

st+1 ∼ P (·|st, at),T ∼ Geo(1− γ)

2: Estimate state value function as V̂h(s) =∑T−1
t=0 h(st, at), where s0 = s,at ∼ π(·|st),st+1 ∼

P (·|st, at),T ∼ Geo(1− γ)

Lemma 3. Suppose a general primal-dual gradient ascent
algorithm updates the parameter as

θk+1 = θk + ηωk

λk+1
i = P(0,Λ]

(
λk
i − η2

(
Jgi(θk)− κ

)) (21)

When Assumptions 2 and 5 hold, we have

1

K

K∑
k=1

E

(
JL(π

∗
θ,κ,λ

k)− JL(π
k
θ ,λ

k)

)
≤

√
ϵbias

1− γ
+

Mη1
2K

K−1∑
k=0

E∥ωk∥2 + log(|A|)
η1K

+
G

K

K∑
k=1

E∥(ωk − ωk
∗ )∥2

(22)

where ωk
∗ := ωθk

∗ and is defined in Eq. (20)
To prove the above Lemma, we extend the result in (Liu

et al. 2020)[Proposition 4.5] to our setting. The extended re-
sult is stated and proved in Appendix. Then, to prove the
global convergence of the Lagrange function, it is sufficient
to bound G

K

∑K
k=1 E∥(ωk−ωk

∗ )∥2 and Mη1

2K

∑K−1
k=0 E∥ωk∥2

in Lemma 3. The detailed proof of them can be found in
Appendix. At a high level, the first term is the difference be-
tween the estimated and exact NPG update direction, which
can be bounded using the convergence of SGD procedure.
The second term is the bound of the norm of estimated gra-
dient. To bound the second term, we need the following first-
order convergence result.
Lemma 4. In the NPG update process, if we take η1 =

µ2
F

4G2LJ
, then we have the first order stationary as

1

K

K−1∑
k=0

E∥∇θJL(θ
k,λk)∥22 ≤ 16(2 + 3IΛ)G4LJ

µ2
FK(1− γ)

(23)

+
8(µ2

F + 2G4)

µFN

[
2[
G2(1 + IΛ)

µF (1− γ)2
+

2

(1− γ)2
]
√
d

+
G2(1 + IΛ)

µF (1− γ)2

]2
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Moreover, for any given ϵ > 0, if we take K = O
(

IΛ
(1−γ)4ϵ

)
and N = O

(
I2Λ2

(1−γ)4ϵ

)
, we have

1

K

K−1∑
k=0

E∥∇θJL(θ
k,λk)∥22 ≤ ϵ (24)

Remark 5. The basic idea of the proof for first-order sta-
tionary is from (Liu et al. 2020). However, due to the in-
troduction of the constraints, we need to further consider
the update of the dual variable. The detailed proof can be
founded in Appendix.

Given the above Lemmas, it is sufficient to achieve the
final bound of Lagrage function for conservative problem as
below.
Lemma 5. Under the Assumption 2, 3, 4 and 5, the proposed
algorithm achieve the global convergence of the Lagrange
function, which can be formally written as

1

K

K∑
k=1

E

(
JL(π

∗
θ,κ,λ

k)− JL(π
k
θ ,λ

k)

)
≤

√
ϵbias

1− γ
+ ϵK,N

(25)
where

ϵK,N = O
(

1

(1− γ)3K

)
+O

(
I2Λ2

(1− γ)2N

)
+O

(
IΛ

(1− γ)
√
N

)
+O

(
IΛ

K(1− γ)

) (26)

Before we get the final result for the regret and con-
straint violation, we need to bound the gap between the opti-
mal value function of the original problem and conservative
problem. Such gap can be bounded in the dual domain. To
do that, we recall the definition of state-action occupancy
measure dπ ∈ R|S||A| as

dπ(s, a) = (1−γ)P
( ∞∑

t=0

γt ·1st=s,at=a|π, s0 ∼ ρ

)
(27)

We note that the objective and constraint can be written as

Jr(πθ) =
1

1− γ
⟨r, dπθ ⟩

Jgi(πθ) =
1

1− γ

〈
gi, dπθ

〉
, ∀i ∈ [I]

(28)

Define D to be the set of vector ϕ ∈ RS×A satisfying
∑
s′∈S

∑
a∈A

ϕ(s′, a)(δs(s
′)− γP(s|s′, a)) = (1− γ)ρ(s)

ϕ(s, a) ≥ 0, ∀(s, a) ∈ S ×A
(29)

By summing the first constraint over s, we have∑
s,a ϕ(s, a) = 1, which means that ϕ in the above set is

occupancy measure. By Eq. (28) and (29), we define the fol-
lowing problem which can be found in the reference (Alt-
man 1999)

max
ϕ∈D

1

1− γ
⟨r, ϕ⟩

s.t.
1

1− γ

〈
gi, ϕ

〉
≥ 0, ∀i ∈ [I]

(30)

For the full-parameterized policy, it can be shown that the
above problem is equivalent to the original problem Eq. (3).
However, the strong duality doesn’t hold for general parame-
terization. Thus, we need the following assumption to bound
the gap between them.

Assumption 6. For any ϕ ∈ D, we define a stationary pol-
icy as

π′(a|s) = ϕ(s, a)∑
a ϕ(s, a)

. (31)

We assume that there always exists a θ ∈ Θ such that
|π′(a|s)− πθ(a|s)| ≤ ϵbias2, ∀(s, a) ∈ S ×A

Remark 6. The intuition behind the above assumption is
that the parameterization is rich enough so that we can al-
ways find a certain parameter θ and πθ is close to the above
stationary policy. A special case is softmax parameteriza-
tion, where ϵbias2 = 0.

With such an assumption, we reveal the relationship be-
tween the optimal value of primal problem and dual problem
as follows, whose proof can be found in Appendix.

Lemma 6. Under Assumption 6, denote πθ∗ as the optimal
policy of the original problem defined in Eq.(3) and ϕ∗ as
the optimal occupancy measure for the new problem defined
in Eq. (30), we have

⟨r, ϕ∗⟩ − ϵbias2 ≤ J
π∗
θ

r ≤ ⟨r, ϕ∗⟩ (32)

Equipped with the above lemma, we bound the gap be-
tween original problem and conservative problem in the fol-
lowing lemma.

Lemma 7. Under Assumption 6, Denote πθ∗
κ

as the optimal
policy for the conservative problem, we have

Jπθ∗
r − J

πθ∗κ
r ≤ ϵbias2

(1− γ)2
+

κ

φ
(33)

Equipped with Lemma 5 and 7, we provide the main re-
sult for the NPG-PD algorithm for the objective function and
constrained violation. The detailed proof can be founded in
Appendix.

Theorem 1. For any ϵ > 0, in the Natural Policy Gradi-
ent Algorithm 1, if step-size η1 =

µ2
F

4G2LJ
and η2 = 1√

K
,

the number of iterations K = O
(

I2Λ2

(1−γ)4ϵ2

)
, the number of

samples for per iteration N = O
(

I2Λ2

(1−γ)2ϵ2

)
and take the

conservative variable κ as√
2

η2K

(√ϵbias
1− γ

+ ϵK,N +
2
∑

i∈[I] λ
∗
i + 1

1− γ

)
+

4

K(1− γ)2

then we have ϵ-optimal policy with zero constraint viola-
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Figure 1: Comparison of objective and constraint violation between κ = 0.5 and κ = 0. For the constraint violation figure, we
use the log axis to make zero constraint violation more obvious.

tions. Formally,

1

K

K−1∑
k=0

(
Jr(π

∗
θ)− Jr(π

k
θ )

)
≤ O

(√
ϵbias

1− γ

)
+O

(
ϵbias2

(1− γ)2

)
+O

(
ϵ

)
1

K

K−1∑
k=0

Jgi(πk
θ ) ≥ 0

(34)
In other words, the NPG-PD algorithm needs O

(
I4Λ4

(1−γ)6ϵ4

)
trajectories.

Remark 7. The proposed algorithm doesn’t only achieve
the zero constraint violation, but also achieves the state of
art sample complexity over general parameterization policy-
based algorithm. In Theorem 1, we can see that the algo-
rithm converges to the neighbourhood of the global optimal
and the bias is controlled by two parameters ϵbias and ϵbias2
defined in Assumption 5 and 6, respectively. If the param-
eterization is sufficient enough, then ϵbias = ϵbias2 = 0.
However, whether there exists certain relationship between
Assumption 5 and 6 is an interesting question for future
work.

Simulation1

In order to verify the performance of the proposed algo-
rithm (Algorithm 1), we utilize the simulation code from
(Ding et al. 2020) and compare the proposed algorithm with
them. We establish a random CMDP, where the state space
and action space are |S| = 10, |A| = 5. The transition
matrix P (s′|s, a) is chosen by generating each entry uni-
formly at random in [0, 1], followed by normalization. Sim-
ilarly, the reward function r(s, a) ∼ U(0, 1) and constraint
function g(s, a) ∼ U(−0.71, 0.29). Only 1 constraint func-
tion is considered here. The initial state distribution is set

1The code can be found at https://github.com/bqb3927586/
NPG-zero-violation

to uniform and the discount factor is γ = 0.8. For the gen-
eral parameterization, we use a feature map with dimension
d = 35, and for each SGD procedure we use N = 100
number of samples. The learning rate for θ and λ are set to
0.1. The more detailed information for the simulation set-
ting can be found in Appendix. We run the algorithm for
K = 7000 iterations and compare the proposed algorithm
with κ = 0.5 and the NPG-PD algorithm (Ding et al. 2020)
which doesn’t consider the zero constraint violation case
(equivalently κ = 0) in Figure 1.

From Fig. 1, we find that the convergence of the reward
is similar and the proposed algorithm converges even faster
than the non-zero constraint violation case. However, for the
constraint violation, we find that when κ = 0.5, the log
of constraint violation converges to negative infinity, which
means that the constraint violation is below 0. In contrast,
the constraint violation still exists when κ = 0. The com-
parison between κ = 0.5 and κ = 0 validates the result in
Theorem 1.

Conclusion
In this paper, we propose a novel algorithm for Con-
strained Markov Decision Process and the proposed algo-
rithm achieves the state-of-the-art sample complexity over
general parametrization policy-based algorithms. By reveal-
ing the relationship between the primal and dual problem,
the gap between conservative problem and original problem
is bounded, which finally leads to the analysis of zero con-
straint violation. The proposed algorithm converges to the
neighbourhood of the global optimal and the gap is con-
trolled by the richness of parametrization.

The key limitation of the work includes the assumptions
used to prove the results. Simplifying or removing Assump-
tions 5 and 6 on the bias parameters is a valuable problem in
the future work.
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