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Abstract

Downsampling produces coarsened, multi-resolution represen-
tations of data and it is used, for example, to produce lossy
compression and visualization of large images, reduce compu-
tational costs, and boost deep neural representation learning.
Unfortunately, due to their lack of a regular structure, there
is still no consensus on how downsampling should apply to
graphs and linked data. Indeed reductions in graph data are
still needed for the goals described above, but reduction mech-
anisms do not have the same focus on preserving topological
structures and properties, while allowing for resolution-tuning,
as is the case in regular data downsampling.
In this paper, we take a step in this direction, introducing a
unifying interpretation of downsampling in regular and graph
data. In particular, we define a graph coarsening mechanism
which is a graph-structured counterpart of controllable eq-
uispaced coarsening mechanisms in regular data. We prove
theoretical guarantees for distortion bounds on path lengths,
as well as the ability to preserve key topological properties in
the coarsened graphs. We leverage these concepts to define a
graph pooling mechanism that we empirically assess in graph
classification tasks, providing a greedy algorithm that allows
efficient parallel implementation on GPUs, and showing that
it compares favorably against pooling methods in literature.

1 Introduction
The concept of information coarsening is fundamental in
the adaptive processing of data, as it provides a simple, yet
effective, means to obtain multi-resolution representations of
information at different levels of abstraction. In large scale
problems coarsening also serves to provide computational
speed-ups by solving tasks on the reduced representation,
ideally with a contained loss in precision with respect to
solving the original problem.

Coarsening is key in Convolutional Neural Net-
works (CNNs, Fukushima 1980; LeCun et al. 1989), where
pooling is often used to repeatedly subsample an image to
extract visual feature detectors at increasing levels of abstrac-
tion (e.g., blobs, edges, parts, objects, etc). Downsampling is
also popular in the adaptive processing of timeseries where,
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for instance, it is used in clockwork-type Recurrent Neural
Networks (Koutnı́k et al. 2014; Carta, Sperduti, and Bacciu
2021) to store information extracted at different frequencies
and timescales. More recently, the Graph Convolutional Net-
works (GCNs, Micheli 2009; Gori, Monfardini, and Scarselli
2005; Bacciu et al. 2020) community popularized graph re-
duction mechanisms as a structured counterpart of the image
pooling mechanism in classical CNNs.

The definition of a reduction mechanism that downsamples
information at regular intervals between data points (e.g., a
sample, a pixel, a timestamped observation, etc) is straight-
forward when working with images and time series. It can
be achieved simply by picking up a data point every k ones,
where k is a given reduction factor defining the distance be-
tween the sampled points in the original data, possibly aggre-
gating the properties of non-selected point with appropriate
functions. The same approach cannot be straightforwardly
applied to graphs, which lack regularity and a consistent or-
dering among their constituent data points, i.e., the nodes.
Therefore, defining a well-formed notion of downsampling
for graphs becomes non-trivial. The research community
has been tackling this issue by a number of approaches, in-
cluding differentiable clustering of node embeddings (Ying
et al. 2018; Bianchi, Grattarola, and Alippi 2020), graph re-
ductions (Shuman, Faraji, and Vandergheynst 2016; Loukas
2019), and node ranking (Cangea et al. 2018; Gao and Ji
2019). Notably, approaches like the latter select important
nodes in a graph and simply discard the rest without pro-
tecting the linked structure of the network, while reduction
methods typically focus on preserving structure without ac-
counting for the role or relevance of nodes involved.

What is yet an open problem is how to define a controllable
graph coarsening method, which reduces the size while pre-
serving the overall structure by sampling representative yet
evenly spaced elements, similarly to the approaches discussed
above for image and time series reduction.

This paper provides a first approach introducing such a
topology-preserving graph coarsening and its use in graph
pooling. We provide mechanisms which are the graph equiva-
lent of pooling and striding operators on regular data, accom-
panying our intuition with formal proofs (in the Supplemen-
tary Material) of the equivalence of such operators on graphs
which model regular data.

Central to our contribution is the definition of a mechanism
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to find a set of nodes that are approximately equally spaced
(at distance no less than k) in the original graph. We build
on the graph-theoretic concept of Maximal k-Independent
Sets (k-MIS), that also comes with the ability to pin-point
important nodes in each area of the graph. The selected nodes
are then used as vertices of the reduced graph whose topology
is defined in such a way that key structural properties of the
original graph are well preserved. To this end, we provide
theoretical guarantees regarding distance distortions between
a graph and its reduction. Additionally, we prove the reduced
graph has the same number of connected components as
the original. The latter point is particularly relevant for a
graph pooling mechanism as it guarantees that the structure
is not broken in disconnected fragments, which can hinder the
performance of neural message passing in the GCN layers.

Such properties are fundamental to ensure that the original
graph is downsampled evenly throughout its structure, pre-
serving distances and sparseness of the key focal points in
the graph. By this means, the reduced graph can be used as
an accurate fast estimator of the distances between nodes in
the original graph, where the amount of compression can be
easily regulated through the choice of the k reduction factor.

Concurrently, we borrow from node-ranking methods (Gao
and Ji 2019) to produce k-MISs that maximize the total
weights associated to the selected nodes, in order to preserve
relevant nodes without compromising structure.

In summary, our contributions are the following:

• We introduce a graph coarsening method leveraging k-MIS
that is the graph-structured counterpart of equispaced sam-
pling in flat data. We provide a greedy parallel algorithm
to efficiently compute the k-MIS reduction, which is well
suited to use in GPU accelerators (Section 3).

• We give formal proof of equivalence of our approach to
regular downsampling in convolutional neural networks,
when applied to diagonal grid graphs (Section 4 and Sup-
plementary Material).

• We prove theoretical guarantees on the distance distortions
between a graph and its reduction. We provide also a formal
complexity analysis of the introduced algorithms, proving,
both theoretically and experimentally, their scalability on
large real-world graphs (Section 4 and Supplementary Ma-
terial).

• We integrate k-MIS reduction both as a pooling layer and as
a downsampling operator for GCNs, providing an empirical
confirmation of its advantages over literature approaches
on graph classification benchmarks (Section 6).

2 Notation and Definitions
We represent a graph G as a pair of disjoint sets (V,E),
where V = {1, . . . , n} is its node set and E ⊂ V × V its
edge set, with |E| = m. A graph can also be represented as
a symmetric matrix A ∈ Rn×n

+ , such that Auv = Avu is
equal to a weight associated to the edge uv ∈ E or zero if
uv ̸∈ E. The neighborhood N(v) of v is the set of nodes
adjacent to it (denoted N [v] if includes v itself), and the
degree deg(v) of v is defined as the number of its neighbors,
i.e., deg(v) = |N(v)|. The unweighted distance between two

nodes u, v ∈ V , denoted as d(u, v), is defined as the length
of the shortest path between the two nodes. If there is no
path between the two nodes, then d(u, v) = ∞. The k-hop
neighborhood Nk(v) of v (Nk[v] if inclusive) is the set of
nodes that can be reached by a path in G of length at most k.
The k-th power of a graph Gk is the graph where each node
of G is connected to its k-hop neighbors. To avoid confusion,
any function may be denoted with a subscript to specify the
graph on which is defined (e.g., dG). An independent set, is a
set of nodes S ⊆ V such that no two of which are adjacent in
G. An independent set is maximal if is not a subset of another
one in G. A (maximal) k-independent set is a (maximal)
independent set of Gk.

3 Graph Coarsening with k-MWIS
When dealing with signals, images, or other kinds of Eu-
clidean data, downsampling often amounts to keeping every
k-th data point, where k is a given reduction factor. This
means, for a generic discrete n-dimensional Euclidean da-
tum, keeping a subset of its points such that every two of
them are exactly k points far from each other on every of its
dimensions. On graph-structured data, we lose this regularity
along with the concept of dimensionality, and hence defining
a new notion of downsampling that applies to graph becomes
non-trivial.

Here we define a graph coarsening method that, similarly
to classical downsampling, reduces the size of a graph G by
a given “factor”, by finding a set of almost evenly spaced
nodes within G. These nodes will form the node set of the
reduced graph, while its topology will be constructed starting
from G in a way in which some of its key properties will
be preserved, such as connectivity, or approximated, such as
pairwise node distances.

Coarsening algorithm. Given a graph G = (V,E) and a
distance k, we want to obtain a coarsen representation of G
by first selecting a set of nodes S ⊆ V , that we refer to as
centroids, such that every two centroids are more than k hops
distant from each other, and such that no area of the graph
remains unsampled; in other words, a maximal k-independent
sets (k-MIS) of G: this way, each centroid will be more than
k hops from every other, while the maximality ensures every
node of G is within k hops from a centroid.

Any MIS of a graph Gk is a k-MIS of G (Agnarsson,
Damaschke, and Halldórsson 2003), thus a k-MIS could be
naı̈vely computed by known MIS algorithms, such as Luby
(1985) or Blelloch, Fineman, and Shun (2012), on the k-th
power of the adjacency matrix of G. Using this approach
will require O(n2) space since the density of Gk increases
rapidly with k, becoming rapidly impractical for real world
graphs with millions or billions of nodes. To overcome this
problem, we introduce Algorithm 1 that efficiently computes
a k-MIS of G without explicitly computing its k-th power.
Once the k-MIS S ⊆ V is computed with Algorithm 1, we
construct the coarsened graph H = (S,E′) as follows:
1. using Algorithm 2, we compute a partition P of V of size

|S|, such that
(a) every P ∈ P contains exactly one centroid and (a

subset of) its k-hop neighbors, and
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Algorithm 1 Parallel Greedy k-MIS algorithm, adapted from Blel-
loch, Fineman, and Shun (2012). Given a graph G, a subset of
its nodes U ⊆ V , and a node ranking π, returns a maximal k-
independent set in G, with k ∈ N.

1: function k-MIS(G, U , π)
2: if |U | = 0 then return ∅
3: π0 ← π
4: for i = 1, . . . , k do
5: for v ∈ U do in parallel
6: πi(v)← minu∈N [v]∩U πi−1(u)

7: S0 ← {v ∈ U | π(v) = πk(v)}
8: for i = 1, . . . , k do
9: Si ←

⋃
v∈Si−1

N [v]

10: R← U \ Sk

11: return S0 ∪ k-MIS(G, R, π)

Algorithm 2 Parallel k-MIS partitioning algorithm. Given a graph
G, k ∈ N, and a node ranking π, returns a partition of G.

1: function CLUSTER(G = (V,E), k, π)
2: S ← k-MIS(G, V , π)
3: π0 ← π
4: for v ∈ V \ S do in parallel
5: π0(v)← +∞
6: for i = 1, . . . , k do
7: for v ∈ V do in parallel
8: πi(v)← minu∈N [v] πi−1(u)

9: return {{u ∈ V | πk(u) = π(v)}}v∈S

(b) for every node in P there is a centroid in P at distance
at most k-hops;

2. for every edge in E we add an edge in E′ joining the two
nearest centroids in the partitions containing the source
and destination nodes. If this generates multiple edges, we
coalesce them into a single one, and we aggregate their
weights according to a predefined aggregation function
(e.g., sum);

3. (pooling, optional) in case of weights/labels associated to
the nodes, these can also be aggregated according to the
partitioning P .

A detailed discussion of Algorithms 1 and 2 will be provided
later in Section 4.

Node ordering. A key property of our k-MIS algorithm
(similarly to the one of Blelloch, Fineman, and Shun (2012))
is that it is deterministic: given a graph G and a ranking of its
nodes π : V → {1, . . . , n}, that defines the position of the
nodes in a given ordering, Algorithm 1 will always produce
the same k-MIS, for any k ≥ 0. This property has some
interesting consequences:
• The ranking π can be used to lead Algorithm 1 to greedily

include nodes having a higher rank under a given order of
importance, such as a centrality measure, a task-dependent
relevance, or a (possibly learned) scoring value. (Note that
the computation of the ranking can impact the complexity
of the algorithm.)

• If the ranking can be uniquely determined by the nodes
themselves (e.g., in function of their attributes or their
neighbors), Algorithms 1 and 2 become injective and hence,

POOLING, MEAN
(p = k + 1)

OURS, MEAN
(lexicographic)

OURS, MEAN
(intensity)

OURS, STRIDED
(intensity)

k
=

0
k
=

1
k
=

2
k
=

3
k
=

4

Figure 1: (first column) Average pooling and (second to fourth
columns) our method using different ranking and aggregation
functions, for varying values of k.

permutation invariant.1 This can be obtained by ranking
the nodes with respect to a score computed by means of a
(sufficiently expressive) GCN, as learning injective func-
tions over the nodes in a graph is a problem strictly related
to the one of graph isomorphism, a topic that is gaining
a lot of traction in the graph learning community (Morris
et al. 2019; Xu et al. 2019; Maron et al. 2019; Loukas 2020;
Geerts and Reutter 2021; Papp and Wattenhofer 2022).

• A properly chosen ranking can produce a marginally
greater total score of the selected nodes with respect to
the one that we would get by greedily selecting the top
scoring ones. This aspect will be discussed more in detail
in Section 4.
We now provide two examples on how we can change the

ranking of the nodes to prioritize salient aspects according to
a specific preference. Examples are conducted on the graph
defined by the first sample of the MNIST dataset (LeCun,
Cortes, and Burges 2010), a 28× 28 monochromatic image
(first row of Fig. 1) where every pixel is connected to the
ones in the same pixel row, column or diagonal.

First, we simulate the typical downsampling on images
(also known as average pooling (Fukushima 1980)), where
squared partitions of p× p pixels are averaged together (first

1Notice that, in our setting, if π : V → {1, . . . , n} is injective,
then it is also bijective and, hence, a permutation.
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column of Fig. 1). To do this, we set the ranking π of Algo-
rithm 2 as the lexicographic ordering: given (i, j) the coor-
dinate of a pixel, we rank the nodes in decreasing order of
28i+ j. The resulting reduction is in the second column of
Fig. 1: averaging intensities of pixels in the same partition
produces a coarsened graph which is identical to classical
downsampling. Note that this result is partly due to the fact
that Algorithm 2 also makes use of π to define the clustering,
such that the nodes in a partition have always a lower rank
with respect to the centroid in the same partition.

Secondly, we rank nodes in decreasing order of intensity,
thus prioritizing the pixels (i.e., the nodes) belonging to the
drawn digit. Here we show two different results: the first,
where we average the lightness and coordinates of the nodes
in the same clusters (third column of Fig. 1), and a second
one, where we just keep the ones belonging to the nodes in
the k-MIS (fourth column). We see that the reduced graphs
indeed prioritized the digit against other pixels, producing a
coarsened representation where the digit is also remarkably
recognizable.

4 Theoretical Analysis and Results
Regular downsampling. Downsampling plays a key role
in Convolutional Neural Networks (CNNs, Goodfellow, Ben-
gio, and Courville 2016), where it is adopted, for instance,
in strided convolutions and pooling layers. In strided convo-
lutions, an input tensor (e.g., a time series, an image, or a
voxel grid) is reduced by applying the convolved filter every
s-th of its entries, along every dimension, while skipping
the others. In pooling layers, instead, tensors are reduced
by summarizing every p-sided sub-tensors, taken at regular
intervals. (More specific reductions are also possible, where
distinct intervals are used for every dimension.)

We can show that, on n-dimensional diagonal grid graphs
(i.e., grids where nodes are also diagonally adjacent), Algo-
rithms 1 and 2 behave exactly as the aforementioned down-
sampling strategies, if we rank their nodes by their position
in lexicographic order. This is of particular interest as the ad-
jacencies in these graphs can represent the receptive fields of
a single convolutional layer when applied to a some regular
data of the same shape, like images (2-dimensional) or voxel
grids (3-dimensional). Specifically, if G = (V,E) is a diag-
onal grid constructed using the entries of a given tensor as
nodes, and π is the ranking of these entries in lexicographic
order of their position indices, we have that

1. k-MIS(G,V, π) selects the same entries of a strided con-
volution with s = k + 1,

2. CLUSTER(G, k, π) partitions the tensor as a pooling layer
with p = k + 1, and

3. the reduced graph obtained by contracting the resulting
partition is again a diagonal grid of the same dimensions
of their output tensor.

A formal restatement and proof of these properties are
provided in the Supplementary Material, while in Fig. 1 we
show an example of the equivalence between pooling (first
column) and our reduction method (second column).

Connectivity of the reduced graph. For the sake of con-
ciseness, hereafter we denote with (H, ρ) = R(G, k) the
function reducing a graph G by contracting the clusters ob-
tained with Algorithm 2, as described in Section 3. The term
H = (S,E′) denotes the reduced graph, where S is the k-
MIS of G, while ρ : V → S is the function mapping every
node to the (exactly one) centroid in its cluster. The following
results are invariant with respect to the ranking parameter
and the aggregation function used to reduce the edges or the
nodes.

We follow a simple observation: for every edge in uv ∈ E′

with u ̸= v, the nodes u and v are within 2k + 1 hops in G,
since two nodes in S are connected in H only if an edge in
G crosses their two clusters. This property, combined with
the lower bound implicitly defined by the k-MIS, yields the
following bounds.

Remark 1. For any uv ∈ E(H) such that u ̸= v, we have
that k + 1 ≤ dG(u, v) ≤ 2k + 1.

An example of this property is shown in Fig. 2, where
bounds in Remark 1 apply for the Minnesota road net-
work (Davis and Hu 2011) reduced with different values
of k. From the above observation, we can obtain the two
following properties.

Proposition 1. Let G be a connected graph and (H, ρ) =
R
(
G, k

)
, with k ≥ 0. Then, ∀u, v ∈ V (G),

dH(ρ(u), ρ(v)) ≤ dG(u, v) ≤ (2k+1) dH(ρ(u), ρ(v))+2k.

Corollary 1. For any k ≥ 0, G and H = R
(
G, k

)
have the

same number of connected components.

The full proofs are provided in the Supplementary Mate-
rial. Both Proposition 1 and Corollary 1 are fundamental in
our proposal of using k-MIS reduction as a pooling method
in Graph Neural Networks. In particular: (i) differently from
several other pooling techniques (Cangea et al. 2018; Gao
and Ji 2019; Knyazev, Taylor, and Amer 2019; Lee, Lee, and
Kang 2019; Zhang et al. 2020; Ranjan, Sanyal, and Talukdar
2020; Ma et al. 2020), we can guarantee that the input graph
is not divided in multiple components, and that, if applied
repeatedly, our method will eventually produce a single rep-
resentation node for the whole graph; (ii) when training with
batches of graphs at a time, our method guarantees also that
different graphs are not joined together.

Algorithm discussion and complexity. In order to avoid
computing the k-th graph power of a possibly large-scale
graph, Algorithm 1 modifies the one by Blelloch, Fineman,
and Shun (2012, Algorithm 2, also restated in the Supplemen-
tary Material) to compute the k-MIS without explicitly gener-
ating every k-hop neighborhood. Given a graph G = (V,E),
a subset of its nodes U ⊆ V , and a (injective) node mapping
π : V → {1, . . . , n} (that we can consider as a ranking of
the nodes under a given permutation), Algorithm 1 works as
follows:

1. if U ⊆ V is not empty, in Lines 3 to 7 we find the set of
nodes S0 with minimum rank among their k-hop neigh-
bors (i.e., their neighbors in Gk). This is done with k steps
of label propagation such that, at each step, every node
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2k + 1

Figure 2: Minnesota road network (Davis and Hu 2011) reduced with different values of k. For k = 0, the two bounds coincide,
as the graph is not reduced at all. For k = 1, the real distance covered by an edge is polarized (is either 2 or 3). For greater values
of k, the edges’ real distance span over all the range [k + 1, 2k + 1] ∩N.

takes the minimum label found within their (1-hop) neigh-
bors. We only propagate labels belonging to nodes still in
U ;

2. in Lines 8 to 10 we remove from U all the nodes that are
at most k-hops from a node in S0 (i.e., all their neighbors
in Gk). This is also done with k steps of label propaga-
tion starting from the nodes in S0, where this time the
propagated label is a flag signaling that the node shall be
removed;

3. finally, the algorithm makes a recursive call in Line 11 us-
ing only the remaining nodes. The resulting set is merged
with S0 and returned.

It is easy to see that, if k = 1, steps 1 to 3 become exactly
Blelloch’s algorithm, whereas by taking a general k every
step is extended to consider k-hop neighbors of G, thus effi-
ciently emulating Blelloch’s algorithm on Gk.

As for complexity, Blelloch, Fineman, and Shun (2012)
propose several trade-offs between work and depth on a
concurrent-read/concurrent-write PRAM model (CRCW,
with minimum priority concurrent write). Here, we consider
one version (Algorithm 2 from Blelloch, Fineman, and Shun
(2012)) which allows an efficient parallel implementation
with O(m) work and O(log3 n) depth with high probabil-
ity (see Blelloch, Fineman, and Shun 2012, Lemma 4.2), and
most closely resembles the structure of Algorithm 1. Our
algorithm introduces a factor k (compared to the one of Blel-
loch, Fineman, and Shun (2012)) on the operations performed
on lines Lines 3 to 7 and Lines 8 to 10 to compute the k-hop
neighborhood. It follows that the work and depth of Algo-
rithm 1 are bounded by k times that of Blelloch’s algorithm,
i.e., O(k(n+m)) work and O(k log3 n) depth w.h.p., where
an extra O(n) work is needed to generate the additional vec-
tor of labels, which is modified every k iterations. Regarding
Algorithm 2, after computing the k-MIS, the algorithm per-
forms k steps of label propagation, which add O(k(n+m))
work and O(k log n) depth to the total computation. Total
space consumption is O(n+m), comprising input and O(1)
label vectors of size O(n).

Proposition 2. Given a graph G, an integer k ∈ N,
and a random ranking of the nodes π, both Algorithms 1
and 2 can be implemented to run on a CRCW PRAM us-
ing O(k(n+m)) work, O(k log3 n) depth, and O(n+m)
space. The depth bound holds w.h.p.

Bounds on the total weight. In any greedy MIS algorithm,
whenever we add a node to the independent set we have to
remove all of its neighbors from the graph. Having observed
this, a typical heuristic to compute larger-weight independent
sets is to select nodes with high weight and low degree (Caro
1979; Wei 1981). Following this intuition, Sakai, Togasaki,
and Yamazaki (2003) proposed the following rules: given
x ∈ Rn

+ a vector of positive weights associated to each
node, add to the independent set the node v maximizing ei-
ther (i) xv/(deg(v) + 1), or (ii) xv/(

∑
u∈N [v] xu). Both

rules can be trivially extended to k-hop neighborhoods by
computing Gk, which would however require O(n2) space,
unless done sequentially. Parallel computation of the neigh-
borhood function degk(v) = |Nk(v)| in limited space can
be achieved only by resorting to approximations, e.g. using
Monte Carlo methods (Cohen 1997) or approximate sets rep-
resentations (Palmer, Gibbons, and Faloutsos 2002; Boldi,
Rosa, and Vigna 2011), and still this would not extend to
approximate rule (ii).

To overcome these limitations, we overestimate the sum
of the weights in the k-hop neighborhood of each node,
by computing instead ck = (A + I)kx ∈ Rn

+, where
A, I ∈ {0, 1}n×n are, respectively, the adjacency and the
identity matrices. The matrix (A+ I)k ∈ Nn×n

0 represents
the number of k-walks (i.e., sequences of adjacent nodes
of length k) from every pair of nodes in the graph. Clearly,
[(A+ I)k]uv ≥ 1 if v ∈ Nk[u], while the equality holds for
every pair of nodes for k = 1. When x = 1, ck is equal to
the k-path centrality (Sade 1989; Borgatti and Everett 2006).
Notice that we do not need to compute (A+I)k explicitly, as
ck can be obtained with a sequence of k matrix-vector prod-
ucts, that can be computed in O(n+m) space, O(k(n+m))
work and O(k log n) depth.

In the following, we provide a generalization of the bounds
of Sakai, Togasaki, and Yamazaki (2003) when a k-MIS is
computed by Algorithm 1 with the ranking defined by rules
(i)-(ii) approximated by the k-walk matrix ck. We remark that,
for k = 1, the following theorems are providing the same
bounds as the one given by Sakai, Togasaki, and Yamazaki
(2003). The full proofs can be found in the Supplementary
Material.

Theorem 1. Let G = (V,E) be a graph, with (unweighted)
adjacency matrix A ∈ {0, 1}n×n and with x ∈ Rn

+ repre-
senting a vector of positive node weights. Let k ∈ N be an
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integer, then define w : V → R+ as

w(v) =
xv

[(A+ I)k1]v
, (1)

and πw as the ranking of the nodes in decreasing order of
w. Then, k-MIS(G,V, πw) outputs a maximal k-independent
set S such that

∑
u∈S xu ≥

∑
v∈V w(v).

Theorem 2. Let G = (V,E) be a graph, with (unweighted)
adjacency matrix A ∈ {0, 1}n×n and with x ∈ Rn

+ repre-
senting a vector of positive node weights. Let k ∈ N be an
integer, then define w : V → R+ as

w(v) =
xv

[(A+ I)kx]v
, (2)

and πw as the ranking of the nodes in decreasing order of
w. Then, k-MIS(G,V, πw) outputs a maximal k-independent
set S such that

∑
u∈S xu ≥

∑
v∈V w(v) · xv .

Theorem 3. Let G = (V,E) be a non-empty graph with
positive node weights x ∈ Rn

+, and let πw be a ranking
defined as in Theorem 1 or 2 for any given k ∈ N. Then∑

v∈S xv ≥ α(Gk)/∆k, where S = k-MIS(G,V, πw) and
∆k = maxv∈V [(A+ I)k1]v .

Recalling that α(Gk) is the optimal solution, Theorem 3
shows that our heuristics guarantee a ∆−1

k approximation.
This bound degrades very quickly as the value of k increases,
since the number of k-walks may exceed the total number of
nodes in the graph. In the Supplementary Material we show
that, in practice, the total weight produced by Algorithm 1
is on par with respect to the one obtained using the exact
neighborhood function for low values of k. This aspect is
of practical value as in general the k values used for graph
pooling are on the low-end.

5 Related Works
Maximal k-Independent Sets. Computing a k-MIS can be
trivially done in (superlinear) polynomial time and space us-
ing matrix powers (Agnarsson, Damaschke, and Halldórsson
2003) and any greedy MIS algorithm (e.g., Luby 1985; Blel-
loch, Fineman, and Shun 2012). Koerts (2021) proposed a
formulation of the problem both as an integer linear pro-
gram and as a semi-definite program, but still relying on
the k-th power of the input graph. Several papers propose
efficient algorithms to solve the maximum (weighted or un-
weighted) k-IS problem on specific classes of graphs (Ag-
narsson, Greenlaw, and Halldórsson 2000; Agnarsson, Dam-
aschke, and Halldórsson 2003; Eto, Guo, and Miyano 2014;
Bhattacharya and Houle 1999; Duckworth and Zito 2003;
Pal and Bhattacharjee 1996; Hsiao, Tang, and Chang 1992;
Hota, Pal, and Pal 2001; Saha and Pal 2003), which fall be-
yond the scope of this article. To the best of our knowledge,
the only other parallel algorithm for computing a maximal
k-independent set was proposed by Bell, Dalton, and Olson
(2012) as a generalization of the one of Luby (1985) for
k ≥ 1. This algorithm is essentially the same as Algorithms 1
and 2, but without the ranking argument, making the algo-
rithm non-deterministic, as the nodes are always extracted in
a random order.

Graph Coarsening and Reduction. MISs (i.e., with k =
1) were adopted as a first sampling step in Barnard and Simon
(1994), although their final reduction step may not preserve
the connectivity of the graph. Using MIS was also suggested
by Shuman, Faraji, and Vandergheynst (2016) as an alter-
native sampling step for their graph reduction method. The
spectral reduction proposed by Loukas (2019, neighborhood
variant) does not use sampling as a first reduction step, but
sequentially contracts node neighborhoods until a halting
condition is reached, performing similar steps to the classical
greedy algorithm for maximum-weight independent sets.

Graph Pooling. In a contemporary and independent work,
Stanovic, Gaüzère, and Brun (2022) introduced a pooling
mechanism based on maximal independent (vertex) sets,
named MIVSPool. Their method is analogous to ours, but
restricted to the case of 1-MIS, that they compute using the
parallel algorithm of Meer (1989). Another related model is
EDGEPOOL (Diehl et al. 2019), which computes instead a
maximal matching, i.e., a maximal independent set of edges,
selecting the edges depending on a learned scoring function.
Nouranizadeh et al. (2021) also proposed a pooling method
that constructs an independent set maximizing the mutual
information between the original and the reduced graph. To
do so, the authors leverage on a sequential algorithm with
cubic time complexity and also no guarantees that the result-
ing set is maximal. Apart from a few other cases (Dhillon,
Guan, and Kulis 2007; Luzhnica, Day, and Lio’ 2019; Ma
et al. 2019; Wang et al. 2020; Bacciu and Di Sotto 2019;
Bacciu et al. 2021; Bianchi et al. 2020), pooling in Graph
Neural Networks (GNNs) usually entails an adaptive ap-
proach, typically realized by means of another neural net-
work. These pooling methods can be divided in two types:
dense and sparse. Dense methods, such as DIFFPOOL (Ying
et al. 2018), MINCUTPOOL (Bianchi, Grattarola, and Alippi
2020; Bianchi et al. 2020), MEMPOOL (Khasahmadi et al.
2019), STRUCTPOOL (Yuan and Ji 2019), and DMON (Tsit-
sulin et al. 2022), compute for each node a soft-assignment
to a fixed number of clusters defined by a reduction factor
r ∈ (0, 1), thus generating a matrix requiring O(rn2) space.
Sparse methods, such as GPOOL/TOPKPOOL (Gao and Ji
2019; Cangea et al. 2018), SAGPOOL (Lee, Lee, and Kang
2019; Knyazev, Taylor, and Amer 2019), GSAPOOL (Zhang
et al. 2020), ASAPOOL (Ranjan, Sanyal, and Talukdar 2020),
PANPOOL (Ma et al. 2020), IPOOL (Gao et al. 2021), and
TAGPOOL (Gao, Liu, and Ji 2021), instead, compute a score
for each node (requiring O(n) space), and reduce the graph
by keeping only the top ⌈rn⌉ scoring ones and dropping the
rest. Although scalable, these methods provide no theoret-
ical guarantees regarding the preservation of connectivity
of the reduced graph, as the n − ⌈rn⌉ dropped nodes may
disconnect the graph.

6 Experimental Analysis
Table 1 summarizes the average classification accuracy
obtained on selected classification benchmarks using the
same underlying Graph Neural Networks (GNNs) and dif-
ferent kinds of pooling mechanisms. For classification
tasks, we chose those datasets having the highest num-
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Model DD REDDIT-B REDDIT-5K REDDIT-12K GITHUB

BASELINE 75.51± 1.07 78.40± 8.68 48.32± 2.38 45.04± 6.63 69.89± 0.28
BDO 76.69± 1.79 85.63± 1.43 45.95± 5.49 41.89± 7.14 65.64± 0.90
GRACLUS 75.17± 2.11 84.05± 5.81 43.22± 12.24 43.08± 9.32 67.64± 0.57
EDGEPOOL 74.70± 1.57 85.98± 1.57 52.44± 1.11 47.58± 0.78 68.72± 0.52
TOPKPOOL 74.92± 2.03 81.10± 3.82 45.28± 3.88 38.55± 2.35 65.93± 0.45
SAGPOOL 73.26± 2.26 84.90± 3.94 46.29± 5.61 42.30± 3.70 64.29± 5.70
ASAPOOL 73.73± 2.18 78.37± 5.22 39.53± 7.76 39.14± 3.58 66.98± 0.96
PANPOOL 73.26± 1.94 77.44± 4.95 46.04± 3.78 40.97± 3.02 62.48± 2.84

k-MIS (strided) 76.44± 1.50 86.32± 1.90 54.30± 0.53 46.06± 0.58 67.87± 0.48
k-MIS (max-pool) 76.91± 1.06 87.57± 1.96 53.44± 1.52 47.51± 0.99 68.24± 0.94
k-MIS (mean-pool) 73.56± 1.19 86.98± 1.13 54.00± 0.94 46.73± 0.85 68.60± 0.67

Table 1: Classification accuracy on selected benchmark datasets (mean± std)

ber of nodes from in the TUDataset (Morris et al. 2020)
collection (i.e., DD (Dobson and Doig 2003), GITHUB-
STARGAZERS (Rozemberczki, Kiss, and Sarkar 2020),
REDDIT-BINARY and -MULTI-5K/12K (Yanardag and
Vishwanathan 2015)), where pooling layers may prove more
useful. All datasets were divided in training (70%), valida-
tion (10%), and test (20%) sets using a randomized stratified
split with fixed seed. All models have the same general ar-
chitecture: 3 GNNs (optionally) interleaved by 2 layers of
pooling, a global pooling method (sum and max), and a final
MLP with dropout (Srivastava et al. 2014) as classifier. All
models were trained using Adam optimizer (Kingma and Ba
2017). We performed a model selection using the training
and validation split, and then we computed the average test
set classification accuracy obtained by the best configuration,
on 10 inference runs using different seed values. The hyper-
parameter concerning the reduction factor (k in our case, or r
for other methods) has been chosen among the other parame-
ters during the model selection phase. All models have been
implemented and trained using PyTorch (Paszke et al. 2019)
and PyTorch Geometric (Fey and Lenssen 2019). A detailed
description of the datasets, models, and experimental settings
are provided in the Supplementary Material, together with
additional experiments regarding the controlled scaling and
efficiency of our method, showing that it can reduce graphs
with over 100 million edges in less than 10 seconds.

We compared our reduction method against different kinds
of pooling layers readily available on the PyG library (we
avoided DIFFPOOL-like dense methods as they do not scale
well on the selected datasets), and also against our own
method using random rankings of the nodes, as done in the
aggregation scheme of Bell, Dalton, and Olson (BDO, 2012).
This method, along with the baseline (with no pooling) and
GRACLUS, are the only compared architectures that require
no additional parameters. For our method, the node scoring
function is computed by means of a sigmoid-activated linear
layer having as input the features of the nodes. As in the
other parametric methods, the feature vectors of the nodes
are multiplied by the final score beforehand, to make the
scoring function end-to-end trainable. The computed scores
constitute the node weights and, as described in Section 4,
the resulting ranking is obtained according to Eq. (2). The
reduction is performed in two settings: strided, in which we

perform no aggregation, and pool, in which we aggregate the
feature vectors in each partition using, respectively, max and
mean aggregations.

Looking at Table 1 (where the top two accuracy scores for
each dataset are in boldface) it is immediately evident how
the proposed k-MIS-based approaches obtain consistently
high accuracy, suggesting that the evenly-spaced centroid
selection is indeed able to capture essential properties of each
graph. On the other hand, the random permutation variant
of Bell, Dalton, and Olson (2012), seem to overall perform
worse than the other k-MIS-based strategies, while still ob-
taining a considerable result on DD and REDDIT-B. This
suggests that exploiting the ranking function of Algorithm 1
to select relevant nodes is indeed able to improve the repre-
sentativeness of the downsampled graph. It is also particularly
noteworthy how one of the best performing model, EDGE-
POOL, is also the only other parametric pooling method to
preserve the connectivity of the graph, as its reduction step
consists of contracting a maximal matching. This highlights
the importance of preserving the connectivity of the network
when performing pooling in GNNs, while also suggesting
that evenly-spaced reductions can benefit graph representa-
tion learning tasks. Finally, we observe a remarkable perfor-
mance of the baseline algorithm (no pooling) on the GITHUB
dataset: we may speculate that the graphs are simple enough
to not require pooling, yet at the same time k-MIS approaches
obtains competitive accuracy, suggesting it is a reliable and
versatile choice.

7 Conclusions
We introduced a new general graph coarsening approach that
aims to preserve fundamental topological properties of the
original graph, acting like a structured counterpart of down-
sampling methods for regular data. The coarsening reduction
can be regulated by the parameter k, going from the original
graph, when k = 0, to up to a single node as k approaches
the graph’s diameter, shrinking graphs uniformly as pairwise
distances maintain a stretch controlled by k. Furthermore, we
showed how this parameter generalizes to the pooling and
stride intervals when applied to diagonal grid graphs.

The algorithm is designed to provide such guarantees while
at the same time allowing a scalable parallel implementation,
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which processes graphs with up to 100 million edges in just
a few seconds on a single GPU.

The empirical analysis provided evidence of effectiveness
of our k-MIS pooling in several graph classification bench-
marks, showing superior performance with respect to related
parametric and non-parametric methods from the literature.

This approach fills a methodological gap between reduc-
tion techniques for structured data and their rigorous counter-
parts on regular data. Given its generality and scalability, it
has potential of positively impacting a plethora of computa-
tionally-intense applications for large scale networks, such
as graph visualization, 3D mesh simplification, and classifi-
cation.
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