
Tree Learning: Optimal Sample Complexity and Algorithms

Dmitrii Avdiukhin‡1, Grigory Yaroslavtsev‡2, Danny Vainstein‡3, Orr Fischer‡4, Sauman Das5,
Faraz Mirza5

1 Indiana University, Department of Computer Science
2 George Mason University, Department of Computer Science *

3 Tel-Aviv University, Blavatnik School of Computer Science
4 Weizmann Institute of Science, Department of Computer Science and Applied Mathematics †

5 Thomas Jefferson High School for Science and Technology
davdyukh@iu.edu, orr.fischer@weizmann.ac.il, dannyvainstein@gmail.com, grigory@grigory.us, 2023sdas@tjhsst.edu,

2023fmirza@tjhsst.edu

Abstract

We study the problem of learning a hierarchical tree represen-
tation of data from labeled samples, taken from an arbitrary
(and possibly adversarial) distribution. Consider a collection
of data tuples labeled according to their hierarchical struc-
ture. The smallest number of such tuples required in order to
be able to accurately label subsequent tuples is of interest for
data collection in machine learning. We present optimal sam-
ple complexity bounds for this problem in several learning
settings, including (agnostic) PAC learning and online learn-
ing. Our results are based on tight bounds of the Natarajan
and Littlestone dimensions of the associated problem. The
corresponding tree classifiers can be constructed efficiently
in near-linear time.

1 Introduction
The algorithmic problem of constructing hierarchical data
representations has been of major importance for many
decades, due to its applications in statistics (Ward Jr 1963;
Gower and Ross 1969), entomology (Michener and Sokal
1957), plant biology (Sorensen 1948), genomics (Eisen et al.
1998) and other domains. Efficient collection of labeled data
is a problem of key importance for construction of hierarchi-
cal data representations. In this paper we consider the prob-
lem of constructing tree representations of data from labeled
samples, focusing on understanding the optimal number of
samples required for this task.

The most basic type of a label that allows one to con-
struct a tree representation consists of a triplet of points
(x, y, z) labeled according to the induced hierarchical struc-
ture within the triplet. For example, given images of a cat,
a dog, and a plane, the label would describe the cat and the

*Supported by NSF CCF-1657477 and Facebook Faculty
Award.

†This project is partially funded by the European Research
Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No. 949083).
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

‡These authors contributed equally to this work

a b

c

b d

e

a d

b c e

(a) Triplet labelings (top) and
a tree consistent with the label-
ings (bottom)

a b

c
d

a b d e

a b

c d e

(b) 4-tuple labelings and a tree
consistent with the labelings

Figure 1: An example for the triplet and k-tuple setting,
where two labeled queries and a tree consistent with the
queries are shown. The tree satisfies all hierarchical relations
of both labeled queries. For example, in Figure 1a, the lowest
common ancestor of a and b (denoted LCA(a, b)) is below
LCA(a, c) and LCA(b, c), as in its first labeled query.

dog as being more similar to each other than to the plane.
This “odd one out” type of label is the simplest one to col-
lect in a crowdsourcing setting. In this paper, we focus on
understanding the number of such labeled samples required
in order to construct a tree representation of the underlying
data, which enables one to accurately predict subsequent la-
bels in the future. This is then further generalized to include
larger labeled subsets of data. Figure 1 shows examples of
possible trees consistent with certain tuple labelings.

1.1 Our Results
Let n be the number of points in the dataset. We present
results in two settings: PAC learning and online learning. In
both cases, our objective is to build a classifier that given
access to labeled tuples can predict labels for the subsequent
tuples with high probability.

PAC learning In the Probably Approximately Correct
(PAC) learning setting (Valiant 1984), the tuples are gen-

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

6701

erated from a fixed unknown distribution D. We distinguish
between realizable and agnostic settings. In the realizable
case, it is assumed that the labels are consistent (there exists
a tree that respects all observed labels), and the goal is to pre-
dict their labels with probability at least 1−ϵ, i.e. achieve the
error rate at most ϵ, while providing this guarantee with over-
all probability at least 1 − δ. In the agnostic PAC-learning
case, such a tree does not necessarily exist, and the goal is to
predict the labels with probability at least 1− ϵ− ϵT∗ , where
ϵT∗ is the smallest prediction error among all trees.

In the PAC-learning setting, our main result, which also
holds for non-binary trees, is as follows:

Theorem 1.1 (Informal version of Theorem 4.4). The sam-
ple complexity of (ϵ, δ)-PAC-learning hierarchically labeled
tuples is Θ(nϵ · polylog(

1
ϵ ,

1
δ)) in the realizable settings and

Θ(n
ϵ2 · polylog(

1
ϵ ,

1
δ)) in the agnostic setting.

Online learning In the online learning setting, we have
a stream of labeled tuples that can arrive in an adversarial
order. The accuracy is evaluated sequentially, counting the
overall number of mistakes made by the algorithm through-
out the sequence. In the realizable setting, it is assumed that
the tree generating the labels is fixed in advance and all la-
bels seen by the algorithm are consistent with this tree. In
the agnostic setting, this is no longer assumed, similarly to
the PAC-learning scenario. Our main result in this setting is:

Theorem 1.2 (Informal). On a sequence of triplets of
length T , the number of mistakes made by an online learn-
ing algorithm for predicting their hierarchical structure is
Θ(n log n) in the realizable case. In the agnostic case, the
number of mistakes is at most O(

√
Tn log n log(T)) and at

least Ω(
√
Tn log n) larger than the optimum number of mis-

takes achieved by any tree.

A summary of our results is shown in Table 1 (which hold
for triplet queries and for k-tuples for constant k).

Labeled k-tuples (for constant k)

PAC realizable* Θ(nϵ · polylog(
1
ϵ ,

1
δ))

PAC agnostic* Θ(n
ϵ2 · polylog(

1
ϵ ,

1
δ))

Online realizable** Θ(n log n)

Online agnostic** O(
√
Tn log n log(T)) + OPT,
Ω(
√
Tn log n) + OPT

Table 1: Summary of sample complexities in each setting

1.2 Our Techniques
It is known (e.g. Daniely et al. (2015)) that PAC-learning and
online learning complexities are nearly tightly described in
terms of the Natarajan (Natarajan 1989) and Littlestone (Lit-
tlestone 1987) dimensions respectively. Hence, in this paper,
we focus on tight bounds on the dimensions. Since the exact
definitions are technical, we refer the reader to Definition 2.8
for the precise definition of Natarajan dimension and the full
version for the Littlestone dimension.

Natarajan dimension In the PAC-learning setting, VC-
dimension (Vapnik and Chervonenkis 1971) can be used
to capture query complexity for binary classification prob-
lems. The problem of labeling tuples considered in this pa-
per corresponds to multiclass classification since even for
triplets there are three “odd one out” labels possible. A gen-
eralization of VC-dimension which captures this scenario is
the Natarajan dimension (Natarajan 1989). While it can be
shown via a simple probabilistic argument that this dimen-
sion is O(n log n), we argue that the exact bound is in fact
linear in the number of points, which implies Theorem 1.1.

In this section, we focus on triplet constraints; in the full
version, we show how to reduce k-tuples to triplets. In order
to bound the sample complexity, we use a version of the def-
inition of Natarajan dimension adapted to our setting. Given
a triple ∆ = (a, b, c), we denote an “odd one out” constraint
separating c from a and b as [a, b | c]. For each triplet, there
are 3 possible constraints, i.e. 3 possible labels. We are now
ready to define the notion of Natarajan Shattering.

Definition 1.3 (Natarajan Shattering). Let S =
{(a1, b1, c1), . . . (ak, bk, ck)} be a set of triples of
points. We say S is Natarajan shattered if for ev-
ery triple (ai, bi, ci) ∈ S there exist two dis-
tinct constraints f1(ai, bi, ci), f2(ai, bi, ci) (e.g.
f1(ai, bi, ci) = [ai, ci | bi], f2(ai, bi, ci) = [ai, bi | ci])
on this triple, such that for every subset R ⊆ S there is a
hierarchical tree T for which:
• For every ∆ ∈ R it holds that T satisfies f1(∆),
• For every ∆ ∈ S \R it holds that T satisfies f2(∆).

The Natarajan dimension of the hierarchically labeled tu-
ples is defined as the size of the largest cardinality of a set
which can be Natarajan shattered.

Intuitively, for every triplet in S, we fix 2 labels out of 3
possible. The set is shattered if all possible 2|S| combina-
tions of these labels are realizable by the hypothesis space.

Example. Consider a point set, consisting of 4 points:
a, b, c, d. Consider two sets of triples:

• S1 = {(a, b, c), (b, c, d)}
• S2 = {(a, b, c), (b, c, d), (c, d, a)}.

For S1 we can select f1(a, b, c) = [a, b | c], f2(a, b, c) =
[b, c | a] and f1(b, c, d) = [b, c | d], f2(b, c, d) = [c, d | b].
Then for any of the four subsets of S1 we can create a
tree consistent with the f1 choices on the subset and con-
sistent with the f2 choices otherwise. We show all four re-
sulting trees on Figure 2. It is less straightforward, however,
to check that for the set S2, no possible selection of f1, f2
can be used to satisfy the definition of Natarajan shattering.
This follows from our key technical result.

Theorem 1.4. The Natarajan dimension of hierarchically
labeled triplets on n elements is n− 2

The proof is based on identifying subsets with a certain
property, which we refer to as closed sets (Definition 3.3)
which prevent construction of a consistent tree. We then fur-
ther characterize these sets in terms of easier to define crit-
ical sets (Definition 3.5). We prove that for n − 1 elements
a critical set must exist, which, combined with the fact that

6702

[a, b | c]
[b, c | d]

a b

c
d

[b, c | a]
[b, c | d]

b c

a
d

[a, b | c]
[c, d | b]

a b c d

[b, c | a]
[c, d | b]

c d

b

a

Figure 2: Shattering a set of two triplets {(a, b, c), (b, c, d)}.

a set of consistent n − 2 pairs of constraints exists, gives a
tight bound for the Natarajan dimension.

Littlestone dimension We next show a tight bound on the
Littlestone dimension. For the purpose of the introduction,
it is convenient to view the Littlestone dimension in our set-
ting as follows. Assume that we have two players Alice and
Bob who play the following game for t iterations. Initially,
there is an empty set of constraints C. In every iteration, Al-
ice passes Bob a triplet and two distinct elements from this
triplet. E.g., suppose that the triplet is (a, b, c) and the chosen
elements are a, b. Bob then chooses one of the constraints
where one of the chosen elements is the “odd one out”, i.e.
[b, c | a] or [a, c | b], and adds it to C. The Littlestone dimen-
sion is the maximum number of rounds t for which Alice
has a strategy that results in C admitting a tree that satisfies
all constraints in C, regardless of Bob’s strategy.
Theorem 1.5. The Littlestone dimension of hierarchically
labeled triples is Θ(n log n).

To prove the lower bound on the Littlestone dimension,
we need to describe Alice’s strategy of producing an adap-
tive sequence of queries of size Ω(n log n) such that for any
choice of Bob’s query answers there is a hierarchical tree
consistent with the query answers at the end of the sequence.
The sequence we construct is intuitively a sort tournament
on V , for which there is always some ordering v1, . . . , vn
on the point set V such that if we place the points in order
in a hierarchical tree whose internal nodes are shaped like a
path, this tree satisfies all constraints.

Non-binary trees When all constraints are of type “odd
one out”, it suffices to consider binary trees: if a non-binary
tree is consistent with the constraints, then its binarization
(i.e. we replace a node with ℓ children with an arbitrary bi-
nary tree on these children) is also consistent. However, one
may generalize the problem to non-binary trees by consid-
ering constraints of the form “points i, j and k must be split
simultaneously”. For the PAC-learning setting, in the full
version, we resolve this setting by extending Theorem 1.1
appropriately. In the online learning setting, Theorem 1.2
generalizes as well – the same lower bound holds for the
non-binary setting and the upper bound holds trivially.

1.3 Related Work
An early work by Aho et al. (1981) shows that given ac-
cess to m consistently labeled triples on n vertices, the tree
satisfying them can be constructed in O(mn) time. This

was improved to O(m log2 n) time using the techniques
in Henzinger, King, and Warnow (1999); Holm, de Licht-
enberg, and Thorup (2001), and to O(min(n2,m log n) +√
mn log2.5(n)) by Thorup (1999).
Compared with our settings where we are given queries

from some distribution and aim for a bounded error rate
on unseen triplets, a related line of work considers the
problem of exactly reconstructing the entire tree using
adaptively or non-adaptively chosen triplet queries (see
e.g. Kannan, Lawler, and Warnow (1996); Emamjomeh-
Zadeh and Kempe (2018)). For non-adaptive queries, a
lower bound of Ω(n3) queries precludes any non-trivial
results (Emamjomeh-Zadeh and Kempe 2018). For adap-
tive queries, Θ(n log n) consistent queries and running time
are necessary and sufficient for the construction of the
tree (Kannan, Lawler, and Warnow 1996). This can be ex-
tended to handle a mix of independently correct labels and
adversarial noise, resulting in similar bounds for constant
noise levels (Emamjomeh-Zadeh and Kempe 2018).

In the case when labeled data is allowed to be inconsis-
tent, minimizing the number of disagreements with labeled
triplets is known to be hard to approximate (Chester, Dondi,
and Wirth 2013). Recent work Chatziafratis, Mahdian, and
Ahmadian (2021) gives algorithms for maximizing the num-
ber of agreements between the tree and the labeled data. In a
related line of work, results are known for optimizing certain
objectives while respecting triplet constraints (Chatziafratis,
Niazadeh, and Charikar 2018).

2 Preliminaries
We begin with a formal definition of a hierarchical tree.
Definition 2.1. Given a set of points V , we define a hier-
archical tree T as a binary tree such that V is bijectively
mapped on the leaves of T .

With a slight abuse of notation, for a fixed tree T , we treat
elements of V as the leaves of T . For two leaves i, j and a
hierarchical tree T , we denote the least common ancestor,
i.e. the internal node corresponding to the smallest subtree
containing both i and j, as LCAT (i, j).

Triplet Constraints We are interested in satisfying struc-
tural constraints on the elements of V . We consider different
types of constraints: We first consider constraints on three
elements (triplet constraints), then generalize our result to
an arbitrary number of elements, and then for the case when
the trees are not necessarily binary.
Definition 2.2. For a hierarchical tree T and a triplet of
distinct points (a, b, c) ⊆ V ‡ we say that T satisfies the
constraint denoted [a, b|c] if T cuts c from a and b, i.e.
LCAT (a, c) = LCAT (b, c). We call such a constraint an
orientation of triplet (a, b, c).
Definition 2.3. For a triplet t = (a, b, c) ⊆ V we say that
an orientation of the triplet is a constraint over the nodes
a, b, c, i.e. [a, b | c], [a, c | b], or [b, c | a]. We further denote it
as
−→
t . Given a set of triplets ∆ = {(ai, bi, ci)}i over V , we

‡Since the original order inside the tuples doesn’t matter, with
a slight abuse of notation we treat tuples (e.g. triplets) as sets.

6703

say that an orientation of ∆ is a set of orientations over each
triplet in ∆. We similarly denote it as

−→
∆ .

That is, orientation is a particular choice of constraint(s)
generated based on a given triplet(s). In order to apply our
results in the PAC-learning setting, we are interested in the
sets of constraints that can not be satisfied:

Definition 2.4. We define a set of constraints as contradic-
tory if there is no hierarchical tree that satisfies all con-
straints in the set.

k-tuple constraints Any orientation of a triplet uniquely
defines a tree on this triplet. We can use this intuition to de-
fine constraints on k elements.

Definition 2.5. Let A = (a1, . . . , ak) be a k-tuple, and let
TA be a binary tree with leaves a1, . . . , ak. Then we say
that a binary tree T satisfies constraint TA if any triplet con-
straint [ai, aj | at] satisfied by TA is also satisfied by T .

Definition 2.6. For a given k-tuple (a1, . . . , ak) ⊆ V , an
orientation of the tuple is any constraint on a1, . . . , ak.

Non-binary trees When non-binary trees are allowed,
some nodes i, j, k can be separated at the same time, i.e.
LCAT (a, b) = LCAT (a, c) = LCAT (b, c). We denote such
case as [a|b|c]. Similarly, we allow k-tuple constraints where
multiple elements can be separated at the same time.

Sample complexity Let D be the distribution on X × Y ,
where X is the set of inputs and Y is the set of labels. Let
H ⊆ Y X be a hypothesis space‡. For a given h ∈ H , we
define the error rate as errD(h) = P(x,y)∼D[h(x) ̸= y]. Let
h∗
D = argminh∈H errD(h). We say that the settings are re-

alizable if errD(h∗
D) = 0; otherwise, we say that the settings

are agnostic.

Definition 2.7 (Sample complexity). We define sample com-
plexity mH(ε, δ) as the minimum number of samples, such
that there exists a predictor that, for any distribution D,
given mH(ε, δ) samples from D, achieves error rate at most
errD(h

∗
D) + ϵ with probability at least δ. We denote the

sample complexity as mr
H(ε, δ) for the realizable case and

ma
H(ε, δ) for the agnostic case.

For the binary classification task (|Y | = 2), the sample
complexity can be estimated using VC-dimension (Vapnik
and Chervonenkis 1971). Its analog for the multi-class set-
tings is the Natarajan dimension.

Definition 2.8 (Natarajan dimension (Natarajan 1989)). Let
X be the set of inputs, Y be the set of labels, and let H ⊆
Y X be a hypothesis class. Then S ⊆ X is N-shattered by H
if there exist f1, f2 : X → Y such that f1(x) ̸= f2(x) for
all x ∈ S and for every T ⊆ S there exists g ∈ H such that:

g(x) = f1(x) for x ∈ T and g(x) = f2(x) for x /∈ T

The Natarajan dimension NDim(H) of H is the maximum
size of an N-shattered set.

In our case, the hypothesis space is defined by the set of
constraints induced by all possible hierarchical trees:

‡Y X is the set of all functions X → Y

Definition 2.9. Given a set V be a set and an integer k ≥ 3,
let X be the set of k-tuples on V and Y be the set of orienta-
tions of the k-tuples. Then we use Hk(V) to denote a set of
mappings X → Y such that for each mapping there exists
a hierarchical tree where each k-tuple is oriented according
to the mapping.

The following result gives a tight estimate of the sample
complexity based on the Natarajan dimension of the prob-
lem

Lemma 2.10 (Ben David et al. (1995)). If |Y | < ∞, then
for the sample complexity mr

H(ε, δ), the following holds for
some universal constants C1 and C2 for the realizable case:

mr
H(ε, δ) ≥ C1

NDim(H) + log 1
δ

ε

mr
H(ε, δ) ≤ C2

NDim(H) log 1
ε log |Y |+ log 1

δ

ε
For the agnostic case:

ma
H(ε, δ) ≥ C1

NDim(H) + log 1
δ

ε2

ma
H(ε, δ) ≤ C2

NDim(H) log |Y |+ log 1
δ

ε2

3 Contradictory Orientations
As described in Section 1.2, the key component in our analy-
sis is a tight bound on the Natarajan dimension. To find it, we
first consider a simpler question: “for a given n, what is the
minimum m, such that for any set of m triplets on [n] there
exists a contradictory orientation of these triplets?” Recall
that the definition of the Natarajan dimension restricts the
candidate orientations so that every triplet has only two al-
lowed orientations, giving 2m possible label combinations.
In this section, we answer this question without such a re-
striction, i.e. we check whether all 3m label combinations
are possible‡, and handle the restriction in the next section.
In what follows we prove that m = n− 1.

Theorem 3.1. For any n > 2, any set of triplets of size at
least n− 1 on these points has a contradictory orientation.

3.1 Closed Set
We can think about every constraint [a, b | c] as an edge (a, b)
corresponding to a separate vertex c, and we say that [a, b | c]
“generates” edge (a, b). Clearly, if a hierarchical tree satis-
fies constraint [a, b | c], then there must exist a tree node such
that one child’s subtree contains a and b, and another child’s
subtree contains c. Hence, the tree violates the constraint if
it cuts edge (a, b) before first separating c from a and b.

When building a tree in a top-down manner, a node cor-
responds to a set of elements S ⊆ V , which we want to
partition. When partitioning S, only triplets lying entirely in
S (which we call induced by S) can lead to a contradiction.

Definition 3.2 (Induced triplets/constraints). Let ∆ be a
set of triplets over V and let S ⊆ V . We define the set

‡One may think of this as a naı̈ve generalization of VC shatter-
ing, although not directly applicable to PAC learning

6704

[a, b | c]
[a, c | d]
[a, d | b]

a

b c d

Figure 3: Let S = {a, b, c, d} and
−→
∆ ={

[a, b | c], [a, c | d], [a, d | b]
}

. Since S is connected by
edges generated by

−→
∆ |S , the constraints are contradictory.

When first splitting S, we must cut an edge, which leads to
a contradiction: cutting edge (a, b) violates [a, b | c], cutting
(a, c) violates [a, c | d], and cutting (a, d) violates [a, d | b].

of triplets in ∆ which are induced by S as ∆|S = {t ∈
∆ | t ⊆ S} (i.e., the set of all triplets that lie entirely
within S). Similarly, given a set of constraints C, we define
C|S =

{
[a, b | c] ∈ C | a, b, c ∈ S

}
.

The above reasoning implies that it’s impossible to split a
tree node with set S if it’s connected by the edges generated
by the constraints induced by S, since splitting S would cut
at least one edge (see Figure 3 for example). We will show
that the existence of the hierarchical tree is determined by
the existence of such set S. For fixed ∆, if it’s possible to
orient ∆ so that

−→
∆ |S connects S, we call S a closed set.

Definition 3.3 (Closed set). Let ∆ be a set of triplets over
V . We say that a set S ⊆ V is closed w.r.t. ∆ if there exists
an orientation of ∆ denoted as

−→
∆ , such that E|S = {(a, b) |

[a, b | c] ∈
−→
∆ |S} connects S.

The next Lemma shows that a contradictory orientation ex-
ists iff a closed subset exists. The proof is in the full version.

Lemma 3.4. A set of triplets ∆ over V allows for a contra-
dictory orientation if and only if there exists a set S ⊆ V
that is closed w.r.t. ∆.

The proof idea is the following. If the set is not connected
by the edges generated by

−→
∆ |S , then by separating con-

nected components we don’t cut any edge, and hence don’t
violate any constraints. On the other hand, if the set is con-
nected, when we first split S, we cut at least one edge (a, b)

such that [a, b | c] ∈
−→
∆ |S . But this violates the constraint, as

it requires c to be first separated from a and b.

3.2 Critical Set
We next show that, when ∆ is sufficiently large, there exists
a set S such that we can always construct a contradictory
orientation of ∆|S . We call such a set a critical set.

Definition 3.5 (Critical set). Let ∆ be a set of triplets over
V of size |∆| ≥ |V | − 1. We say that set S ⊆ V is critical
w.r.t. ∆ if it satisfies the following conditions:

• S induces at least |S| − 1 triplets, i.e.
∣∣∣∆|S ∣∣∣ ≥ |S| − 1,

• Among all such sets, S has the minimal cardinality.

Note that this is well defined since V satisfies the condition:
|∆| =

∣∣∣∆|V ∣∣∣ ≥ |V | − 1. Intuitively, |S| − 1 is the mini-
mum possible number of edges which can connect S. The

cb

a

x
y z

cb

a

x
y z

T T

T' T'

Figure 4: A simple case from Theorem 8: selecting orien-
tation [a, b | c] allows one to reorient any edge on the path
from a to b. In this case, on this path, there is an edge (x, y)
generated by constraint [x, y | z], where z belongs to another
spanning tree. Reorienting [x, y | z] connects the trees

surprising fact is that this condition suffices, which leads to
the main result of this section (Theorem 3.1).

Theorem 3.6. Let ∆ be a set of triplets over V of size |∆| ≥
|V | − 1. Then any critical set w.r.t. ∆ is closed w.r.t. ∆.

We present the full proof of Theorem 3.6 in the full ver-
sion. The proof relies on the operation which we call re-
orientation: given constraint [a, b | c], we change it to either
[a, c | b] or [b, c | a], which respectively changes the gener-
ated edge from (a, b) to either (a, c) or (b, c).

The proof is by contradiction: for a critical set S, we as-
sume that no orientation of ∆|S generates edges connecting
S. We consider the orientation whose generated edges result
in the smallest number of connected components. We show
that performing certain reorientations can reduce the number
of connected components, leading to a contradiction.

Since the edges generated by the orientation don’t connect
S, there must exist an “unused” triplet (a, b, c), such that
adding or removing its edges (a, b), (a, c) and (b, c) doesn’t
change the number of connected components. All of a, b, c
belong to the same tree T in the spanning forest of S (other-
wise, we could orient (a, b, c) so that it connects two trees,
reducing the number of connected components). By orient-
ing this triplet as, for example, [a, b | c], we can reorient any
edge on the path from a to b in T without disconnecting
vertices in T . If there exists a reorientation that connects T
to another tree in the spanning forest, using this reorienta-
tion we decrease the number of connected components, as
shown in Figure 4. Such a reorientation might not always be
immediately available, but we show that it’s always possi-
ble to build a chain of reorientations so that the number of
connected components decreases.

k-tuples In the full version, we show that any set of k-
tuples of size at least

⌈
|V |−1
k−2

⌉
has a contradictory specifica-

tion and that the bound is tight for k-tuples‡. The main idea
is that, for the sake of analysis, we can replace a k-tuple with
k − 2 “independent” triplets, meaning that all 3k−2 orienta-
tions of these triplets are not contradictory. Namely, all the
triplets share two elements and differ in the third one.

Non-binary trees When constraints of form [a, b | c] are
allowed, after adjusting the definitions, the overall idea is

‡As we show in the next section, the 1/(k−2) factor doesn’t prop-
agate to the sample complexity

6705

a

b
c

a

b
c

Figure 5: Given constraint [a|b|c], when a and b are con-
nected, we can also connect them to c

the same: a contradictory orientation exists iff a closed set
exists, and any critical set is closed. While the definition of
a critical set doesn’t change – it’s a minimum-size set S with
at least |S| − 1 induced edges – the definition of a closed set
changes substantially, as described next.

As before, we have a set E = E|S of edges induced by S,
but now constraints of form [a|b|c] may produce additional
edges. The main idea is as follows: if e.g. a and b are already
connected by E , they can’t be separated by the first cut. But
by definition of [a|b|c], c also can’t be separated from a and
b by the first cut. Since we perform the first cut based on
the connectivity of the set, the fact that c can’t be separated
from a and b can be expressed by adding edge (a, c), i.e.
E ← E ∪ {(a, c)}, hence connecting a, b and c (Figure 5).

Now, we can say that S is closed w.r.t. ∆ if there exists
an orientation of ∆ such that S is connected after perform-
ing all such possible operations. Similarly to the binary-tree
case, the existence of such a set implies a contradictory ori-
entation. This intuition is formalized in the full version.

Obviously, critical sets are closed: by only using con-
straints of type [a, b | c], we can use Theorem 3.6 directly.
However, constraints of type [a|b|c] result in an additional
option in the definition of N-shattering (we have to choose 2
labels out of 4 instead of 3), and hence the Natarajan dimen-
sion can potentially increase. In the next section, we show
that this is not the case for our problem.

4 PAC-Learning and Natarajan Dimension
In this section, we present tight sample complexity bounds
for PAC learning for k-tuple constraints. Recall that the set
∆ = {ti}ni=1 of k-tuples is N-shattered if for every k-tuple ti
we can select two different orientations

−→
t
(1)
i and

−→
t
(2)
i such

that every combination of orientations of different k-tuples
is not contradictory, i.e. for any f : [n]→ [2] the orientation
{−→t (f(i))

i }ni=1 is not contradictory. Given the Natarajan di-
mension, Lemma 2.10 gives the tight bound on sample com-
plexity up to the factor O(1ε log |Y |), and |Y | is constant for
constant k. We first lower-bound the Natarajan dimension:

Lemma 4.1. For any V and k ≥ 3, we have
NDim(Hk(V)) ≥ |V | − k + 1.

Proof. Let A be an arbitrary subset of V of size k − 1, and
let B = V \ A. We construct the set of k-tuples as ∆ =
{A ∪ {b} | b ∈ B}. Let TA be an arbitrary hierarchical tree
on A. For each A ∪ {b} ∈ ∆, we construct the orientations
as follows: we replace a leaf a of TA with a new node with
two children: a and b. By choosing two different leaves, we
obtain two different orientations of A ∪ {b}, as required by
the definition of N-shattering.

a

c

b
a

c

b

Figure 6: Theorem 4.2: when orientation [a, b | c] is not al-
lowed, we can reorient it while preserving connectivity

It’s easy to check that ∆ is N-shattered using these ori-
entations: all elements from A are in agreement across
all constraints since they all are oriented according to TA,
while every element from B participates in only one con-
straint, and hence can’t lead to a contradiction. Therefore,
NDim(Hk(V)) ≥ |B| = |V | − k + 1.

Next, we upper-bound the Natarajan dimension for triplets
using results from Section 3.

Theorem 4.2. NDim(H3(V)) = |V | − 2 for any V .

We provide the full proof in the full version. First, note
that the result doesn’t immediately follow from Theorem 3.6
since Theorem 3.6 finds a contradictory orientation among
all possible 3m orientations of m constraints. However,
Natarajan shattering allows us to choose one of only two
orientations of each triplet, i.e. it allows 2m possible orien-
tations. Hence, we need to handle the case when the contra-
dicting orientation from Theorem 3.6 orients some triplet in
a non-allowed way.

Let S be a critical set,
−→
∆ |S be its induced orientation con-

necting S, and [a, b|c] ∈
−→
∆ |S be a non-allowed orientation

of a triplet. Note that it means that both remaining orienta-
tions [a, c|b] and [b, c|a] are allowed. If removing edge (a, b)
doesn’t disconnect S, we reorient it arbitrarily. Otherwise,
removing (a, b) separates S into two connected components.
We reorient (a, b) in the following way: if c belongs to the
same part as a, then we use edge (b, c); otherwise, we use
edge (a, c). As shown in Figure 6, such reorientation pre-
serves connectivity of S. Combining Lemma 4.1 and Theo-
rem 4.2 yields the following corollary.

Corollary 4.3. For any V and k ≥ 3, we have |V |−k+1 ≤
NDim(Hk(V)) ≤ |V | − 2.

Combined with Lemma 2.10, it gives our main result.

Theorem 4.4. For constant k, the sample complexity
of learning hierarchically labeled k-tuples, denoted by
mr

Hk
(ε, δ) in the realizable setting and ma

Hk
(ε, δ) in the ag-

nostic setting, is bounded by:

C1

n+ log 1
δ

ε
≤ mr

Hk
(ε, δ) ≤ C2

n log 1
ε + log 1

δ

ε

C1

n+ log 1
δ

ε2
≤ ma

Hk
(ε, δ) ≤ C2

n+ log 1
δ

ε2

In the full version, we prove that the identical result holds
for the non-binary case. The proof idea is similar to that of
Theorem 4.2, with the only change that we must handle the
case when [a|b|c] is one of the allowed constraints.

6706

5 Experiments
In this section, we empirically verify our theoretical find-
ings by evaluating the prediction accuracy of binary trees
constructed from labeled triplets on the unlabeled triplets
from the same distribution. We consider the binary real-
izable case, when the triplets are labeled according to a
ground-truth binary tree, the binary agnostic case, and the
non-binary realizable case.

We build a tree using a top-down algorithm. Every tree
node corresponds to a set, and we build a graph described
in Section 3.1. When possible, we separate the connected
components, but in the agnostic case the graph might be con-
nected, and we partition the graph using the minimum cut,
which is known to achieve O(n) approximation.

Datasets For the realizable case, we perform experiments
on randomly generated trees and on ImageNet (Deng et al.
2009) hierarchy‡. For non-binary tree experiments (see the
full version), we use the full hierarchy (48,860 points), while
for binary tree experiments, we sample 256 leaves that in-
duce a binary subtree.

For the agnostic case, we consider 2 datasets: 1) randomly
sampled vectors from the uniform distribution on [0, 1]100

and 2) Spambase‡ dataset containing feature vectors for
4601 different emails for the purpose of spam detection.

Binary Realizable case Given a ground-truth tree, we
sample triplets from this tree uniformly at random. Since
the orientations for these triplets are not contradictory, we
can construct a tree and make predictions according to the
tree. We first build a non-binary tree using the algorithm de-
scribed in Aho et al. (1981), and then binarize it by replacing
non-binary nodes with random binary trees on their children.

For this approach, Figure 7a shows the dependence of the
error rate on k, where k is the ratio of the number of samples
to the number of labels. The results imply that the error rate
depends on k and is independent of the number of leaves or
other properties of the ground-truth tree. From Theorem 4.4
we know that the sample complexity is roughly proportional
to n

ε , and hence we expect ε · k = ε
n · nsamples to be approx-

imately constant. Figure 7b confirms this hypothesis since
ε · k is approximately 0.4 for various values of n and k.

Agnostic case For this scenario, we assume that the input
is vectors in the Euclidean space, and we generate triplet
constraints as follows. Given a triplet of vectors (a, b, c), we
create constraint [a, b | c] if ∥a−b∥ ≤ min(∥a−c∥, ∥b−c∥).
Such constraints can be contradictory if the dataset is not hi-
erarchical, meaning that the setting is agnostic. Similarly to
the realizable case, Figure 8 shows the dependence of the
error rate on k, where k is the ratio of the number of sam-
ples to the number of labels. Since random vectors don’t
have any hierarchical structure, known samples don’t pro-
vide sufficient information about the unseen samples, and
hence the error rate is close to trivial 2/3 regardless of k. On

‡https://github.com/waitwaitforget/ImageNet-Hierarchy-
Visualization

‡UCI Machine Learning Repository: http://archive.ics.uci.edu/
ml

(a) Prediction error depending on the number of samples for a ran-
dom tree with n ∈ {100, 500} nodes, and the ImageNet hierarchy.
For each dataset, we average the results over 10 runs, and the error
bars correspond to 10% and 90% quantiles.

(b) For random trees with n nodes, we show dependence of k · err
on k, where k as the ratio of number of samples to n. As Theo-
rem 4.4 indicates, this number is close to a constant for different n
and k. Each data point shows the mean values over 10 runs.

Figure 7: Binary Realizable case

Figure 8: Agnostic case. Prediction error depending on the
number of samples. We sample n random 100-dimensional
vectors and a subset of the Spambase dataset of size n.

the other hand, since Spambase feature vectors have a hierar-
chical structure, they error rate on this dataset is significantly
lower and slowly decreases with k.

6 Conclusion
In this paper we give almost optimal bounds on the sam-
ple complexity of learning hierarchical tree representations
of data from labeled tuples in both distributional (PAC-
learning) and online case. Our experimental results confirm
the convergence bounds predicted by the theory on trees
generated from the ImageNet dataset.

6707

References
Aho, A. V.; Sagiv, Y.; Szymanski, T. G.; and Ullman, J. D.
1981. Inferring a tree from lowest common ancestors with
an application to the optimization of relational expressions.
SIAM Journal on Computing, 10(3): 405–421.
Ben David, S.; Cesabianchi, N.; Haussler, D.; and Long,
P. M. 1995. Characterizations of learnability for classes of
(0,..., n)-valued functions. Journal of Computer and System
Sciences, 50(1): 74–86.
Chatziafratis, V.; Mahdian, M.; and Ahmadian, S. 2021.
Maximizing Agreements for Ranking, Clustering and Hier-
archical Clustering via MAX-CUT. In Banerjee, A.; and
Fukumizu, K., eds., The 24th International Conference on
Artificial Intelligence and Statistics, AISTATS 2021, April
13-15, 2021, Virtual Event, volume 130 of Proceedings of
Machine Learning Research, 1657–1665. PMLR.
Chatziafratis, V.; Niazadeh, R.; and Charikar, M. 2018. Hi-
erarchical Clustering with Structural Constraints. In Dy,
J. G.; and Krause, A., eds., Proceedings of the 35th In-
ternational Conference on Machine Learning, ICML 2018,
Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018,
volume 80 of Proceedings of Machine Learning Research,
773–782. PMLR.
Chester, A.; Dondi, R.; and Wirth, A. 2013. Resolving
Rooted Triplet Inconsistency by Dissolving Multigraphs. In
Chan, T. H.; Lau, L. C.; and Trevisan, L., eds., Theory and
Applications of Models of Computation, 10th International
Conference, TAMC 2013, Hong Kong, China, May 20-22,
2013. Proceedings, volume 7876 of Lecture Notes in Com-
puter Science, 260–271. Springer.
Daniely, A.; Sabato, S.; Ben-David, S.; and Shalev-Shwartz,
S. 2015. Multiclass learnability and the ERM principle. J.
Mach. Learn. Res., 16: 2377–2404.
Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; and Fei-
Fei, L. 2009. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, 248–255. Ieee.
Eisen, M. B.; Spellman, P. T.; Brown, P. O.; and Botstein,
D. 1998. Cluster analysis and display of genome-wide ex-
pression patterns. Proceedings of the National Academy of
Sciences, 95(25): 14863–14868.
Emamjomeh-Zadeh, E.; and Kempe, D. 2018. Adaptive Hi-
erarchical Clustering Using Ordinal Queries. In Czumaj,
A., ed., Proceedings of the Twenty-Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2018, New Or-
leans, LA, USA, January 7-10, 2018, 415–429. SIAM.
Gower, J. C.; and Ross, G. J. 1969. Minimum spanning trees
and single linkage cluster analysis. Journal of the Royal
Statistical Society: Series C (Applied Statistics), 18(1): 54–
64.
Henzinger, M. R.; King, V.; and Warnow, T. J. 1999. Con-
structing a Tree from Homeomorphic Subtrees, with Appli-
cations to Computational Evolutionary Biology. Algorith-
mica, 24(1): 1–13.
Holm, J.; de Lichtenberg, K.; and Thorup, M. 2001. Poly-
logarithmic deterministic fully-dynamic algorithms for con-

nectivity, minimum spanning tree, 2-edge, and biconnectiv-
ity. J. ACM, 48(4): 723–760.
Kannan, S.; Lawler, E. L.; and Warnow, T. J. 1996. Deter-
mining the Evolutionary Tree Using Experiments. J. Algo-
rithms, 21(1): 26–50.
Littlestone, N. 1987. Learning Quickly When Irrelevant At-
tributes Abound: A New Linear-threshold Algorithm. Mach.
Learn., 2(4): 285–318.
Michener, C. D.; and Sokal, R. R. 1957. A quantitative ap-
proach to a problem in classification. Evolution, 11(2): 130–
162.
Natarajan, B. K. 1989. On Learning Sets and Functions.
Mach. Learn., 4: 67–97.
Sorensen, T. A. 1948. A method of establishing groups of
equal amplitude in plant sociology based on similarity of
species content and its application to analyses of the vegeta-
tion on Danish commons. Biol. Skar., 5: 1–34.
Thorup, M. 1999. Decremental Dynamic Connectivity. J.
Algorithms, 33(2): 229–243.
Valiant, L. G. 1984. A Theory of the Learnable. Commun.
ACM, 27(11): 1134–1142.
Vapnik, V.; and Chervonenkis, A. Y. 1971. On the Uniform
Convergence of Relative Frequencies of Events to Their
Probabilities. Theory of Probability and its Applications,
16(2): 264.
Ward Jr, J. H. 1963. Hierarchical grouping to optimize an
objective function. Journal of the American statistical asso-
ciation, 58(301): 236–244.

6708

