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Abstract

Clustering with outliers is one of the most fundamental prob-
lems in Computer Science. Given a set X of n points and
two integers k and m, the clustering with outliers aims to ex-
clude m points from X, and partition the remaining points
into k clusters that minimizes a certain cost function. In this
paper, we give a general approach for solving clustering with
outliers, which results in a fixed-parameter tractable (FPT) al-
gorithm in k£ and m (i.e., an algorithm with running time of
the form f(k,m) - n®®Y) for some function f), that almost
matches the approximation ratio for its outlier-free counter-
part.

As a corollary, we obtain FPT approximation algorithms with
optimal approximation ratios for k-MEDIAN and k-MEANS
with outliers in general metrics. We also exhibit more appli-
cations of our approach to other variants of the problem that
impose additional constraints on the clustering, such as fair-
ness or matroid constraints.

Introduction

Clustering is a family of problems that aims to group a given
set of objects in a meaningful way—the exact “meaning”
may vary based on the application. These are fundamen-
tal problems in Computer Science with applications rang-
ing across multiple fields like pattern recognition, machine
learning, computational biology, bioinformatics and social
science. Thus, these problems have been a subject of exten-
sive studies in the field of Algorithm Design (and its sub-
fields), see for instance, the surveys on this topic (and ref-
erences therein) (Xu and Tian 2015; Rokach 2009; Blomer
et al. 2016).

Two of the central clustering problems are k-MEDIAN
and k-MEANS. In the standard £-MEDIAN problem, we are
given a set X of n points, and an integer &, and the goal is

“The authors are listed in the alphabetical order of the last
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to find a set C* C X of at most k centers, such that the fol-
lowing cost function is minimized over all subsets C' of size
at most k.

cost(X,C) = Z rcréigd(p, c)
pEX
In k-MEANS, the objective function instead contains the
sum of squares of distances.

Often real world data are contaminated with a small
amount of noise and these noises can substantially change
the clusters that we obtain using the underlying algorithm.
To circumvent the issue created by such noises, there are
several studies of clustering problems with outliers, see
for instance, (Chen 2008; Krishnaswamy, Li, and Sandeep
2018; Goyal, Jaiswal, and Kumar 2020; Feng et al. 2019;
Friggstad et al. 2019; Almanza et al. 2022).

In outlier extension of the k-MEDIAN problem, which we
call k-MEDIANOUT, we are also given an additional inte-
ger m > 0 that denotes the number of outliers that we are
allowed to drop. We want to find a set C of at most k£ cen-
ters, and a set Y C X of at most m outliers, such that
cost(X \ Y, C) = 3 c x\y mincec d(p, ¢) is minimized
over all (Y, C) satisfying the requirements. Observe that the
cost of clustering for k-MEDIANOUT equals the sum of dis-
tances of each point to its nearest center, after excluding a set
of m points from consideration !. We remark that in a simi-
lar spirit we can define the outlier version of the k-MEANS
problem, which we call k-MEANSOUT.

In this paper, we will focus on approximation algorithms.
An algorithm is said to have an approximation ratio of o, if
it is guaranteed to return a solution of cost no greater than «
times the optimal cost, while satisfying all other conditions.
That is, the solution must contain at most k centers, and drop
m outliers. If the algorithm is randomized, then it must re-
turn such a solution with high probability, i.e., probability at
least 1 — n™° for some ¢ > 1.

For a fixed set C' of centers, the set of m outliers is auto-
matically defined, namely the set of m points that are far-
thest from C' (breaking ties arbitrarily). Thus, an optimal

'In the technical section, we consider a more general formu-
lation of k-MEDIAN, where the set of candidate centers may be
different from the set X of points to be clustered.



clustering for k.-MEDIANOUT, just like k-MEDIAN, can be
found in n®*) time by enumerating all center sets. On the
other hand, we can enumerate all n® (™) subsets of outliers,
and reduce the problem directly to k-MEDIAN. Other than
these straightforward observations, there are several non-
trivial approximations known for k-MEDIANOUT, which
we discuss in a subsequent paragraph.

Our Results. In this work, we describe a general frame-
work that reduces a clustering with outliers problem (such as
k-MEDIANOUT or k-MEANSOUT) to its outlier-free coun-
terpart in an approximation-preserving fashion. More specif-
ically, given an instance Z of k-MEDIANOUT, our reduction
runs in time f(k,m,¢) - n®1), and produces multiple in-
stances of k-MEDIAN, such that a S-approximation for at
least one of the produced instances of k-MEDIAN implies
a (8 + e)-approximation for the original instance Z of k-
MEDIANOUT. This is the main result of our paper.

Our framework does not rely on the specific properties of
the underlying metric space. Thus, for special metrics, such
as Euclidean spaces, or shortest-path metrics induced by
sparse graph classes, for which FPT (1 + €)-approximations
are known for k-MEDIAN, our framework implies match-
ing approximation for k-MEDIANOUT. Finally, our frame-
work is quite versatile in that one can extend it to obtain
approximation-preserving FPT reductions for related clus-
tering with outliers problems, such as k-MEANSOUT, and
clustering problems with fair outliers (such as (Bandyapad-
hyay et al. 2019; Jia, Sheth, and Svensson 2020)), and MA-
TROID MEDIAN WITH OUTLIERS. We conclude by giving
a partial list of the corollaries of our reduction framework.
The running time of each algorithm is f(k,m, €) - n®™) for
some function f that depends on the problem and the set-
ting. Next to each result, we also cite the result that we use
as a black box to solve the outlier-free clustering problem.

* (1+2/e+¢€) ~ (1.74 + €)-approximation (resp. 1 +
8/e + ¢)-approximation) for k-MEDIANOUT (resp. k-
MEANSOUT) in general metrics (Cohen-Addad, Saulpic,
and Schwiegelshohn 2021). These approximations are
tight even for m 0, under a reasonable complexity
theoretic hypothesis, as shown in the same paper.

~
~

* (1 + e€)-approximation for k-MEDIANOUT and k-
MEANSOUT in (i) metric spaces of constant doubling di-
mensions, which includes Euclidean spaces of constant
dimension, (ii) metrics induced by graphs of bounded
treewidth, and (iii) metrics induced by graphs that ex-
clude a fixed graph as a minor (such as planar graphs).
(Cohen-Addad, Saulpic, and Schwiegelshohn 2021).

* (2 + ¢)-approximation for MATROID MEDIAN WITH
OUTLIERS in general metrics, where k refers to the rank
of the matroid. (Cohen-Addad et al. 2019)

* (14 2/e+ ¢€)-approximation for COLORFUL k-MEDIAN
in general metrics, where m denotes the total number
of outliers across all color classes (Cohen-Addad et al.
2019). The preceding two problems are orthogonal gen-
eralizations of k-MEDIANOUT, and are formally defined
in Section .
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Our Techniques. Our reduction is inspired from the
following seemingly simple observation that relates k-
MEDIANOUT and k-MEDIAN. Let Z be an instance of k-
MEDIANOUT, where we want to find a set C' of k centers,
such that the sum of distances of all except at most m points
to the nearest center in C' is minimized. By treating the out-
liers in an optimal solution for Z as virtual centers, one ob-
tains a solution for (k+m)-MEDIAN without outliers whose
cost is at most the optimal cost of Z. In other words, the op-

timal cost of an appropriately defined instance 7 of (k+m)-
MEDIAN is a lower bound on the optimal cost of Z. Since k-
MEDIAN is a well-studied problem, at this point, one would

hope that it is sufficient to restrict the attention to Z. That
is, if we obtain a solution (i.e., a set of k + m centers) for

7T, can then be modified to obtain a solution (i.e., a set of k
centers and m outliers) for Z. However, it is unclear whether
one can do such a modification without blowing up the cost

for 7. Nevertheless, this connection between Z and Z turns
out to be useful, but we need several new ideas to exploit it.

As in before, we start with a constant approximation for

7, and perform a sampling similar to (Chen 2009) to obtain
a weighted set of points. This set is obtained by dividing
the set of points connected to each center in the approx-
imate solution into concentric rings, such that the “error”
introduced in the cost by treating all points in the ring as
identical is negligible. Then, we sample O((k +m)logn/e)
points from each ring, and give each point an appropriate
weight. We then prove a crucial concentration bound (cf.
Lemma 1), which informally speaking relates the connec-
tion cost of original set of points in a ring, and the corre-
sponding weighted sample. In particular, for any set of k
centers, with good probability, the difference between the
original and the weighted costs is “small”, even after exclud-
ing at most m outliers from both sets. Intuitively speaking,
this concentration bound holds because the sample size is
large enough compared to both & and m. Then, by taking
the union of all such samples, we obtain a weighted set .S of
O(((k + m) logn/€)?) points that preserves the connection
cost to any set of k centers, even after excluding m outliers
with at least a constant probability. Then, we enumerate all
sets Y of size m from S, and solve the resulting k-MEDIAN
instance induced on S \ Y. Finally, we argue that at least
one of the resulting instances Z’ will have the property that,
a [-approximation for Z’ implies a (5 + €)-approximation
forZ.

Related Work. The first constant approximation for k-
MEDIANOUT was given by (Chen 2008) for some large
constant. More recently, (Krishnaswamy, Li, and Sandeep
2018; Gupta, Moseley, and Zhou 2021) gave constant ap-
proximations based on iterative LP rounding technique, and
the 6.994-approximation by the latter is currently the best
known approximation. These approximation algorithms run
in polynomial time in n. (Krishnaswamy, Li, and Sandeep
2018) also give the best known polynomial approximations
for related problems of k-MEANSOUT and MATROID ME-
DIAN.

Now we turn to FPT approximations, which is also the



setting for our results. To the best of our knowledge, there
are three works in this setting, (Feng et al. 2019; Goyal,
Jaiswal, and Kumar 2020; Statman, Rozenberg, and Feld-
man 2020). The idea of relating k-MEDIAN WITH m OUT-
LIERS to (k + m)-MEDIAN that we discuss above is also
present in these works. Even though it is not stated explic-
itly, the approach of Statman et al. (Statman, Rozenberg,
and Feldman 2020) can be used to obtain FPT approxi-
mations in general metrics; albeit with a worse approxima-
tion ratio. However, by using additional properties of Eu-
clidean k-MEDIANOUT/k-MEANSOUT (where one is al-
lowed to place centers anywhere in R?) their approach yields
a (1+ e)-approximation in FPT time. The best FPT approxi-
mations in general metrics, to the best of our knowledge, are
3 + € for k-MEDIANOUT by Goyal et al. (Goyal, Jaiswal,
and Kumar 2020), and 6 + € for k-MEANSOUT by Feng
et al. (Feng et al. 2019). Thus, our FPT approximation algo-
rithms with ratio 1+ % +¢€ for k-MEDIANOUT, and 1+ % +e
for k.-MEANSOUT improve on these results. Furthermore,
our result is essentially an approximation-preserving reduc-
tion from k-MEDIANOUT to k-MEDIAN in the same kind
of metric, which automatically yields improved approxima-
tions in some special metrics as discussed earlier.

On the lower bound side, (Guha and Khuller 1999)
showed it is NP-hard to approximate k-MEDIAN (and thus
k-MEDIANOUT) within a factor 1 + 2/e — ¢ for any € > 0.
Recently, (Cohen-Addad et al. 2019) strengthened this re-
sult under a reasonable complexity-theory hypothesis, and
showed that an (1 4 2/e — €)-approximation algorithm must

© . .
take at least n** " time for some function g().

Bicriteria approximations relax the strict requirement of
using at most k centers, or dropping at most m outliers, in
order to give improved approximation ratios, or efficiency
(or both). For k-MEDIANOUT, (Charikar et al. 2001) gave a
4(1+1/¢)-approximation, while dropping m(1+¢) outliers.
(Gupta et al. 2017) gave a constant approximation based on
local search for k-MEANSOUT that drops O(km log(nA))
outliers, where A is the diameter of the set of points. (Frig-
gstad, Rezapour, and Salavatipour 2019) gave a (25 + ¢)-
approximation that uses k(1 + €) centers but only drops
m outliers. In Euclidean spaces, they also give a (1 + ¢)-
approximation that returns a solution with k(1 + €) centers.

Preliminaries

Basic notions. Let (I',d) be a metric space, where T is
a finite set of points, and d : I' x I' — R is a dis-
tance function satisfying symmetry and triangle inequal-
ity. For any finite set S C I and a point p € T,
we let d(p,S) = mingesd(p,S), and let diam(S)
max, yes d(z,y). For two non-empty sets S,C C T, let
d(S,C) = minyegd(p, S) = minyes min.ec d(p, ¢). For
apointp € I';r > 0, and a set C C T, let Bo(p,r) =
{g € C :d(p,c) < r}.Let T be a finite (multi)set of n real
numbers, for some positive integer n, and let 1 < m < n.
Then, we use the notation sum..,,,(T) to denote the sum of
n — m smallest values in 7" (including repetitions in case of
a multi-set).

6668

The k-median problem. In the k-MEDIAN problem, an
instance is a triple Z = (X, F, k), where X and F are finite
sets of points in some metric space (I',d), and k£ > 1 is an
integer. The points in X are called clients, and the points in
F are called facilities or centers. The task is to find a subset
C' C F of size at most k£ that minimizes the cost function

cost(X,C) = Z d(p,C).

peEX

The size of an instance Z = (X, F, k) is defined as |Z| =
|X U F'|, which we denote by n.

k-median with outliers. The input to k-MEDIANOUT
contains an additional integer 0 < m < n, and thus
an instance is given by a 4-tuple Z = (X, F,k,m). Let
C C F be a set of facilities. We define cost,,(X,C) =
sum.{cost(p, C) : p € X}, i.e., the sum of n—m smallest
distances of points in X to the set of centers C'. The goal is to
find a set of centers C' minimizing cost,, (X, C) over all sets
C C F of size at most k. Given a set C' C I of centers, we
denote the corresponding solution by (Y, C'), where Y C X
is a set of m outlier points in X with largest distances real-
izing cost,,, (X, C). Given an instance Z of k-MEDIANOUT,
we use OPT(Z) to denote the value of an optimal solution
toZ.

Weighted sets and random samples. During the course
of the algorithm, we will often deal with weighted sets of
points. Here, S C X is a weighted set, with each pointp € .S
having integer weight w(p) > 0. For any set C C F and
1 < m < |§|, define wcost,, (S, C) = sum~,, {d(p,C) -
w(p) : p € S}. A random sample of a finite set S refers to
a random subset of .S. Throughout this paper, random sam-
ples are always generated by picking points uniformly and
independently.

k-Median with Outliers

In this section, we give our FPT reduction from k-
MEDIANOUT to the standard k-MEDIAN problem. For-
mally, we shall prove the following theorem.

Theorem 1. Suppose there exists a [(-approximation al-
gorithm for k-MEDIAN with running time T(n,k), and
a T-approximation algorithm for k + m-MEDIAN with
polynomial running time, where 3 and T are constants.
Then there exists a (8 + €)-approximation algorithm for

k-MEDIANOUT with running time (’H'Tm)o(m) -T(n,k) -

n®W), where n is the instance size and m is the number of

outliers.

Combining the above theorem with the known (1 + 2/e +
€)-approximation k-median algorithm (Cohen-Addad et al.
2019) that runs in (k/e)°*) . n®) time, we directly have
the following result.

Corollary 1. There exists a (1+2/e + €)-approximation al-

gorithm for k-MEDIANOUT with running time (££) om),

€
ok ) . ) )
k) k), nP®)  where n is the instance size and m is the

number of outliers.



The rest of this section is dedicated to proving Theorem 1.
LetZ = (X, F, k,m) be an instance of k-MEDIANOUT. We
define a (k+m)-MEDIAN instance Z' = (X, FUX, k+m),
where in addition to the original set of facilities, there is a
facility co-located with each client. We have the following
observation.

Observation 1. OPT(Z') < OPT(Z), i.e., the value of an
optimal solution to Z’ is a lower bound on the value of an
optimal solution to Z.

Proof. Let (Y*,C*) be an optimal solution to Z realizing
the value OPT(Z). We define a solution (Y’,C") for 7' as
follows: let Y’ = X, and C' = C* U Y*. That is, the set of
centers C’ is obtained by adding a facility co-located with
each outlier point from Y *. Now we argue about the costs.
Since C* C ', for each pointp € Y*,d(p,C") < d(p, C*).
On the other hand, for each ¢ € X \ Y*, d(¢,C’) = 0,
since there is a co-located center in C*. This implies that
costo(X,C") < cost,, (X, C). Since the solution (Y, C")
is feasible for the instance Z’, it follows that OPT(Z') is no
larger than the cost costo (X, C"). O

Now, we use T-approximation algorithm guaranteed by
the theorem, for the instance Z’, and obtain a set of at
most k' < k + m centers A such that costo(X,A) <
7-OPT(Z') < 7 - OPT(Z). By assumption, running this
algorithm takes polynomial time. Let R = w be a
lower bound on average radius, and ¢ = [log(7n)]. For
each center ¢; € A, let X; C X denote the set of points
whose closest center in A is ¢;. By arbitrarily breaking ties,
we can assume that the sets X; are disjoint, i.e., {X; }1<i<i
forms a partition of X. Now we further partition each X
into smaller groups such that the points in each group have
similar distances to ¢;. Specifically, we define

v, . {Bxilei, R)
R Bxi(ci,QjR) \ Bxi (Ci,2j_1R)

if j =0,
ifj > 1.

Let s = c:—;(erklnnJrln(l/)\)), for some large
enough constant ¢. We define a weighted set of points
Si; € X, ; as follows. If | X ;| < s, then we say X ; is
small. In this case, define S; ; = X, ; and let the weight
w;,; of each point p € S; ; be 1. Otherwise, | X; ;| > s
and we say that X ; is large. In this case, we take a ran-
dom sample S; ; C X ; of size s. We set the weight of
every point in S; ; to be w; ; = |X; ;|/|S;,;|. For conve-
nience, assume the weights w; ; to be integers 2. Finally, let
S =, ; Si,;- The set S can be thought of as an e-coreset
for the k-MEDIANOUT instance Z. Even though we do not
define this notion formally, the key properties of .S will be
proven in Lemma 2 and 3. Thus, we will often informally
refer to S as a coreset.

Proposition 1. We have |S| = O(((k + m)logn/e)?) if A
is a constant.

[ X451
[Si, 4]
ignore this technicality for now, and discuss in the full version how
to modify the construction slightly to ensure that the weights are
integral.

*For a large X ;, the quantity

may not be an integer. We
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Proof. Forany p € X, d(p, A) < costy(X,A) =7 R <
29 R. Therefore, for anyc; € Aand j > ¢, X; ;v = (), and
X; = Uj‘):o X ;. It follows that the number of non-empty
sets X; ; is at most | A - (1 +1log(tn)) = O((k+m)logn),
since |A| < k 4+ m and 7 is a constant. For each non-empty
X5 1Si ] <28 =O((m+ klogn)/e?), if A is a constant.
Since S = J, ; 5i,;, the claimed bound follows. O

Proposition 2. (Chen 2009; Haussler 1992) Let M > 0
and 1 be fixed constants, and let h(-) be a function defined
on a set V such that n < h(p) < n+ M forallp € V.
Let U C V be a random sample of size s, and 6 > 0 be a

parameter. If s > % In(2/X), then
h(V) MUW }
Pr||—= — —=| > 4| <A\,
[|V| U]

where h(U) == 3" iy h(w), and h(V) ="y, h(v).
Lemma 1. Let (I', d) be a metric space, V' C I be a finite
set of points, ', £ > 0, ¢ > 0 be parameters, and define
s = g% (q +In %) Suppose U C V is a random sample of
size s’. Then for any fixed finite set C C F with probability
at least 1 — )\’ it holds that for any 0 < ¢ < ¢,

[costy(V, C) — weosty (U, C)] < £|V|(diam(V)+d(V; C)),
where t' = [t|U|/|V|] and w(u) = |V|/|U|forallu € U.

Proof. Throughout the proof, we fix the set C C F and
0 < t < gq as in the statement of the lemma. Next,
we define the following notation. For each v € V, let
h(v) = d(v,C),and let h(V) := 3" ., h(v), and h(U) =
> wew h(w). Analogously, let 2/(V) = cost,(V,C), and
R(U) = costy (U,C). Let n(V) = minyey d(v,C), and
n(U) == minyey d(u, C

By applying Proposition 2 with 7 n(V), M
diam(V') and § = €M /2, we know with probability at most
X, the following event happens.

Evevd(v7c) _ ZueUd(uac) S diam
’ V] 0] ‘ pdiam(V):

As h(V) = Evevd(v,(]) and h(U) EueUd(u,C),
with probability at least 1 — \’, we have that
h(V) WU _ &

D)2 < Sdiam(V).
4 IUI‘ 2

§

Y]

(D

w (V)
V]

Claim 1. Let A =
we have

—&(diam(V) +d(V,C)) < A < &diam(V).

The proof of the above claim involves a lot of calculations,
so we defer it to the full version. Assuming its correctness,
the inequality in Claim 1 implies
V]

Ul

Since Equation 1 holds with probability at least 1 — ', the
above inequality also holds with probability at least 1 — \’.

hllgf), If Equation 1 holds, then

W(V) = h'(U) <&V - (diam(V) +d(V, C)).



The preceding inequality is equivalent to the one in the
lemma, because h'(V) = cost,(V,C), and h'(U) - %
l\LUI‘ - costy (U,C) = wecosty (U, C). Finally, notice that
Claim 1 holds when the i’ function is defined with respect to
any choice of t € {0, 1,...,q}. Therefore, with probability
at least 1 — ), the inequality in the lemma holds for every

t € {0,1,...,q}, which completes the proof. O

Next, we show the following observation, whose proof is
identical to an analogous proof in (Chen 2008).

Observation 2. The following inequalities hold.
. Zi,j ‘Xi)j‘QjR <3- COStQ(X, A) <3r- OPT(I)
hd Zi,j \Xw\dlam(Xm) < 6‘COSt0(X, A) < 6TOPT(I)

Proof. For any p € X, ;, it holds that 2R <
max {2d(p, A), R} < 2d(p, A) + R. Therefore,

S IXigl - 2R<> > 2R
N

i, pEXg,,j

<3 > 2d(p,A)+R
1, p€Xij

=2 d(p,A)+|X| R
peX

< 2-costy(X,A) +nR
< 3-costg(X,A) (By definition of R)
< 37OPT(Z') < 3rOPT(Z).

We also obtain the second item by observing that
diam(XZ-,j) § 227 - R. O

Next, we show that the following lemma, which infor-
mally states that the union of the sets of sampled points ap-
proximately preserve the cost of clustering w.r.t. any set of
at most k centers, even after excluding at most m outliers
overall.

Lemma 2. The following event happens with probability at
least 1 — A/2:

For all sets C C F of size at most k, and for all sets of
non-negative integers {m; ;}; ; such that 3, ;m; ; < m,

Z costy,, ; (Xi,;,C) — Z weosty, ;(Si,5,C)

i "7
<e- Z costy, ;(Xi,C)  (2)
4,J
where t; ; = [m; j/w; ;]

Proof. Fix an arbitrary set C' C F of at most k centers,
and the integers {m; ;};; such that >, .m;; < m as in
the statement of the lemma. For each ¢ = 1,...,|A|, and
0 < j < ¢, we invoke Lemma 1 by setting V' = X ;,
and U = S; 5,6 = &, N nEN/(4(k + m)(1 + ¢)),
and ¢ = m. This implies that, the following inequality holds
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with probability at least 1 — X" for each set X; ;, and the
corresponding m; ; < m,

|costmw (Xi,j,C) —wcosty, (S; 5, C’)|
€ .
< 87|Xi,j|(d'am(Xi,j) +d(Xs,;,0)) 3)

Note that the sample size required in order for this in-
equality to hold is

> (e (3)]

/=|a
{4 (8> (o (B0 00

‘ X m =

For any 4,7, if X;; < s (ie., X;; is small), then the
sample S; ; is equal to X; ;, and each point in S;; has
weight equal to 1. This implies that cost,,, ;(X;;,C) =
weosty, ;(S;,;,C) for all such X ;, and their contribution
to the right hand side of inequality (2) is zero. Thus, it suf-
fices to restrict the sum on the right hand side of (2) over
large sets X; ;’s. Let £ consist of all pairs (4, j) such that
X ; 1s large. We have the following claim.

Claim 2. Z(i,j)eﬁ |X¢7j|d(Xi7j, C) < 2COStm(X, C)

Proof. Let Y denote the farthest m points in X from the
set of centers C. Now, fix (¢,j) € L and let g;;
| X5 ; NY'| < m denote the number of outliers in X; ;. Since
| X,5] > 2m > 2¢; ;, the set X; ; \ Y is non-empty, and all
points X; ; \ Y contribute towards cost,, (X, C). That is,

Z Z d(p, C) < cost,, (X, C) )
(4,5) €L pEX; ;\Y
Forany p € X;; \Y,d(X;;,C) < d(p,C) from the
definition. Therefore,
> 1Xiyl-d(Xi;,0)
(i,9)€L
< >0 21X\ Y]-d(Xi,;,0)
(i.5)eL
<2- ) > dp.C)
(i,))€L peXi j\Y
< 2 cost,, (X, C)
Here, to see the second inequality, see that | X; ;| > 2¢; ;,
which implies that | X; ;| — ¢; ; < 2(|X; ;| — ¢i,;)- The last
inequality follows from (4). O

Thus, by revisiting (3) and (2), we get:
Z ’costmm (Xi,5,C) — weosty, ; (Si,5, C)|

(i,5)€L
€ .
<% Z | Xij|(diam (X ;) +d(X; 5, C))
(i,5)€L
(From (3))
< = (67 - OPT(Z) + 2cost,, (X, C))
-
(From Obs. 2 and Claim 2)

€

T 87

(87 - cost,, (X, C)) = € - cost,, (X, C)



Where, in the last inequality, since C' is an arbitrary set of
at most k centers, OPT(Z) < cost,, (X, C). Note that the
preceding inequality holds for a fixed set C' of centers with
probability at least 1 — [A| - (1 +¢)N = 1 —n~*X/2, which
follows from taking the union bound over all sets X; ;, 1 <
1<|Al<k+m,and 0 < j < ¢.

Since F has at most n* subsets of size at most k, the state-
ment of the lemma follows from taking a union bound. [J

Now we are ready to prove Theorem 1. We enumerate ev-
ery subset I C S of size at most m. For each T', we compute
a B-approximation solution for the (weighted) k-median in-
stance (S\T, F, k). Theorem 1 only assumes the existence
of a B-approximation algorithm for unweighted k-median,
which cannot be applied to weighted point sets. However,
we can transform S\T to an equivalent unweighted sets R,
which contains, for each x € S\T, w(x) copies of (un-
weighted) xz, where w(z) is the weight of x in S\T. It is
clear that wecost(S\T,C) = cost(R,C) for all C C F.
Thus, we can apply the S-approximation k-MEDIAN algo-
rithm on (R, F, k) to compute a center set C C F of size k
such that weost(T,C) < § - weost(T, C’) for any C' C F
of size k. We do this for all 7" C S of size at most m. Let
C denote the set of all center sets C' computed. We pick a
center set C* C C that minimizes cost,, (X, C*), and return
(Y*,C*) as the solution where Y* C X consists of the m
points in X farthest to the center set C*.

Lemma 3. With probability at least 1 — %, forall C' C F of
size k we have

[t

te - Beost, (X, C).
1—¢€

cost,, (X, C*) <

Proof. The statement in Lemma 2 holds with probability
at least 1 — A\/2. Thus, it suffices to assume the state-
ment in Lemma 2, and show cost,,, (X, C*) < (1 + €)?8 -
cost,, (X, C) for any C' C F of size k. Fix a subset C C F
of size k. Let Y C X consist of the m points in X farthest
to C, and define my; = |Y n Xi7j|. Set ti,j = me/wi}jj.
Note that cost,, (X, C) = >, ; costy, ;(Xi,;, C). Further-
more, by Lemma 2, we have

chostti’j (8:;,C)<(1+¢)- Z costy,, ; (Xi 5, C)
. i,J

= (1+e¢) - costy, (X, O). (5)

Now let T; ; C S; ; consist of the ¢; ; points in S; ; far-
thest to C, and define T' = U” T; ;. Since |T| < m, T is
considered by our algorithm and thus there exists a center set
(' € C that is a S-approximation solution for the (weighted)
k-median instance (S\T, F\, k). We have

weost(S\T, C") < B - weost(S\T, C)
= Bchostt (Si5,C).
Note that weost(S\T,C") > >, swcosty, ;(S;;,C").

Furthermore, by applying Lemma 2 agam we have
Zi,j weosty, ;(84,5,C") > (1—6)'21»’]- costy, ; (Xi j, C").

(6)
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It then follows that
(1—€)-costy,(X;,;,C") < (1—¢) Zcost
< Wcost(S\T, ch. (7)

Finally, we have cost,, (X, C*) < cost,, (X, C’) by the con-
struction of C*. Combining this with (5), (6), and (7), we
have cost,,(X,C*) < 1€ - Beost,, (X, C), which com-
pletes the proof. O

(X;5,C"

By choosing A > 0 to be a sufficiently small con-
stant, and by appropriately rescaling € 3, the above lemma
shows that our algorithm outputs a (3 + ¢)-approximation
solution with a constant probability. By repeating the al-
gorithm a logarithmic number of rounds, we can guaran-
tee the algorithm succeeds with high probability. The num-
ber of subsets 7' C S of size at most m is bounded by
|S|©0™), which is ((k + m) log n/e) by Proposition 1.
Note that (logn)°(™) < max{m®™) n®M} Thus, the
number of subsets 7' C S of size at most m is bounded
by f(k,m,e) - n°M), where f(k,m,e) = (k+’")o(m)
Thus, we need to call the S-approximation k-MEDIAN algo-
rithm f(k,m, €) -n°M) times, which takes f(k,m, €)n®).
T'(n, k) time overall. The first call of the algorithm for ob-
taining a 7-approximation to the (k + m)-MEDIAN instance
takes polynomial time. Besides this, the other parts of our
algorithm can all be implemented in polynomial time. This
completes the proof of Theorem 1.

Extensions
k-Means with Outliers

This is similar to k-MEDIANOUT, except that the cost func-
tion is the sum of squares of distances of all except m out-
lier points to a set of & facilities. This generalizes the well-
known k-MEANS problem. Here, the main obstacle is that
the squares of distances do not satisfy triangle inequality,
and thus it does not form a metric. However, they satisfy
a relaxed version of triangle inequality (i.e., d(p,q)? <
2(d(p,7)? + d(r,¢)?)). This technicality makes the argu-
ments tedious, nevertheless, we can follow the same ap-
proach as for k-MEDIANOUT, to obtain optimal FPT ap-
proximation schemes. Our technique implies an optimal (1+
8/e + €)-approximation for k-MEANSOUT (using the result
of (Cohen-Addad et al. 2019) as a black-box), improving
upon polynomial-time 53.002-approximation from (Krish-
naswamy, Li, and Sandeep 2018), and (9+¢€)-approximation
from (Goyal, Jaiswal, and Kumar 2020) in time FPT in &k, m
and e.

In fact, using our technique, we can get improved approx-
imation guarantees for (k,z)-CLUSTERING WITH OUT-
LIERS, where the cost function involves z-th power of dis-
tances, where z > 1 is fixed for a problem. Note that the
cases z = 1 and z = 2 correspond to k-MEDIANOUT and
k-MEANSOUT respectively. We give the details for (&, z)-
CLUSTERING WITH OUTLIERS in the full version.

3Since Lemma 3 implies a B(1 4 O(€))-approximation, and 3
is a constant, it suffices to redefine € = €/c for some large enough
constant c to get the desired result.



Matroid Median with Outliers

A matroid is a pair M = (F,S), where F is a ground set,
and S is a collection of subsets of F’ with the following prop-
erties: (i) @ € S, (ii) If A € S, then for every subset B C A,
B € 8, and (iii) For any A, B € S with |B| < |A|, there
exists an b € B\ A such that BU {b} € S. The rank of a
matroid M is the size of the largest independent set in S.

An instance of MATROID MEDIAN WITH OUTLIERS is
given by (X, F, M, m), where M = (F,S) is a matroid
with rank k& defined over a finite ground set F', and X, F'
are sets of clients and facilities, belonging to a finite metric
space (I', d). The objective is to find a set C' C F of facil-
ities that minimizes cost,,(X,C), and C € S, i.e., C'is an
independent set in the given matroid. Note that an explicit
description of a matroid of rank k& may be as large as n”.
Therefore, we assume that we are given an efficient oracle
access to the matroid M. That is, we are provided with an
algorithm A that, given a candidate set S C F, returns in
time T'(A) (which is assumed to be polynomial in |F'|), re-
turns whether S € 7.

We can adapt our approach to MATROID MEDIAN WITH
OUTLIERS in a relatively straightforward manner. Recall
that our algorithm needs to start with an instance of outlier-
free problem (i.e., MATROID MEDIAN) that provides a
lower bound on the optimal cost of the given instance. To
this end, given an instance Z = (X, F,M = (F,S),m)
of MATROID MEDIAN WITH OUTLIERS, we define an in-
stance Z' = (X, F, M’) MATROID MEDIAN, where M’ =
(FUX,S8’) is defined as follows. &’ = {YUC : Y C
X with |Y| < mand C C F with C € S§}. That is, each in-
dependent set of M’ is obtained by taking the union of an in-
dependent set of facilities from M, and a subset of X of size
at most mn. It is straightforward to show that M’ is a matroid
over the ground set /' U X. In particular, it is the direct sum
of M and a uniform matroid over X of rank m (i.e., where
any subset of X of size at most m is independent). Using the
oracle algorithm A, we can simulate an oracle algorithm to
test whether a candidate set C C F'U X is independent in
M. Therefore, using a (2+ €)-approximation for MATROID
MEDIAN (Cohen-Addad et al. 2019) in time FPT in k and €,
we can find a set A C ' U X of size at most k& + m that we
can use to construct a coreset. The details about enumeration
are similar to that for k.-MEDIANOUT, and are thus omitted.

Colorful k-Median

This is an orthogonal generalization of k-MEDIANOUT to
ensure a certain notion of fairness in the solution (see (Jia,
Sheth, and Svensson 2020)). Suppose the set of points X
is partitioned into ¢ different colors X7 W Xo W ... W X,.
We are also given the corresponding number of outliers
mi,ma, ..., my. The goal is to find a set of at most facil-
ities C' to minimize the connection cost of all except at most
my outliers from each color class X, i.e., we want to min-
imize the cost function: Zle costy,, (X¢, C). This follows
a generalizations of the well-known k-CENTER problem in-
troduced in (Bandyapadhyay et al. 2019) and (Anegg et al.
2020; Jia, Sheth, and Svensson 2020) , called COLORFUL
k-CENTER. Similar generalization of FACILITY LOCATION
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has also been studied in (Chekuri et al. 2022).
Using our ideas, we can find an FPT approximation pa-

rameterized by k, m = Zle my, and e. To this end, we
sample sufficiently many points from each color class X;
separately, and argue that it preserves the cost appropriately.
The technical details follow the same outline as that for k-
Median with m Outliers. In particular, during the enumer-
ation phase—just like that for k.-MEDIANOUT—we obtain
several instances of k-MEDIAN. That is, our algorithm is
color-agnostic after constructing the coreset. Thus, we ob-
tain a tight (1 + 2/e + ¢)-approximation for this problem.
This is the first non-trivial true approximation for this prob-
lem — previous work (Gupta, Moseley, and Zhou 2021) only
gives a pseudo-approximation, i.e., a solution with cost at
most a constant times that of an optimal cost, but using
slightly more than k facilities.

A Combination of Above Generalizations

Our technique also works for a combination of the afore-
mentioned generalizations that are orthogonal to each other.
To consider an extreme example, consider COLORFUL MA-
TROID MEDIAN with ¢ different color classes (a similar ver-
sion for k-CENTER objective has been recently studied by
(Anegg, Koch, and Zenklusen 2022)), where we want to find
a set of facilities that is independent in the given matroid, in
order to minimize the sum of distances of all except m; out-
lier points for each color class X;. By using a combination
of the ideas mentioned above, one can get FPT approxima-
tions for such generalizations.

Concluding Remarks

In this paper, we give a reduction from k-MEDIANOUT to
k-MEDIAN that runs in time FPT in k&, m, and ¢, and pre-
serves the approximation ratio up to an additive e factor. As
a consequence, we obtain improved FPT approximations for
k-MEDIANOUT in general as well as special kinds of met-
rics, and these approximation guarantees are known to be
tight. Furthermore, our technique is versatile in that it also
gives improved approximations for related clustering prob-
lems, such as k-MEANSOUT, MATROID MEDIAN WITH
OUTLIERS, and COLORFUL k-MEDIAN, among others.

The most natural direction is to improve the FPT run-
ning time while obtaining the tight approximation ratios.
More fundamentally, perhaps, is the question whether we
need an FPT dependence on the number of outliers, m; or
whether it is possible to obtain approximation guarantees for
k-MEDIANOUT matching that for k-MEDIAN, with a run-
ning time that is FPT in & and e.
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