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Abstract
In reinforcement learning (RL), the ability to utilize prior
knowledge from previously solved tasks can allow agents to
quickly solve new problems. In some cases, these new prob-
lems may be approximately solved by composing the solu-
tions of previously solved primitive tasks (task composition).
Otherwise, prior knowledge can be used to adjust the reward
function for a new problem, in a way that leaves the opti-
mal policy unchanged but enables quicker learning (reward
shaping). In this work, we develop a general framework for
reward shaping and task composition in entropy-regularized
RL. To do so, we derive an exact relation connecting the opti-
mal soft value functions for two entropy-regularized RL prob-
lems with different reward functions and dynamics. We show
how the derived relation leads to a general result for reward
shaping in entropy-regularized RL. We then generalize this
approach to derive an exact relation connecting optimal value
functions for the composition of multiple tasks in entropy-
regularized RL. We validate these theoretical contributions
with experiments showing that reward shaping and task com-
position lead to faster learning in various settings.

Introduction
Reinforcement learning (RL) is a widely-used approach
for training artificial agents to acquire complex behaviors
and to engage in long-term decision making (Sutton and
Barto 2018). Despite its great successes for goal-oriented
tasks (e.g. board games such as chess and Go (Silver et al.
2018)), RL approaches do not fare as well when the tasks
change and become more complex. The underlying prob-
lem is that RL algorithms are often incapable of effectively
reusing previously-acquired knowledge; as a consequence
RL agents typically start from scratch when faced with new
tasks and require vast amounts of training experience to
learn new solutions. Therefore, a key challenge in the field is
the development of RL approaches and algorithms which are
able to leverage the solutions of previous tasks for quickly
solving a wide variety of new tasks. Developing approaches
that enable such “transfer learning” is one of the problems
we wish to address in the current work, in the context of
entropy-regularized reinforcement learning (Ziebart 2010).

A promising approach for transfer learning is based on
composing solutions for previously solved tasks to obtain
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solutions for new tasks. The ability to combine primitive
skills to learn more complex behaviors can lead to an ex-
ponential increase in the number of new problems that an
agent is able to solve (Nangue Tasse, James, and Rosman
2020; Tasse, James, and Rosman 2021). Correspondingly,
there is significant interest in this idea of compositional-
ity of tasks in RL. The observation that entropy-regularized
RL provides robust solutions (Eysenbach and Levine 2022)
and simple approaches for composing previous solutions
(Haarnoja et al. 2018a; Van Niekerk et al. 2019; Peng et al.
2019) in specific situations has led to increased interest
in this topic. Several exact results for compositionality in
entropy-regularized RL have been obtained, however these
are based on highly limiting assumptions on the differences
between the primitive tasks. The development of more gen-
eral approaches to compositionality in entropy-regularized
RL is currently an important challenge in the field.

Another challenge often encountered by RL agents solv-
ing new tasks is the problem of sparse reward signals. For
example, if an agent only gains a reward at the end of a long
and otherwise non-rewarding trajectory, it may be difficult
to learn the optimal policy in this case since the agent must
be sufficiently “far-sighted”. The field of reward shaping;
wherein rewards are changed in a way that leaves the op-
timal policy invariant, has been used to address this issue
(Ng, Harada, and Russell 1999). These efforts have primar-
ily focused on the standard RL framework; to the best of our
knowledge, the corresponding results for reward shaping in
entropy-regularized RL have not yet been derived. Another
related open question that motivates this work is understand-
ing how we can utilize previously obtained solutions to im-
plement reward shaping in entropy-regularized RL.

To address these issues, we focus on the core problem of
deriving relations between optimal value functions for two
tasks in entropy-regularized RL. Considering the first task
as solved and the second as a new unsolved task, the de-
rived relation defines a third task whose optimal value func-
tion allows us to solve the new task while leveraging prior
knowledge. We show that the optimal policy for the task
of interest is the same as the third task’s. This observation
leads to the derivation of a general result for reward shap-
ing in entropy-regularized RL. Based on these observations
connecting the optimal value functions of two tasks, we de-
rive principled methods of approaching both task composi-
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tion and reward shaping in entropy-regularized RL. In doing
so, we also extend the results of (Hunt et al. 2019) for ar-
bitrary functional transformations of rewards, and show that
the theory of potential-based reward shaping of (Ng, Harada,
and Russell 1999) also applies in the entropy-regularized RL
formulation. By using the derived connection between opti-
mal value functions, we also determine how a solution can
remain optimal under new dynamics. Moreover, our results
motivate a methodology for using previously acquired skills
to learn and shape new entropy-regularized RL tasks.

Prior Work

There is a significant body of literature studying the prob-
lem of reward shaping in standard (un-regularized) rein-
forcement learning. This field was initiated by (Ng, Harada,
and Russell 1999), whose work introduced the concept of
potential-based reward shaping (PBRS). It was shown that
PBRS functions are necessary and sufficient to describe the
set of reward functions which yield the same optimal poli-
cies. In addition, the authors show that shaping is robust (in
the sense that near-optimal policies are also invariant) and
amenable to usage of prior knowledge. Therefore, solutions
to previous tasks, expert knowledge, or even heuristics can
be used to “shape” an agent’s reward function in order to
make a particular RL task easier to solve. One goal of the
present work is to extend the results of (Ng, Harada, and
Russell 1999) to the domain of entropy-regularized RL.

Although there exist many forms of transfer learning in
RL (Taylor and Stone 2009), we shall focus on the case
of concurrent skill composition by a single agent. In this
work, composition refers to the combination of previous
tasks through their reward functions. Task composition was
introduced by (Todorov 2009) in the entropy-regularized set-
ting and was later advanced by (Haarnoja et al. 2018a). Since
composition combines previously solved tasks’ reward func-
tions in some specified functional form, it is natural to as-
sume that those previous solutions might also be combined
in the same way to obtain an approximate solution to the
new task. Indeed, in standard (un-regularized) RL, it was
shown by (Nangue Tasse, James, and Rosman 2020) that
this holds in the case of Boolean compositions. However,
for these equalities to hold, there are strong restrictions on
the reward functions for the previous tasks: they may only
differ on the absorbing (also known as terminal) states. In
our work, we shall consider reward functions which can vary
globally (over all states and actions) in entropy-regularized
RL.

Previous work has shown that, in entropy-regularized RL,
applying the same transformation to the solutions of pre-
viously solved tasks leads to a useful first-order approxi-
mation, depending on the specific transformation. In (Hunt
et al. 2019) the authors have derived a specific correction
function that can be learned and used to correct this first-
order approximation to exactly solve the new task. In this
work we shall extend this result (Theorem 3.2 of (Hunt et al.
2019)) to arbitrary functions (rather than only convex linear
combinations) of reward functions.

Preliminaries
We consider the Markov Decision Process (MDP) model to
study the entropy-regularized reinforcement learning prob-
lem. The MDP, denoted M, consists of a state space S , ac-
tion space A, transition dynamics p : S × A × S → [0, 1],
(bounded) reward function r : S × A × S → R, discount
factor γ < 1 and inverse temperature β > 0. We repre-
sent the MDP as a tuple M = ⟨S,A, p, r, γ⟩. The discount
factor γ ∈ (0, 1) discounts future rewards and assures con-
vergence of the accumulated reward for an infinitely long
trajectory (T → ∞). In many instances we will also specify
the particular prior policy π0 : S×A → (0, 1), a probability
distribution over actions, specifying an initial exploration,
data-collection, or behavior policy. We assume that any trial
policy π is absolutely continuous with respect to the prior
policy, which ensures that the Kullback-Liebler divergence
in Equation (1) is well-defined and bounded. Although im-
plicit in some cases, we always assume an MDP’s reward
function is bounded.

The entropy-regularized framework for reinforcement
learning augments the standard reward-maximization objec-
tive with an entropic regularization term, relative to a refer-
ence policy π0:

J(π) = E
p,π

[
T∑

t=1

γt−1

(
rt −

1

β
log

(
π(at|st)
π0(at|st)

))]
(1)

This objective leads to optimal policies which remain par-
tially exploratory (depending on the entropic term’s weight,
β−1) and robust under perturbations to the rewards and dy-
namics (Eysenbach and Levine 2022). Therefore, entropy-
regularized RL presents a useful method for applying rein-
forcement learning in real-world settings where the dynam-
ics and reward functions may not be known with full preci-
sion.
Definition (Entropy-Regularized Task). An entropy-
regularized task (or simply task) is an MDP M together
with an inverse temperature β and a prior policy π0. We
denote a task by T = M∪ ⟨β, π0⟩ = ⟨S,A, p, r, γ, β, π0⟩.

In the following sections, we assume the existence of a
previously solved task T (or set of tasks {T }), representing
the agent’s primitive knowledge. The “solution” to the task
T refers to the optimal soft action-value function (or simply
the optimal value function), Q∗, satisfying the soft Bellman
optimality equation:

Q∗(s, a) = E
s′∼p

[
r(s, a, s′) +

γ

β
log E

a′∼π0

eβQ
∗(s′,a′)

]
(2)

which can be solved by iterating a Bellman backup equation
until convergence:

Q(N+1)(s, a) = E
s′∼p

[
r(s, a, s′) +

γ

β
log E

a′∼π0

eβQ
(N)(s′,a′)

]
(3)

where Q(0)(s, a) is an arbitrary initialization function. Since
the soft Bellman operator B is a contraction (Haarnoja et al.
2017), any bounded initialization function Q(0) will con-
verge to the optimal value function: limk→∞ BkQ(0) = Q∗.
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When discussing the “solution” of the task T we also refer
to the optimal policy derived from Q∗:

π∗(a|s) = π0(a|s)eβQ
∗(s,a)∑

a′ π0(a′|s)eβQ∗(s,a′)
(4)

as well as the optimal state-value function:

V ∗(s) =
1

β
log

∑
a

π0(a|s)eβQ
∗(s,a) (5)

In the following sections we study a solution’s depen-
dence on the underlying task’s characteristics (namely, its
reward function and dynamics). We show that these consid-
erations naturally lead to the subjects of reward shaping and
compositionality.

Change of Rewards
We begin by supposing that an agent has a solution to a sin-
gle task, T . The agent is then asked to solve a new problem,
where only the reward function has changed. Beyond sim-
ply solving a new problem, this change in rewards may be
caused by an adversary, perturbation, or general transform
in the same domain. For example, suppose we have learned
to reach a goal state in a maze, but now we are tasked with
moving to a new goal in the same maze; as in Figure 1.

We formulate this problem by considering the two tasks
T = ⟨S,A, p, r, γ, β, π0⟩ and T̃ = ⟨S,A, p, r̃, γ, β, π0⟩ dif-
fering only on their reward functions. We take this opportu-
nity to introduce the following definition.
Definition (Reward Varying Tasks). Consider a set of tasks
{T (k)}Nk=1. If the tasks only vary on their reward functions;
that is, they are of the form T (k) = ⟨S,A, p, r(k), γ, β, π0⟩,
then we say the set of tasks {T (k)} is reward varying.

In other words, we restrict our attention to those tasks
which share the same state and action spaces, transition dy-
namics, discount factor, temperature, and prior policy.

With these definitions in place, we first address the fol-
lowing question: Assuming tasks T and T̃ are reward vary-
ing, how can we utilize the solution of T when solving T̃ ?
The answer to this question is provided by the following
theorem. (The proofs for all results are provided in the Ap-
pendix of the full paper (Adamczyk et al. 2022).)
Theorem 1. Let a task T with reward function r be given,
with the optimal value function Q∗ and corresponding op-
timal policy π∗. Consider a reward varying task, T̃ with
reward function r̃, with an unknown optimal action-value
function, Q̃∗. Define κ(s, a, s′)

.
= r̃(s, a, s′)− r(s, a, s′).

Denote the optimal action-value function K∗ as the solution
of the following Bellman optimality equation

K∗(s, a) = E
s′∼p

[
κ(s, a, s′) +

γ

β
log E

a′∼π∗
eβK

∗(s′,a′)

]
(6)

and its corresponding state-value function

V ∗
K(s) =

1

β
log

∑
a

π∗(a|s)eβK
∗(s,a) (7)

Then,
Q̃∗(s, a) = Q∗(s, a) +K∗(s, a) (8)

Ṽ ∗(s) = V ∗(s) + V ∗
K(s) (9)

and
π̃∗(a|s) = π∗

K(a|s) (10)
for all s ∈ S, a ∈ A.

Therefore, by directly incorporating the solution of T into
Q̃∗ we can instead learn an auxiliary function K∗ which it-
self happens to be an optimal action-value function. We can
now use the same soft Q-learning algorithms (Haarnoja et al.
2018b) for learning this corrective value function (K∗) via
Equation (6). In doing so, we learn the desired optimal value
function for the new task: Q̃∗.

As discussed in (Hunt et al. 2019), it is also possible to
learn a corrective value function strictly offline, by using
data collected for a previous task, T . In the Appendix, we
show that it is indeed possible to learn K∗ using offline up-
dates. In such a setup, the advantage is that one requires no
additional samples of the environment (the previous expe-
rience can be used with appropriately re-labelled rewards).
While learning the value function K∗ of Theorem 1 we are
implicitly solving two tasks simultaneously: one task cor-
responding to reward function κ with prior policy π∗, and
another task with a reward function r̃ and prior policy π0. In
the following section, we show that the former task can be
mapped onto yet another task which also has a prior policy
π0.

Reward Shaping
In this section we explore the connection between the result
of Theorem 1 and the field of potential-based reward shap-
ing. Equation (10) implies that the optimal policies are the
same for two distinct entropy-regularized RL problems. This
is exactly the desired outcome of a shaped reward: the task’s
optimal policy is invariant to a change in the task’s reward
function.

However, these two entropy-regularized RL problems use
different prior policies and therefore the result is not im-
mediately applicable to reward shaping. To correct for this,
we introduce the following lemma which describes how a
change in prior policy can be accounted for in the rewards
of an entropy-regularized RL task.
Lemma 2. Suppose the task T = ⟨S,A, p, r, γ, β, π0⟩ is
given with associated optimal value function Q∗ and optimal
policy π∗. For a reward function

r̃(s, a, s′) = r(s, a, s′) +
1

β
log

π0(a|s)
π1(a|s)

(11)

the task T̃ = ⟨S,A, p, r̃, γ, β, π1⟩ has optimal value func-
tions

Q̃∗(s, a) = Q∗(s, a) +
1

β
log

π0(a|s)
π1(a|s)

(12)

Ṽ ∗(s) = V ∗(s) (13)
and the optimal policies of T and T̃ are equal:

π∗(a|s) = π̃∗(a|s) (14)
for all s ∈ S, a ∈ A.
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Therefore, if the prior policy is changed (π0 → π1) in an
entropy-regularized RL task, we can appropriately adjust the
reward function (as written in Equation (11)) in order to re-
tain an optimal solution. Therefore, by solving a task T with
prior policy π0, we have also simultaneously solved all tasks
with an arbitrary prior policy π1 > 0 and corresponding re-
ward functions r̃ given in Equation (11).

Now by applying Lemma 2 to Theorem 1, we immedi-
ately have the following reward shaping result for entropy-
regularized RL.
Corollary 3 (Reward Shaping). Let reward varying tasks T
and T̃ be given with corresponding solutions (Q∗, V ∗, π∗)

and (Q̃∗, Ṽ ∗, π̃∗). The optimal value function for another
reward varying task, T̄ with the reward function

r̄(s, a, s′) = r̃(s, a, s′) + γV ∗(s′)− V ∗(s) (15)

is given by

Q̄∗(s, a) = Q̃∗(s, a)−Q∗(s, a) +
1

β
log

π∗(a|s)
π0(a|s)

(16)

= Q̃∗(s, a)− V ∗(s) (17)

and the corresponding optimal policy for T̄ is

π̄∗(a|s) = π̃∗(a|s). (18)

Therefore, a shift in the reward function by γV ∗(s′) −
V ∗(s) does not change the optimal policy, for any reward
function r with corresponding optimal soft value functions
Q∗ and V ∗. However, Corollary 3 does not yet resemble a
general reward shaping theorem, since it requires a solution
to a different task (T ) to provide the shaping function, and
we do not know whether such reward functions fully charac-
terize all reward functions with the same optimal policy π̃∗.
To address these issues, we combine Corollary 3 with the
following lemma appearing in (Cao, Cohen, and Szpruch
2021). In doing so, we arrive at a potential-based reward
shaping theorem for entropy-regularized RL.
Lemma 4. (Cao, Cohen, and Szpruch 2021) For a fixed pol-
icy π(a|s) > 0, discount factor γ ∈ [0, 1), and an arbitrary
choice of function v : S → R, there is a unique correspond-
ing reward function

R(s, a, s′) =
1

β
log

π(a|s)
π0(a|s)

+ v(s)− γv(s′) (19)

such that the task with reward R yields an optimal value
function V ∗(s) = v(s) and optimal policy π∗ = π.

Informally, this result states that one can always construct
a reward function R such that an arbitrary π and v are op-
timal in the given environment (i.e. with fixed p, γ, β). Fur-
thermore, for a fixed π and v in the given environment, the
reward function R is uniquely defined up to a constant shift.

By applying Lemma 4 in light of Theorem 3, we see that
the V ∗ in Equation (15) can in fact be any (bounded) func-
tion, Φ: S → R: it will always represent an optimal value
function for a reward varying task. In fact, Cao, Cohen, and
Szpruch have proven that all reward functions having the

same optimal policy must be of the form shown in Equa-
tion (19). Therefore, the set of reward functions of this type
describe all rewards with the same optimal policy.

This naturally leads us to the generalization of the primary
result of (Ng, Harada, and Russell 1999) in the setting of
entropy-regularized RL:
Theorem 5 (Potential-Based Reward Shaping). Given task
T̃ = ⟨S,A, p, r̃, γ, β, π0⟩ with optimal policy π̃∗ in entropy-
regularized RL, then the reward varying task T̄ with reward
function

r̄(s, a, s′) = r̃(s, a, s′) + γΦ(s′)− Φ(s) (20)

has the optimal policy π̄∗ = π̃∗, and its optimal value func-
tions satisfy

Q̄∗(s, a) = Q̃∗(s, a)− Φ(s) (21)

V̄ ∗(s) = Ṽ ∗(s)− Φ(s) (22)
for a bounded, but otherwise arbitrary function Φ: S → R.

Furthermore, due to the aforementioned result of (Cao,
Cohen, and Szpruch 2021), we note that we also have the
following necessary and sufficient conditions:
• Sufficiency: Adding a potential-based function
F (s, a, s′) = γ Φ(s′) − Φ(s) to a task’s reward
function leaves the task’s optimal policy unchanged.

• Necessity: Any shaping function which leaves a task’s
optimal policy invariant must be of the form F above.

Remark 6. Interestingly, the method described above for ar-
riving at Theorem 5 provides a useful way of considering
the possible “degrees of freedom” in the reward function
by contrasting the work of (Ng, Harada, and Russell 1999)
and (Cao, Cohen, and Szpruch 2021). Specifically, (Cao,
Cohen, and Szpruch 2021) considered an arbitrary function
v(s) which uniquely (up to a constant shift) identifies the
reward function for a given optimal policy, as noted above.
To make the connection with our results, we can take this
arbitrary function to be the value function V ∗

K(s), since we
have π∗

K = π̃∗. Because of Equation (9), we can equiva-
lently take this choice of v(s) to fix V ∗(s), which can be
any arbitrary function Φ(s), as noted in Theorem 5 above.
In other words, instead of considering the degree of freedom
to be the value function V ∗

K , we can alternatively consider it
to be the value function V ∗. The degree of freedom identi-
fied in (Cao, Cohen, and Szpruch 2021) corresponds to V ∗

K ,
whereas the degree of freedom identified by (Ng, Harada,
and Russell 1999) corresponds to V ∗. The two choices are
equivalent, given Equation (9).

The utility of Theorem 5, as compared to Corollary 3, is
that we now have a way of constructing shaping functions
without requiring knowledge of optimal policies in advance.
Lemma 4 alone would not have allowed for this, as it re-
quires an optimal policy π as input for the reward function
R, which is more useful in the study of inverse reinforce-
ment learning and identifiability. Of course, if the optimal
policy π∗ is known, then one can use Lemma 4 to construct
the entire range of shaped rewards by iterating over all possi-
ble functions v(s). Considering the space of all reward func-
tions (R|S||A|) Lemma 4 carves out a “degenerate” subspace
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Figure 1: Demonstrating the reward shaping result of Corol-
lary 3. Tasks in question are to navigate to the left or right
corner in the bottom of this simple maze. The orange dia-
mond represents the goal state for either task (blue repre-
sents regions of higher value). (a) Task with known solu-
tion (π∗ and V ∗(s) shown); (b) New task in the same en-
vironment (π∗ and r shown); (c) Task defined in (b) with
a shaped reward function (Equation (15)), having the same
optimal policy as the task with an unshaped reward function
(π∗ and r shown). In this experiment we use the parameters
β = 3, γ = 0.99.

or “class” of dimension |S|, whose members are defined by
tasks with the same optimal policy.

Analogous to Remark 1 of (Ng, Harada, and Rus-
sell 1999), we also have the following result in entropy-
regularized reinforcement learning, which provides robust-
ness to the shaping function F .
Remark 7. Given a potential-based reward shaping function
F as described in Theorem 5, the relations

Q̄π(s, a) = Q̃π(s, a)− Φ(s) (23)

V̄ π(s) = Ṽ π(s)− Φ(s) (24)
also hold for non-optimal policies π. In particular, if π
is an ϵ-optimal policy in the reward-shaped task (i.e.
||V̄ π − V̄ ∗|| < ϵ) then, π is also ϵ-optimal in the orig-
inal task (i.e. ||Ṽ π − Ṽ ∗|| < ϵ).

This robustness is a useful property, as it allows near-
optimal policies in the reward-shaped task to be readily in-
terpreted as near-optimal policies in the original task of in-
terest. More generally speaking, we can say that the action of
reward shaping preserves ordering in the space of policies.

Identifiability
The problem of identifiability arises in the context of inverse
reinforcement learning (IRL) where one observes an optimal
policy and attempts to infer the underlying reward function.
In (Cao, Cohen, and Szpruch 2021), it was argued that, un-
der certain conditions, the underlying reward function r is
identifiable (up to a constant shift) when its corresponding
optimal policy is observed in two sufficiently different en-
vironments with dynamics p and q. As in (Cao, Cohen, and
Szpruch 2021), we suppose the environments are further di-
versified by different discount factors γ and γ̃ respectively.
In the following, we will see how our results provide insight
into the conditions considered in (Cao, Cohen, and Szpruch
2021) for identifiability using data from these two different
environments.

Figure 2: Convergence of the Bellman backup equation
(Equation (3)) for the unshaped and shaped task considered
in Fig. 1(b), 1(c) respectively. Average taken over 10 ran-
dom initializations, and one standard deviation is shown in
the shaded region.

Theorem 5 can be used to derive the condition which
makes it impossible to determine an underlying reward func-
tion r given the optimal policies in p and q. If it is possible
to shape r with a potential Φ(s) in p and shape r by another
potential Ψ(s) in q in a way that makes the shaped reward
functions identical, then identifiability is not possible. Using
Equation (20) to equate two such shaped rewards, we arrive
at the following condition:

γ E
s′∼p

Φ(s)− Φ(s′) = γ̃ E
s′∼q

Ψ(s)−Ψ(s′) (25)

If the above condition is satisfied by non-trivial shaping po-
tentials Φ and Ψ, then there are at least two reward functions
(the unshaped and correspondingly shaped rewards) in dy-
namics p and q which are consistent with all the observed
constraints, hence the reward function will not be identifi-
able. The condition that there are no such non-trivial shap-
ing potentials is imposed by Definition 1 of (Cao, Cohen,
and Szpruch 2021) which then leads to their Theorem 2.

Change of Dynamics
Beyond having a new task whose sole distinction is in the
reward function (reward varying tasks), we can instead con-
sider two tasks which differ in their transition dynamics:
Definition (Dynamics Varying Tasks). Consider a set of
tasks {T (k)}Nk=1. If the tasks only vary on their tran-
sition dynamics; that is, they are of the form T (k) =
⟨S,A, p(k), r, γ, β, π0⟩ then we say the set of tasks {T (k)}
is dynamics varying.

Consider a shift in the environment’s dynamics
p(s′|s, a) → q(s′|s, a) as represented by two dynam-
ics varying tasks. For example, in a discrete maze setting,
the floor may become more slippery. We again derive a
corrective value function that utilizes the previous solution
to a dynamics varying task. We now state the corresponding
result for the corrective value function in this case:
Theorem 8. Let a task T = ⟨S,A, p, r, γ, β, π0⟩ be
given, with optimal value function V ∗ and correspond-
ing optimal policy π∗. Let a dynamics varying task, T̃ =
⟨S,A, q, r, γ, β, π0⟩, be given, with an unknown optimal
action-value function Q̃∗(s, a). Assume that r = r(s, a).
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Denote the optimal action-value function K∗ as the solution
of the following Bellman optimality equation

K∗(s, a) = κ(s, a) +
γ

β
E

s′∼q
log E

a′∼π∗
eβK

∗(s′,a′) (26)

where κ is the corresponding reward function:

κ(s, a) = γ E
s′∼q

V ∗(s′)− γ E
s′∼p

V ∗(s′). (27)

where V ∗(s) is the optimal state value function for the task
defined by dynamics p(s′|s, a).

Then,
Q̃∗(s, a) = Q∗(s, a) +K∗(s, a) (28)

Ṽ ∗(s) = V ∗(s) + V ∗
K(s) (29)

and
π̃∗(a|s) = π∗

K(a|s) (30)
for all s ∈ S, a ∈ A.

Therefore, in the face of changed dynamics, an agent can
adapt by learning the value function K∗ instead of Q̃∗. In
this way, the agent uses the relevant knowledge already ac-
cumulated in a similar environment.

For simplicity, we have kept the rewards the same across
the two tasks, but the results of Theorem 1 and Theorem 8
can be readily combined to accommodate those tasks which
have different dynamics and different reward functions.

Examining Equation (28), where Q̃∗ and K∗ correspond
to a task with dynamics q, and Q∗ corresponds to dynamics
p, we can instead consider Q̃∗ and K∗ as being related via
Equation (8) of Theorem 1. With this perspective, Q∗ rep-
resents the optimal value-function of a reward varying task
with dynamics q and a different reward function (denoted r̄
below). Therefore, given a solution to a task with dynamics
p, we automatically have the solution to a task in dynamics
q. The reward function r̄ in a task with dynamics q to which
this optimal value function corresponds, is provided by the
following theorem:
Theorem 9. Consider the task T = ⟨S,A, p, r, γ, β, π0⟩
with corresponding optimal value functions Q∗(s, a), V ∗(s)
and optimal policy π∗. Then for a reward function

r̄(s, a) = r(s, a)− γ E
s′∼q

V ∗(s′) + γ E
s′∼p

V ∗(s′) (31)

the task given by T̄ = ⟨S,A, q, r̄, γ, β, π0⟩ has the same
optimal action-value function, hence V̄ ∗ = V ∗ and π̄∗ =
π∗.

Interestingly, Theorem 9 implies that by solving problems
in one environment with dynamics p, we are also simultane-
ously solving different problems in (arbitrary) other dynam-
ics q. Hence, by learning in an environment that is “safer” to
experiment in (p), we can obtain solutions to tasks in another
environment (q), perhaps where testing is more difficult, ex-
pensive, or dangerous. By assembling this set of rewards (r̄)
for which we have the solution in dynamics q, we can either
(a) attempt to solve the inverse problem of finding a task to
solve in q such that that we solve the desired task in p or (b)
use the forthcoming results on compositionality and previ-
ous results on reward shifts to solve the task(s) of interest.

Figure 3: Composition of two subtasks (a) and (b), with
function f = min(·). All subfigures illustrate π∗ and V ∗(s).
(a)-(b) Tasks with known solution (c) Composition of sub-
tasks. In this experiment we use the parameters β = 2, γ =
0.98. The green circle indicates the agent’s initial state and
the orange diamond represents the goal state for either task.

Figure 4: Convergence of the Bellman backup equation
(Equation (3)) for the task considered in Fig. 3(c). Red is
the composition (Q̃∗) learned directly. Blue is the corrective
value function (K∗). Average taken over 25 random initial-
izations, and one standard deviation is shown in the shaded
region.

Composition of Rewards
In this section we generalize the previous results by con-
sidering arbitrary compositions of M reward varying tasks.
That is, we now consider a set of solved tasks {T (m)}Mm=1

such that T (m) = ⟨S,A, p, r(m), γ, β, π0⟩. To compose
these tasks, we consider applying a function f to the reward
functions of {T }. We also note the specific case of M = 1
for transformations of a single task’s reward function may
be of interest.
Definition (Task Composition). Consider a set of re-
ward varying tasks, {T (m)}Mm=1. The composition of
{T (m)}Mm=1 under the (bounded) function f : RM → R
is defined as the mutually reward varying task with reward
function r(s, a, s′) = f({r(m)(s, a, s′)}).

Motivated by the results of (Hunt et al. 2019), we derive
another corrective value function, which corrects the naı̈ve
guess of functionally transforming the value functions in the
same way as the rewards (that is, f({Q(m)})). This naı̈ve
guess is in fact a bound in the case of convex combinations
(Haarnoja et al. 2018a). Learning the corrective value func-
tion for a simple composition task is illustrated in Figures 3
and 4.
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Theorem 10. Given a set of reward varying tasks {T (m)}
with corresponding optimal value functions {Q(m)}, denote
Q̃∗ as the optimal action-value function for the composition
of {T (m)} under f . Define the value function K∗ as the so-
lution of the following Bellman optimality equation

K∗(s, a) = E
s′∼p

[
κ(s, a, s′) +

γ

β
log E

a′∼πf

eβK
∗(s′,a′)

]
(32)

where κ is the corresponding reward function:

κ(s, a, s′) =
[
f({r(m)}) + γVf (s

′)
]
− f({Q(m)(s, a)})

(33)
with the definition

Vf (s) =
1

β
log E

a∼π0

expβf({Q(m)(s, a)}),

and πf is the policy derived from f({Q(m)}):

πf (a|s) =
π0(a|s)eβf({Q

(m)(s,a)})

eβVf (s)
(34)

Then,

Q̃∗(s, a) = f({Q∗(s, a)}) +K∗(s, a) (35)

Ṽ ∗(s) = V ∗
f (s) + V ∗

K(s) (36)

and
π̃∗(a|s) = π∗

K(a|s) (37)

for all s ∈ S, a ∈ A.

The result of this theorem can be stated as follows: calcu-
late a policy by transforming the optimal value functions in
the same way the rewards were transformed. Using this new
policy as the prior policy with an appropriate reward func-
tion (κ defined in Equation (33)), we can learn the correction
term, K∗, to obtain the desired optimal value function, Q̃∗.
We again note that, as in Theorem 1, it is possible to learn
K∗ in an offline manner which is described in the proof of
Theorem 10 in the Appendix.

The fixed point K∗ in Equation (32) generalizes the “Di-
vergence Correction” (C∞) introduced by (Hunt et al. 2019)
for convex combinations of reward functions. Notice that
the reward function κ in Theorem 10 measures the “non-
linearity” of f . For if f were linear (cf. Theorem 3.2 of (Hunt
et al. 2019)), then the first term (in brackets) cancels with the
total transformed Q function being subtracted, leaving the
Rényi divergence between subtask policies. In addition, we
have also shown that K∗ is in fact the optimal value function
for a certain task: the task with rewards and prior policy as
defined in Theorem 10.

Discussion
In this work, we have studied transfer learning in entropy-
regularized reinforcement learning. Specifically, we have
considered reward varying tasks, dynamics varying tasks,
and composition of reward varying tasks. By deriving a cor-
rective value function in each case, we have shown that the

solutions for new tasks can be informed by previous solu-
tions. Interestingly, this study of corrective value functions
also led to the derivation of potential-based reward shaping
in entropy-regularized RL.

We have shown that optimal solutions under a given tran-
sition dynamics also corresponds to a set of optimal solu-
tions under any other dynamics, by explicitly calculating the
reward function in Equation (31). This change in perspective
between Theorem 1 and Theorem 8 allows one to transfer a
body of knowledge obtained in one dynamics p, to any other
dynamics of interest. Although these are solutions to reward
functions which may not be of interest a priori, the solutions
may still prove useful when used in tandem with the results
of Theorem 1 and Theorem 10.

We have also generalized the “Divergence Correction” re-
sult of (Hunt et al. 2019), allowing for general transforma-
tions and compositions over primitive tasks. All derived cor-
rective value functions allow the agent to solve the task of
interest by applying previous knowledge to the problem at
hand.

Limitations and Future Work
Although the results and proofs are stated for discrete set-
tings, it is straightforward to extend the results to contin-
uous state and action spaces, with the usual assumptions
for Bellman convergence. The tests here are demonstrated
in discrete finite environments, but this work may also be
extended to encompass continuous spaces.

This work is situated in the context of entropy-regularized
RL, where the stochasticity of optimal policies allow for op-
timal solutions to be manipulated and combined for new
tasks. Further work may explore the analogous problem in
un-regularized RL, which can we understood as the limit
β → ∞. We also note that the case of γ = 1 has straight-
forward proofs in the probabilistic inference framework
(Levine 2018). We intend to explore these results and their
consequences in future work.

Just as we have derived corrective value functions for
changes in reward function, prior policy (Lemma 2), and
dynamics change, one might also consider tasks which dif-
fer in discount factor γ or temperature β−1. Although not
stated here, similar results can be derived for these settings
as well. These generalization and their consequences will be
explored in future work.

Finally, we note that there may be more general results
for a definition of composition which allow the dynamics of
tasks to differ as well. This topic, and possible implications
for sim-to-real and general transfer learning is currently be-
ing explored and will be left to future work.
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