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Abstract

One approach for interpreting black-box machine learning
models is to find a global approximation of the model us-
ing simple interpretable functions, which is called a meta-
model (a model of the model). Approximating the black-box
with a metamodel can be used to 1) estimate instance-wise
feature importance; 2) understand the functional form of the
model; 3) analyze feature interactions. In this work, we pro-
pose a new method for finding interpretable metamodels. Our
approach utilizes Kolmogorov superposition theorem, which
expresses multivariate functions as a composition of univari-
ate functions (our primitive parameterized functions). This
composition can be represented in the form of a tree. In-
spired by symbolic regression, we use a modified form of
genetic programming to search over different tree configu-
rations. Gradient descent (GD) is used to optimize the pa-
rameters of a given configuration. Our method is a novel
memetic algorithm that uses GD not only for training nu-
merical constants but also for the training of building blocks.
Using several experiments, we show that our method outper-
forms recent metamodeling approaches suggested for inter-
preting black-boxes.

Introduction

In recent years machine learning (ML) algorithms made sev-
eral breakthroughs in issuing accurate predictions. There is
however a growing need to improve the trustworthiness of
these models. Providing accurate predictions is not enough
in high-stake applications like healthcare where an agent
(e.g. clinician) needs to interact with the model. In these
applications, the agent usually needs to understand how a
particular prediction is issued. Especially, if the model pre-
diction (say treatment plan) is different from what the clin-
ician has in mind, explaining the model is vital. Compli-
cated ML models like neural networks are essentially black-
boxes to humans, and that is why interpretability meth-
ods are important and have gained significant attention in
recent years (Ribeiro, Singh, and Guestrin 2016b; Lund-
berg and Lee 2017; Guidotti et al. 2018; Arnaldo, Krawiec,
and O’Reilly 2014; Zhang, Solar-Lezama, and Singh 2018;
Alvarez-Melis and Jaakkola 2018; Arrieta et al. 2020; Lou
et al. 2013; Doshi-Velez and Kim 2017).
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There exist two key approaches to bring interpretabil-
ity to machine learning models: (1) by designing inher-
ently interpretable models (Rudin 2019; Chen et al. 2019;
Alvarez-Melis and Jaakkola 2018); or (2) by designing post-
hoc methods to understand a pre-trained model (Ribeiro,
Singh, and Guestrin 2016a; Lipton 2016). In this work,
we focus on the second approach that includes methods to
analyze a trained model locally and globally (Montavon,
Samek, and Miiller 2018). The local interpretability meth-
ods focus on instance-wise explanations, which although
useful, provide little understanding of a model’s global be-
haviour (Ribeiro, Singh, and Guestrin 2016b; Lundberg
and Lee 2017). Hence, researchers have proposed multi-
ple techniques to interpret how a ML model behaves for a
group of instances. Some examples of global analysis meth-
ods include permutation feature importance (Molnar 2019),
activation-maximization (Erhan et al. 2009), and learning
globally surrogate models (Thrun 1995; Craven and Shav-
lik 1996).

Our work relates to the last approach which aims to
learn interpretable proxies by approximating the behaviour
of black-box ML models for multiple instances. Some ef-
forts in this category include methods to approximate neu-
ral networks with if-then rules (Thrun 1995) or decision
trees (Craven and Shavlik 1996) and the method to approx-
imate matrix factorisation models using Bayesian networks
and simple logic rules (Carmona et al. 2015). Our work is
mostly relevant to a different category of approaches for
learning interpretable proxies that focuses on approximating
black-box functions with symbolic metamodels. A proper
interpretable metamodel can enjoy the benefits of different
categories of interpretability methods. For example, a meta-
model may provide insight into the interactions of different
features and how they contribute in producing results. The
metamodel can be locally approximated (e.g. using Taylor
series) to generate instance-wise explanations. Moreover, it
may be used for scientific discovery by revealing underly-
ing laws governing the observed data (Schmidt and Lip-
son 2009; Wang, Wagner, and Rondinelli 2019; Udrescu and
Tegmark 2020b).

Symbolic regression (SR) (Koza 1994), has been the pri-
mary approach for finding approximate metamodels. In SR,
there exist some fixed mathematical building blocks (e.g.
summation operation), and the Genetic Programming (GP)



algorithm searches over possible expressions that can be
composed by combining the building blocks. We will ex-
plain SR in more details in Section and compare it with our
proposed method in Section . The major limitation of SR
is that it uses a set of limited predefined building blocks and
the search spaces grows when the number of building blocks
increases. Two recent papers, which are the most relevant
to our work (Alaa and van der Schaar 2019; Crabbe et al.
2020), address this issue by suggesting the use of a para-
metric trainable class of functions instead of fixed building
blocks. In particular, they suggest using Meijer G-functions
(we briefly introduce this class in Section ). Note that these
are univariate functions, in order to use them in multivari-
ate settings, (Alaa and van der Schaar 2019) considers a
heuristic approximation of Kolmogorov superposition theo-
rem (KST) and (Crabbe et al. 2020) considers the projection
pursuit method (in Section 4, we show that their method can
be also considered as an approximation of KST). Both these
works start from a general framework, however, they make
some restricting assumptions that limit the usability and cov-
erage of their methods. For example, the simple function
x1xo (here x;’s are features) cannot be represented with the
method given in (Crabbe et al. 2020). Similarly, the method
in (Alaa and van der Schaar 2019) fails to represent the prod-
uct of three features x;x2x3. Another limitation of the pro-
posed approaches is that although most of the familiar func-
tions are indeed special cases of Meijer G-functions, for al-
most all parameters, Meijer G-functions do not have famil-
iar closed-form representation. Therefore, in practice, in the
training of parameters, it is very unlikely to obtain a set of
parameters that are “interpretable”.

High-level idea and contribution: In this work, we ad-
dress the above challenges by proposing a new methodol-
ogy to learn symbolic metamodels. Our approach is a gen-
eralization of (Alaa and van der Schaar 2019) and (Crabbe
et al. 2020) as we consider a more general approximation
of KST (see section ). We represent the KST expression us-
ing trees where edges represent simple parameterized func-
tions (e.g., exponential function). We use gradient descent
to train the parameters of these functions and employ GP
to search for the tree that most accurately approximates the
black-box function. We demonstrate the efficacy of our pro-
posed method through several experiments. The results sug-
gest that our approach for estimating symbolic metamodels
is comparatively more generic, accurate, and efficient than
other symbolic metamodeling methods. In this work we are
using our proposed method to provide interpretations, how-
ever, this method can be considered in general as a new GP
method. Our method should be classified as a memetic algo-
rithm where a population-based method is paired with a re-
finement method (in our case gradient descent) (Chen et al.
2011). To the best of our knowledge, this is the first method
that uses gradient descent not only for training numerical
constants but also for the training of building blocks, i.e.,
primitive functions.

Preliminaries

In this section, we present a brief overview of the building
blocks of our proposed method: genetic programming; and
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classes of trainable functions.

Genetic Programming and symbolic regression: Genetic
programming (GP) is an optimization method inspired by
the law of natural selection proposed by Koza in 1994 (Koza
1994). It starts with a population of random programs for
a particular task and then evolves the population in each
iteration with operations inspired by natural genetic pro-
cesses. The idea is that after enough iterations the population
evolves and a fit program can be found in later generations.
The two typical operations for evolving are crossover and
mutation. In crossover, we choose the fittest programs (the
fitness criterion is predefined for the task in hand) for the re-
production of the next generation (parents) and swap random
parts of the selected pairs. In the mutation operation, a ran-
dom part of a program is substituted by some other randomly
generated part of a program. One instance of using GP is for
optimization in Symbolic Regression (SR), where the goal is
to find a suitable mathematical expression to describe some
observed data. In this setting, each program consists of prim-
itive building blocks such as analytic functions, constants,
and mathematical operations. The program is usually rep-
resented with a tree, where each node is representing one of
the building blocks. We refer to (Orzechowski, La Cava, and
Moore 2018; Wang, Wagner, and Rondinelli 2019) for more
details on SR. GP as a population base optimization method
can be paired with other refinement methods. For example,
here we are using both GP and GD in our model. These types
of methods are called memetic algorithms. In particular, our
method should be classified as a Lamarckian memetic algo-
rithm, where Lamarckian refers to the method of inheritance
in GP search. we refer to (Emigdio et al. 2014; Chen et al.
2011) for more details on taxonomy of GP methods.

Class of trainable functions: In contrast with SR which
uses fixed building blocks, our proposed approach (simi-
lar to (Alaa and van der Schaar 2019) and (Crabbe et al.
2020)) uses a class of trainable parameterized functions as
building blocks. One such class of functions is called Meijer
G-functions and has been used in two recent approaches to
learn symbolic metamodels (Meijer 1946, 1936). A Meijer-
G function G%;" is defined as an integral along the path £

) p.q
in the complex plane.
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where 0 < m < gand 0 < n < p are all integers, and
a;,bj € Rforl1 <7 <pand1 < j < gq. Lisa path which
separates poles of I'(1 — b; + s) from poles of I'(a; + s).
By fixing m,n, p, ¢ we have a class of parameterized func-
tions (a;’s and b;’s are parameters), which can be trained
using gradient descent. We refer to (Beals and Szmigielski
2013) for a more detailed definition of these functions. Mei-
jer G-functions are a rich set of functions that have most of
the familiar functions which we think of as interpretable as
special cases. For example,
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However, when trained using gradient descent (GD), the fi-
nal parameters for Meijer G-functions almost always will
not have an interpretable closed form. This limits insight into
the functional form of the black-box model. Hence, in this
work, we propose using classes of simple, interpretable, pa-
rameterized functions that can be efficiently optimized using
GD. The class of functions can be chosen by a domain ex-
pert for each particular task. We will discuss the selection of
primitive functions further in Appendix C. Specifically, here
we demonstrate our approach using the following five pa-
rameterized functions. In Appendix C, we show that our pre-
sented results will not significantly change with using other
sets of primitive functions.

fi(a,b,c,d|z) = ax® + ba® + cx + d, fa(a,blz) = ae™b*
f3(a,b,clz) = asin(bz + ¢), f4(a,b,clx) = alog(bx + c),
fs(a, b, ¢, d|z) = ax/(bx® + cx + d).

Remark. It is important to revisit that our proposed
framework is generic and can accommodate any trainable
class of functions, including Meijer G.

Method

Assume that a black box function f : X — R is trained on a
dataset. Our goal is to find an interpretable function g which
approximates f. To this end, we restrict g to belong to the
class of functions G which are deemed to be interpretable.
Therefore, we want to find the solution to the following op-
timization problem:

argmin ¢(f, g), ()

Y

where ¢ is our loss function of choice. In this work, we as-
sume ¢ to be mean square loss

U, 9) :/X (9(z) — F(2))*d. @

In order to approximate multivariate function f, we deploy
Kolmogorov superposition theorem (Kolmogorov 1957)
which states that any multivariate continuous function (with
d variables) has a representation in terms of univariate func-
tions as follows:

2d+1

d
glx) = g(zr,+ma) = > g2 | Y gii@) | B3
i=1 J=1

In our setting, each of gj? and govt

4" can be a function from
G. However, fully implementing this equation (especially,
using computationally expensive Meijer G-functions) is im-
practical even for moderate values of d. Therefore, an ap-
proximation is proposed in (Alaa and van der Schaar 2019)
by considering a single outer function which is set to be
identity and adding multiplication of all pairs of attributes
to capture their correlation (we discuss this method in more
detail in Section ). In this work, we propose another method
for approximating Equation (3).
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Figure 1: A sample tree structure, each edge is representing
a univariate function

Approximating KST

In our method, we approximate KST using trees with L <
2d + 1 middle nodes, where each of them is connected to
only a subset of inputs. We denote the middle nodes with h;,
for 1 <4 < L. Our approximation can be represented via a
three layered tree (see Figure 1). There is a single root node
at the top of the tree which is connected to L middle nodes.
Each middle node is connected to a subset of bottom layer
nodes. The bottom layer of the tree has d nodes correspond-
ing to d features. For simplicity, when it is not confusing, we
call the node corresponds to ith feature by x;.

Note that each edge in the graph represents a univariate
function. We denote the function corresponding to the edge
between h; and the root with gj, (these are the outer func-
tions), and the function corresponding to an edge between h;
and z; is denoted by g;; (inner functions). The argument of
gi; is naturally the feature it is connected to, namely z;, and
the argument of g, is the summation of all incoming func-
tions to h;. Thatis, = nrs,) 94 (%), where N (h;) denotes
the neighbours of node /; in the graph. Finally, for the root
node, we sum all the outputs of all L middle layer functions.
Therefore, each tree is representing a function from X" to R,
which can be expressed as follows:

L
g(x) = Z!Jm > gi(x)

JEN (hi)
Using GP for Training of Metamodels

“4)

Now we want to solve the optimization problem in (1),
where G is the set of all functions that can be represented in
form of Equation (4), where all g;; and gy, are drawn from
the class of primitive parameterized functions. We propose
solving this optimization problem by running a version of
genetic programming algorithm. The tree representation of
Equation (4), resembles the trees in symbolic regression that
represents each program. Note that, unlike normal GP, here
our constructed trees has a fixed structure of three layers,
and also edges are representing functions. Hence we need
to modify GP accordingly. In this section, we explain the
details of our algorithm.

Producing random trees In the first step, we produce M
random trees 77, - - - , Ths. Each tree T; has L; middle nodes,
where L; is an integer in [l,l5]. [y and I are important
hyperparameters, determining number of middle nodes. For
each of L; middle nodes, a random subset of bottom lay-



ers will be chosen to be connected to this node. At first in-
stance, forall 1 < u < L; and 1 < v < d, we connect h,,
and z,, with probability 0 < pg. Then if there exists an z,
that is not connected to any of the middle nodes. We choose
1 < u < L; uniformly at random and then connect x,, and
h,, to ensure every x; is connected to at least one of the mid-
dle nodes. py is the parameter that controls the sparsity of the
produced graphs, which is one of the main factors that de-
termine the complexity of the training procedure. Each edge
is representing a function from our class of primitive func-
tions, thus we uniformly at random choose one of the func-
tion classes for each edge and also initialize its parameters
with samples from the normal distribution.

Training phases In the training phase, for each tree, we
update the parameters of each edge using gradient descent.
We choose a constant k£ and apply % gradient descent updates
on the parameters of functions g, and g;;. Let g, () =

dgn. (z
g'#(”. For a one of the parameters of g;; and b a param-

eter of gy,,, the gradient of g with respect to a and b can be
computed as follows (recall that g is representing the meta-
model):

dg(x) _ Ogij(x;) J.

by Z gir(zr) |, )
da da keN (h;)
0g(x gy,
%(b ) _ 9n, > gijlag) (6)

JEN (h;)

In this work, we choose a fixed learning rate and leave the
exploration of using more advanced optimization techniques
for future work (this is compatible with (Alaa and van der
Schaar 2019) and (Crabbe et al. 2020), and allows us to have
a fair comparison with these works).

Evaluation fitness of metamodels For evaluating fitness
of the trained metamodels, we uniformly at random sample
m points from X and query the output of black-box f and
metamodels g1, - - - , gas on these m points and compute the
mean square loss for the metamodels to approximate (2) (the
output of f is considered as the ground truth). If any of the
M models has a loss less than a predefined threshold we
terminate the algorithm. Otherwise, we choose the s fittest
metamodels and discard the rest. These s survived metamod-
els are the parents that will populate the next generation of
trees in the evolution process for the next round of the algo-
rithm.

Regularization: We can modify the fitness criterion to
favor simpler models. For encouraging sparsity of the tree,
we can add a term to the MSE error for penalizing trees that
have more edges. Denoting the total number of edges with
E, we use this criterion for evaluating the fitness of the trees
(A is a hyperparameter):

Fitness of a given tree = MSE + \E. @)

Evolution phase In the evolution phase, we create the next
generation of metamodels using survived trees. Similar to
the conventional GP algorithm, here we also define two op-
erations to perform on each tree: Crossover and Mutation.
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For each of the s chosen trees like T', we first pass on 7' to
the next generation, then we randomly choose ?{ — 1 times
one of the two operations, perform it on 7', and add the re-
sulting tree to the cohort of the next generation trees. Thus,
the total number of trees in the next cohort is also M. Here
we define the two operations which preserve the three-layer
structure of the trees:

* In the crossover operation, for 7', we first randomly
choose one of the nodes at the second layer of 7. Then
we uniformly at random choose one of the other s — 1
trees, and then again uniformly at random choose one of
its second layer nodes and replace that node alongside all
edges connected to that node with the chosen node in 7.
Notice that the edge connected to the root node will be
also replaced. Moreover, note that the new tree will in-
herit the functions corresponding to replaced edges and
their parameters.

* In the mutation operation, one of these two actions will
be applied on the tree: 1) changing the function class of
an edge, 2) removing an edge between the middle and in-
put layers. In each round of mutation, we apply n,, times
one of these two actions on the tree. When we change the
class of function for an edge, we also randomly reinitial-
ize the parameters of the corresponding function.

The above two operations allow us to explore different con-
figurations of trees and classes. A pseudo code of the algo-
rithm and a flowchart is presented in Appendix A. We call
our proposed method symbolic metamodeling using primi-
tive functions (SMPF).

Different Types of Interpretation Using SMPF

Instance-wise feature importance: Similar to (Alaa and
van der Schaar 2019) and (Crabbe et al. 2020) we can use
the learned metamodel for estimating instance-wise feature
importance. We can find the Taylor expansion of the meta-
model around the data point of interest &y and analyse its
coefficients.

g9(x) = g(@o) + Vg(xo).(z — o) + (% — @0)-Ho(2).(x — @0) + -+,
®)
first order partial derivative with respect to jth feature can
be computed using chain rule:

> g,

hi €N (z5)

dg(x) _
8l‘j

Z 9i5(x5) | gi;(xz5). (9

JEN (h;)

We will use this method in the instance-wise experiment.
Importantly, we can also compute higher-order coefficients
for analyzing feature interactions.

Mathematical expressions: The final expression of the
metamodel can provide insights into the functional form
of the black-box function. For example, in the first experi-
ment, we show that the metamodel correctly identifies that
the black-box is an exponential function. Moreover, the in-
spection of mathematical expressions provides information
about the interactions between the input features, and can
potentially lead to the understanding of previously unknown
facts about the underlying mechanisms to domain experts.



An idea for exploring in future work is inspecting the final
cohort of graphs. For example, if in the last iteration, the av-
erage degree of a node is large across different graphs, this
can show the importance of the corresponding feature. Sim-
ilarly, when a subset of features are connected to a middle
node it can show the interaction of those features.

Comparison with Related Works

In the experiments section, we compare our approach with
three symbolic metamodeling methods. This section briefly
introduces these approaches, highlighting their strengths and
weaknesses. A table comparing our method with a wider
range of methods is provided in the supplementary material.

Symbolic Metamodeling (SM) (Alaa and van der
Schaar 2019): SM proposes using Meijer G-functions for
interpreting black box models. In the derivation of their
method, they also start with KST (3), however, with a dif-
ferent approximation: they consider only one outer function
(g°“*) and set that function to be identity (the inner functions
are all Meijer G). This does not allow the features to inter-
act, in order to fix this problem, they add the multiplication
of all pairs z;x; to the features. This setting has two main
issues, firstly this method cannot capture the interaction of
more than two features and does not show other forms of in-
teractions apart from multiplication. Secondly, this approach
introduces many new features which makes it impractical
when d increases. There are (g) + d features in total and
there is a Meijer G-function corresponding to each of them
which makes using SM computationally costly.

Symbolic Pursuit (SP) (Crabbe et al. 2020): SP is a sub-
sequent work to SM and is designed to overcome some of
its flaws. In particular, SP is designed to use fewer Meijer
G-functions. The method is based on the Projection Pur-
suit algorithm in statistics (Friedman and Stuetzle 1981). In
each step of the algorithm, a Meijer G-function will be fitted
which minimizes the residual error between the metamodel
and the black-box. The final metamodel will be the sum-
mation of all these Meijer G-functions. The input of each
function is a linear combination of features. Thus, the final
function will have the following formulation:

L d
glx)=> gi | > cijzj |,
i=1 j=1

where g;’s are Meijer G-functions. Importantly, the authors
use a modified version of (10) where the arguments of Mei-
jer G-functions are normalized such that they lie in the open
interval of 0 to 1. Moreover, SP involves adding weights to
the outer summation to allow mitigating the contributions of
previously found functions, if needed.

Note that SP can be considered as one instance of our
framework. The equation (10) is compatible with KST (3)
and can be represented similar to Figure 1. In essence, all in-
ner functions (edges between the bottom and middle layers)
are restricted to be linear, basically, they are coming from
the class of f(z) = cx. There are L middle nodes, and outer
functions are drawn from the class of Meijer G-functions.
Also, in their setup py = 1 (po was the probability of con-
necting two nodes).

(10)
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Symbolic Regression: We briefly introduced SR in Sec-
tion 2. SR searches over mathematical expressions that can
be produced by combining a set of predetermined functions.
In each program, the leaf nodes are either features or numer-
ical values, and other nodes are mathematical operations.
One main difference between SR and our method (also SM
and SP) is that unlike SR our methods are based on a rep-
resentation derived from KST. Furthermore, we use para-
metric functions (and GD) which cannot be accommodated
in SR setting (note that GD has been suggested in SR but
only for the training of leaves, e.g. see (Topchy and Punch
2001; Kommenda 2018)). Importantly, SR has an advantage
over SP and SM in that the final result expression is guaran-
teed to be explainable, as it will be a combination of func-
tions that we chose to include as the building blocks. How-
ever, when Meijer G-functions are used (in SM and SP),
the resulting metamodel may not have a simple and explain-
able representation. This issue is resolved in our framework.
There are several extensions on the original SR method, in-
cluding methods that leverage deep learning techniques for
searching the search space. These methods can be consid-
ered for future work to improve the GP in our method as well
(Arnaldo, Krawiec, and O’Reilly 2014; Rad, Feng, and Iba
2018; Wang, Wagner, and Rondinelli 2019; Orzechowski,
La Cava, and Moore 2018; Chen, Xue, and Zhang 2015;
Udrescu and Tegmark 2020a; Petersen et al. 2021; Mund-
henk et al. 2021).

Experiments

We evaluate and compare our proposed method using three
experiments. In the first experiment, we use our method to
approximate four functions with simple expressions (similar
to the first experiment of (Alaa and van der Schaar 2019)).
In the second experiment, we use our method for estimating
instance-wise feature importance for three synthetic datasets
(similar to (Alaa and van der Schaar 2019) and (Chen et al.
2018)). Finally, in the third experiment, we consider black-
boxes trained on real data and approximate it using the meta-
model (similar to (Crabbe et al. 2020)). Some additional re-
sults and the hyperparameters are reported in Appendix E.

Metamodels for Fixed Functions

In this experiment, we find metamodels for four synthetic
functions with two variables. We compare the performance
of our method (SMPF) with symbolic metamodeling (SM),
symbolic pursuit (SP), polynomial approximation of SP
(SPP), and symbolic regression (Orzechowski, La Cava, and
Moore 2018) (similar to (Alaa and van der Schaar 2019) we
use gplearn library for the implementation of SR). We com-
pare methods in terms of mean squared error (MSE) and R?
score. Generally, our algorithm achieves a better accuracy as
compared to other methods (we have the best score for three
of the functions). The results are reported in Table 1. Fur-
thermore, SMPF was able to correctly identify the functional
form. For the first experiment, the final expression of the



f(:l:) = 6_3150+xl

f(x) = sin(xox1)

Tox1

fla) = G355

f(z) = sinc(23 + z1)

SMPF MSE 0.001 + 0.0002 0.012 £ 0.002 0.002 £ 0.0004 0.004 + 0.0004
R? 0.996 & 0.002 0.962 £ 0.004 0.895 + 0.013 0.952 £ 0.003
SM MSE 0.174 £ 0.031 0.126 £ 0.009 0.108 +0.0104 0.193 £ 0.006
R? 0.273 £0.019 —2.039 £ 0.442 —5.461 £ 0.746 —0.263 £ 0.094
Sp MSE 0.009 £ 0.004 0.0008 £ 0.0001 0.002 £ 0.0003 0.009 £ 0.002
R? 0.958 +0.014 0.978 £ 0.003 0.878 4+ 0.021 0.937 £ 0.015
Spr MSE 0.009 £ 0.001 0.024 £ 0.001 0.011 4 0.001 0.010 £ 0.001
R? 0.953 +£0.014 0.348 £ 0.082 0.345 £+ 0.807 0.932 £ 0.013
SR MSE 0.078 £ 0.018 0.0004 £ 0.0002 0.012 £ 0.002 0.016 £ 0.003
R? 0.658 £ 0.032 0.988 + 0.003 0.256 £ 0.144 0.886 & 0.034

Table 1: Approximating two-variable functions using SM, SP, SR and SMPE.
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Figure 2: Box-plot of feature importance for three datasets. The red lines show the median ranks under each algorithm. Lower
median ranks imply better performance. DL refers to DeepLIFT.

metamodel is as follows (we rounded up coefficients here):

g(x) = 0.854 exp ( — 2.438sin(1.371z0 — 0.0318)+

0.684x; )
0.01622 + 0.204z; + 0.426/°

This shows an important advantage of our method in com-
parison to other methods. For example, the expression found
by SP algorithm has the following form (P1 here is a linear
combination of the two inputs):

_ 2,1 ( 0.24,—0.06
9(55) =0.98 G2,3 (0.16,—0.47,043

Note that it was not possible to find a closed form expres-
sion for this function. Also, for the second function, sin is
correctly chosen as the outer function in SMPF. See Ap-
pendix E, where we provide results for synthetic functions
with more variables.

| 1.0[ReLU(P1)}) .

Instance-wise Feature Selection

In this experiment, we evaluate the performance of our
method for estimating the feature importance by repeating
the second experiment of (Alaa and van der Schaar 2019).
Three synthetic datasets are used: XOR, Nonlinear addi-
tive features, and Feature switching. All three datasets have
10 features, in XOR, only the first two features contribute
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in producing the output. In Nonlinear additive features and
switch datasets, the first four features and first five features
are important, respectively. First, we train a 2-layer neu-
ral network f(a) with 200 hidden neurons for estimating
the label of each data point. Then, we run our algorithm
to find a function g(x) to estimate function f(x). We con-
sider the coefficient of each feature in the Taylor series of
g(x) as a metric for its importance. The larger the coeffi-
cient, the more important it will be. We rank the features
based on their importance. We consider 1000 data points, re-
peat the process for each data point and find the median fea-
ture importance ranking. The median value of relevant fea-
tures determines the accuracy of the algorithm; the smaller
median rank implies a better accuracy. Figure 2 compares
our algorithm with Symbolic Metamodeling (SM) (Alaa
and van der Schaar 2019), Symbolic Pursuit (SP) (Crabbe
et al. 2020), Symbolic Regression (Orzechowski, La Cava,
and Moore 2018), DeepLIFT (Shrikumar, Greenside, and
Kundaje 2017), SHAP (Lundberg and Lee 2017), LIME
(Ribeiro, Singh, and Guestrin 2016b), and L2X (Chen et al.
2018). SMPF performs competitively compared with other
algorithms. For XOR dataset we have the best median rank,
and we are among the best for nonlinear additive dataset. On
Switch dataset, SMPF performs similar to other global meth-
ods, i.e., SM, SP, and SR which are our direct competitors.
SHAP is the only algorithm that has a better performance on



Method MLP SVM
MSE R? MSE R?

Black Box 0.6804+0.224  0.703+£0.019  0448+0.241  0.781 +0.061

Method v.s. Black B SMPF  0.007£0.003  0.993+0.003  0.029+0.013  0.967£0.120

ethod v.s. Black Hox SP 0.008 £ 0.011 0.978 £ 0.016 0.014 £ 0.015 0.974 £ 0.078

Method SMPF  0.674+£0211  0.709+0.015  0.344+0.163  0.829 & 0.037

ctho SP 0.6824+0.225  0.697£0.027  0.4714+0.253  0.780 £ 0.048

Table 2: Interpreting black-boxes trained on real data using SMPF compared with SP

this dataset.

Black-box Approximation

In this experiment, we evaluate the performance of our
model on interpreting a black-box trained on real data, repli-
cating the second experiment of (Crabbe et al. 2020). A
Multilayer Perceptron (MLP), and Support Vector Machine
(SVM) are trained as two black boxes using UCI dataset
Yacht (Dua and Graff 2017) (additional results are reported
in Appendix E). In order to have the same setting as SP, we
train the MLP and SVM models using the scikit-learn li-
brary (Buitinck et al. 2013) with the default parameters. We
randomly use 80% of the data points for the training of the
black box model as well as SMPF model, and the remain-
ing 20% is used to evaluate the performance of the model.
This procedure is repeated five times to report the averages
and standard deviations. We report the mean squared error
(MSE) and R? score of the MLP and SVM against the true
labels, MSE and R? of the metamodel against the black-
box models, and the MSE and R? of the metamodel against
the true labels (see Table 2). We observe that both SP and
SMPF have very good performance in approximating the
black-box. Interestingly, SMPF outperforms the black-box
on the test set for both models which may indicate that the
black-box overfits the dataset, but SMPF does not, as it uses
simple functions.

Discussion

Complexity: In terms of run-time, for the last experiment,
the training of SP for the MLP black-box takes 215 min-
utes, while the training of our algorithm takes 45 minutes
(both performed on a personal computer). The reason that
SP is more computationally expensive is that SP has to eval-
uate Meijer G-functions in each iteration of their optimiza-
tion process. Evaluating a Meijer G-function is very expen-
sive and takes about 1 to 4 seconds depending on the hy-
perparameters (i.e., m, n, p, ¢). This observation implies that
SMPF has lower computational complexity which allows us
to handle more variables and also enables the possibility of
using more complex trees, as we suggest later in the future
work. However, this should be highlighted that our method
(similar to other symbolic methods) is not appropriate for
high-dimensional data like images.

Limitations: Even though we showed the performance
of our model through extensive numerical experiments, our
method lacks theoretical guarantees (theoretical analysis is
particularly challenging because of the use of GP). Another
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limitation (also inherited from GP) is that there are several
hyperparameters in our model to specify the structure of
the tree. As discussed, symbolic metamodels cannot handle
high-dimension inputs. Finally, the richness of functions we
can create is limited, this can be compensated using more
complex classes of functions or more complex tree struc-
tures.

Direct training vs using black-box: A natural question is
why not directly use the training data to train the metamodel
(without using the black-box)? There are two reasons why
we have considered the black-box for training. One is from
the user point of view, we may have been given a task of in-
terpreting a black-box, i.e., the user’s question may be why
this particular method is working, and not necessarily look-
ing for another interpretable method. Secondly, and more
importantly, we may not have access to the dataset for vari-
ous reasons including privacy concerns. In this method, we
only need querying the black-box method and we can use
random inputs (as many of them as we want). Directly using
the dataset in all symbolic metamodeling methods (e.g. SR,
SM, and SP) is also possible and can be relevant in many
scenarios, e.g., discovering the underlying governing rules
of a dataset (Udrescu and Tegmark 2020a; Sahoo, Lampert,
and Martius 2018; Makke, Sadeghi, and Chawla 2021).

Conclusion and future work: We proposed a new
generic framework for symbolic metamodeling based on
the Kolmogorov superposition theorem. We suggested us-
ing simple parameterized functions to get a closed-form and
interpretable expression for the metamodel. The use of sim-
ple functions may seem restrictive when compared with SM
and SP which use Meijer G-functions (a richer class of func-
tions). However, this is compensated in our framework with
a better approximation of KST. We used genetic program-
ming to search over different possible trees and also possi-
ble classes of functions. There are several directions for the
expansion of this work: 1) we can consider a more com-
plex tree structure. For example, we can have trees with four
layers instead of three, which allows us to construct more
complex expressions (see Appendix D). 2) Other primitive
functions can be used in our setup, e.g., Meijer G-functions.
3) The optimization in the training phase can be improved.
The problem is non-convex, and gradient descent may not
be able to find the global optimal point. This issue can be
addressed by imposing convex relaxation or using more so-
phisticated non-convex optimization methods.
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