
Efficient Distributed Inference of Deep Neural Networks via Restructuring and
Pruning

Afshin Abdi, Saeed Rashidi, Faramarz Fekri, Tushar Krishna
School of Electrical and Computer Engineering, Georgia Institute of Technology

{abdi, saeed.rashidi}@gatech.edu, {fekri,tushar}@ece.gatech.edu

Abstract
In this paper, we consider the parallel implementation of
an already-trained deep model on multiple processing nodes
(a.k.a. workers). Specifically, we investigate as to how a deep
model should be divided into several parallel sub-models, each
of which is executed efficiently by a worker. Since latency due
to synchronization and data transfer among workers negatively
impacts the performance of the parallel implementation, it is
desirable to have minimum interdependency among parallel
sub-models. To achieve this goal, we propose to rearrange the
neurons in the neural network, partition them (without chang-
ing the general topology of the neural network), and modify
the weights such that the interdependency among sub-models
is minimized under the computations and communications
constraints of the workers while minimizing its impact on the
performance of the model. We propose RePurpose, a layer-
wise model restructuring and pruning technique that guaran-
tees the performance of the overall parallelized model. To
efficiently apply RePurpose, we propose an approach based on
ℓ0 optimization and the Munkres assignment algorithm. We
show that, compared to the existing methods, RePurpose sig-
nificantly improves the efficiency of the distributed inference
via parallel implementation, both in terms of communication
and computational complexity.

Introduction
In recent years, the size and complexity of deep neural
networks (DNNs) have increased significantly in terms of
model’s structure and number of parameters. Consequently,
real-time implementation and inference in many machine
learning (ML) problems has become challenging. Although
the execution time of deep neural networks can be improved
significantly by the application of parallel computing algo-
rithms and using multiple processing units (such as GPU’s
or clusters of computing nodes), it generally requires syn-
chronization and significant data exchange among processing
units. This is mainly due to the fact that in parallel com-
putations, each processing unit performs a portion of the
computations, its inputs generally depend on the other units’
outputs, and the computation results should be aggregated to
yield the desired output. These co-dependencies can lead to
significant delays in computations when the deep model is
distributed across multiple processing nodes.

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

As an example, consider a sensor network where the in-
ference is done on the data observed by the entire network,
i.e., each node in the network only observes part of the data.
However, transferring all data to a central powerful node to
aggregate and perform the ML task is undesirable due to the
sheer amount of data to be transferred over a band-limited
channel, or privacy concerns. Further, such a computationally
powerful node may not even exist in the network. Hence, it
is favorable to develop a distributed equivalence of a deep
model for distributed deployment over the sensors such that
the sensor network, as a whole, becomes a computing/infer-
ence engine of the original deep model.

The majority of works on distributed/parallel execution
of DNNs are concerned with algorithmic aspects of the par-
allel implementation (e.g., (Zinkevich et al. 2010; Chung
et al. 2014; De Grazia, Stoianov, and Zorzi 2012)). However,
in the aforementioned applications, straightforward parallel
computing algorithms are not suitable and cannot be arbi-
trarily scaled up for deep models with complex connectivity
structures. Hence, here, we focus on the structure of DNNs
and how we can modify it for efficient distributed inference.

Although it is possible to design deep models according
to the capability and constraints of the processing system,
following such an approach requires training a new model for
every target hardware or distributed system which is infeasi-
ble or demanding in many ML problems. Further, imposing
a possibly unnecessary structure in advance during training
a deep model would likely be limiting in terms of model
performance and accuracy. Moreover, it can be an undesir-
able approach for parallel implementation since a model
specifically designed for optimum implementation on a tar-
get platform or architecture may be far from optimum on
other platforms (e.g., intelligent edge devices, GPUs with
different compute capabilities, or CPU vs GPU vs sensor
network). Hence, optimizing and fixing the structure for one
particular distributed setting in advance would limit the opti-
mal deployment on other platforms. As a result, we assume
that a deep model has already been trained with minimum or
no hardware-specific constraints. Our goal is readjusting the
model via restructuring the layers and manipulating the pa-
rameters of the neural network without changing its general
topology for more efficient parallel implementation.

For example, consider the simple neural network in
Fig. 1(a). Simply partitioning the model into two sub-models

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

6640

1
2
3

4
5
6

1
2

4
3

7

5
6

8
6

4
5

1
2
3

W
o

rker 1
W

o
rker 2

1
2
3

4
5
6

1
2

7
5

4
6

3

8

1
2
6

4
5

3

(a) Original model (b) Restructured model

Figure 1: Restructuring a neural network to reduce communi-
cation between processing units

(dashed line in Fig. 1(a)) imposes lots of communication
between the two partitions. However, by rearranging the
neurons properly, the co-dependency (and hence required
communications) between the two sub-models (the red edges
in Fig. 1(b)) is reduced substantially. It is worth mentioning
that there are approximately O(PN) different partitioning
to distribute computations of a neural network’s layer with
N neurons over P workers. Hence, enumerating all such
possibilities and choosing a good one is infeasible specially
for large networks. In this paper, we propose a systematic ap-
proach to perform such partitioning and parameter adjustment
to ensure efficient implementation of the modified model
while keeping its accuracy close to the original model.

Notations- Bold lowercase letters represent vectors and
the i-th element of the vector x is denoted as xi. Matrices are
denoted by bold capital letters such as X , with the (i, j)-th el-
ement represented by Xi,j or [X]i,j . A⊙B is the Hadamard
(element-wise) product of A and B. ∥X∥F is the Frobenius
norm of X , ∥x∥2 and ∥x∥0 are the ℓ2 and ℓ0 norms of x,
respectively. 1 is a vector or matrix of all ones, whose size
would be clear from the context.

Related Works
In this section, we review some of the seemingly related
works and how our work differs from the existing methods.

Distributed Training- In distributed training, generally
the data is split across multiple workers. There is a plethora
of work on distributed deep learning with the goal of re-
ducing communications across workers or speeding up the
training (Dean et al. 2012; De Grazia, Stoianov, and Zorzi
2012; Chilimbi et al. 2014; Alistarh et al. 2016; Dryden et al.
2016; Wang et al. 2017; Ouyang et al. 2020; Abdi and Fekri
2020). However, a major difference with our problem is that
the input to the ML model in our setting is distributed across
workers, while in distributed training methods, the ML model
can be fully executed on each individual worker. Moreover,
the distributed training techniques are mostly focused on
compressing or communicating the parameters of the models
efficiently, while our primary goal is communicating the nec-
essary information (e.g., activation signals) to speed up the
inference. Similarly, our problem is different from layer-wise
model partitioning for distributed training such as (Huang
et al. 2018; Harlap et al. 2018) where the single-input to
output latency is not a major concern and the whole input to
the model is available at a single node.

Accelerating Inference on the Edge- DNN inference can
impose a relatively high computation load on edge devices.

On the other hand, offloading the entire inference task to
the cloud may require transmitting large amount of data.
To overcome these issues, recently, it has been proposed to
partially run DNN at the edge and offload the remaining
computation to the cloud (Hu et al. 2019; Mohammed et al.
2020; Zhang et al. 2020; Xu et al. 2020; Chen et al. 2021).
This is generally achieved by cutting the DNN at a layer
and dividing it into two parts, where the first part runs at
the edge, and the second part is offloaded to the cloud. The
output signals of the first part is then transmitted to the cloud
for further processing. For example, DNN-Surgery (Hu et al.
2019) and similar works consider each layer of DNN as
a whole, neither tries to break the layer into sub-layers nor
restructures the model. Moreover, it is assumed that the whole
data is available at the edge node.

Model Compression and Pruning- In recent years, there
has been an increasing interest in compressing, quantizing,
pruning, or modifying the structure of deep models to reduce
their computational or storage costs, while keeping the accu-
racy of the modified model acceptable. The majority of these
approaches can be classified into three categories:
• Knowledge Distillation to train a shallow or smaller model

that mimics the behavior of an already trained complex
model or an ensemble of models (Hinton, Vinyals, and
Dean 2015; Romero et al. 2015; Zagoruyko and Ko-
modakis 2017).

• Using Structured Parameters to reduce the size or pro-
cessing time of deep model, such as using circulant ma-
trices (Cheng et al. 2015) or adaptive Fastfood trans-
form (Yang et al. 2015) for fully connected layers, and sep-
arable filters (Rigamonti et al. 2013) or low-rank tensor
decomposition (Tai et al. 2016) for convolutional layers.

• Pruning Parameters has been used extensively to re-
duce the complexity of the model as well as over-
parametrization. ℓ1 or ℓ0 regularization (Louizos, Welling,
and Kingma 2018), and group-sparsity (Zhou, Alvarez,
and Porikli 2016; Wen et al. 2016) have been successfully
used to promote sparsity of the parameters during training.
Model pruning algorithms such as Optimal Brain Dam-
age (Cun et al. 1990), Optimal Brain Surgeon (Hassibi
et al. 1993), hard-thresholding (Han et al. 2015), and sim-
ilar works (Castellano, Fanelli, and Pelillo 1997; Leung
et al. 2001) remove the insignificant edges or neurons by
considering the magnitude of the weights or their approxi-
mate Hessian matrix as a measure of importance. Further,
layer-wise pruning techniques such as Net-Trim (Aghasi
et al. 2017; Aghasi, Abdi, and Romberg 2020) have been
shown to be an effective tool to prune deep models while
guaranteeing the accuracy of the pruned model.

Problem Statement and Our Approach
Consider the problem of distributed implementation of a
trained DNN over P workers, where the DNN is divided into
P sub-models, each of which is executed by a worker. As
managing the synchronization and data transfer among work-
ers degrades the efficiency of the parallel implementation,
it is crucial to reduce the communication among workers.
This inter-worker communication happens when the input

6641

0

1

1

0

x1

x2

y1

y2 y1 = W T
11x1 + b1 +W T

12x2

y2 = W T
22x2 + b2 +W T

21x1

Figure 2: Parallel execution of a layer over two workers.
The intra-worker computations are denoted by yellow and
green, while required communication between the workers
are shown by red. The binary mask matrix (right image) can
be used to determine the edges between the two workers.

of a neuron in a sub-model is from a neuron belonging to
a different sub-model residing in another worker. These co-
dependencies can lead to significant delays in computation.

For the sake of simplicity in presentations and analysis, we
mainly focus on the fully connected layers in feed-forward
deep models. Consider an arbitrary neural network with L
layers and parameters {θ(l)}Ll=1, where θ(l) = {W (l), b(l)}
are the weight and bias of the l-th layer. Let x(l) be the input
signal to the l-th layer. Then, the output of the layer (input to
the next layer) would be given by

y(l) = (W (l))Tx(l) + b(l), x(l+1) = σ(y(l)), (1)

where σ(·) is the activation function.
To analyze the bottlenecks, consider an arbitrary layer

with input x, and parameters W and b (Fig. 2). Hence, y =
W Tx+b would be the input signal to the neurons of the layer.
Suppose that xk and yk are subsets of the signals that are
processed by the k-th worker. Without loss of generality, we
assume that the neurons are ordered such that the k-th block
of consecutive neurons belongs to the k-th sub-model, i.e.,
x = [x1;x2; . . . ;xP]. By partitioning W and b accordingly,
we observe that

yk = (W T
k,kxk + bk) + (

∑
l ̸=k

W T
k,lxl). (2)

Note that the first term can be computed at the k-th worker in-
dependent of the others, whereas computing the second term
requires synchronization and communication from the other
workers. Hence, to reduce the dependency among workers
and the communication cost, we consider minimizing the
number of non-zero elements in Wk,l, for l ̸= k. Note that
the bias b does not contribute to the communication between
workers and can be safely ignored in computing the cost.

By defining an appropriate binary mask M (Fig. 2 (right)),
the connections between sub-models is determined by the
non-zero elements of M ⊙W . In general, if ιk and ok are
the number of input and output neurons assigned to the k-th
worker, then M is an anti-diagonal block matrix, given by

M = 1− diag
(
1ι

1
×o

1
, . . . ,1ι

P
×o

P

)
.

Remark 1. Note that ∥M ⊙ W ∥0 is the total number of
dependencies between sub-models, and can be used as an

approximation to the total latency due to the communication
and synchronization among workers. Similarly, by defining
an appropriate binary mask Mij , the edges from worker
j to i are given by the non-zero entries of Vij := Mij ⊙
W . Depending on the communication protocol, the number
of non-zero edges, number of non-zero rows, or number of
non-zero columns of Vij can be interpreted as a measure of
latency due to the communication from worker j to i. For the
sake of simplicity, in this work, we consider ∥M ⊙W ∥0 as
the total communication latency. However, the extensions of
our proposed approach to other cases is straightforward.

To reduce the communication, one may attempt to naively
partition the original neural network and prune the cross-
edges among sub-models. However, as we observed in our
experiments, there are many important connections between
neurons from different sub-models, and naively removing
these connections can severely affect the performance of the
neural network. Hence, it is important to have neurons with
important connections in the same sub-model. On the other
hand, the problem of neuron assignment to the workers is
combinatorial and discrete with complexity O(PN) for a
layer with N neurons and P workers. Hence, enumerating
all possibilities, or using ordinary optimization techniques as
well as genetic algorithms or simulated annealing would fail
due to the complex nature of interactions among neurons in a
deep NN. As a result, processing the entire neural network
as a whole and partitioning all layers/neurons simultaneously
is computationally infeasible and to the best of our knowl-
edge, no algorithm exists to (approximately) solve the neuron
assignment problem. Based on the above observations and
following the success of numerous layer-wise neural network
analysis algorithms, we devise RePurpose, a layer-wise neu-
ral network restructuring and pruning technique for efficient
parallel implementation. The gist of the idea is as follows;

The neurons of the input layer are assigned to the sub-
models based on each worker’s computational power and/or
structure of the input data. For example, in a sensor network,
it is dictated by each sensor’s observed data. We restructure
and adjust the neural network sequentially. For the l-th layer,
the assignments of the neurons in layer l − 1 are assumed to
be fixed and known from the previous steps. The neurons in
layer l are rearranged and assigned to each sub-model, and
the parameters of the layer are pruned and fine-tuned, such
that (i) the performance of the modified neural network is
close to the original one, and (ii) the communication between
the sub-models (measured by the number of edges connecting
neurons from different sub-models) is minimized.

Restructuring and Pruning Deep Models
Consider the l-th layer of neural network and assume that the
neurons in the previous layers have already been partitioned
and rearranged, i.e., the input of the layer is partitioned as
[x1; . . . ;xP], where xk is computed at the k-th worker. Let
y and W be the signals and parameters of the l-th layer in
the original model. RePurpose rearranges the neurons such
that the k-th block of neurons are being assigned to the k-th
worker (Fig. 3). Note that the rearrangement of the neurons
can be captured via a permutation matrix Π. Hence, if we

6642

𝑾

𝒙1

𝒙2

𝒙𝑃

𝒚 ෢𝑾

𝒙1

𝒙2

𝒙𝑃

ෝ𝒚1

ෝ𝒚2

ෝ𝒚𝑃

Figure 3: Rearranging neurons of a layer and adjusting pa-
rameters such that k-th worker process the k-th block, ŷk.

Algorithm 1: RePurpose algorithm for a single layer
Input: W , {nk}Pk=1, η1, η2
Output: Permutation matrix Π

1: Compute the cost matrix C, where [C]j,i is calculated
via (4) and (5).

2: Construct C̃ by repeating the k-th row of C, nk times.
3: (I, J) = MUNKRES(C̃).
4: Define permutation matrix as ΠI,J = 1.

use the same weights, the effect of neuron-rearrangement
can be formulated as ŷ = Πy and Ŵ = WΠT, and the
number of cross-edges between workers would be ∥M ⊙
Ŵ ∥0. To further reduce the communication between workers,
RePurpose not only rearranges the neurons, but it also prunes
and adjusts Ŵ . The optimization problem is formulated as

min
Ŵ ,Π

∥M ⊙ Ŵ ∥0 s. t. ∥Ŵ −WΠT∥2F ≤ ϵ, (3)

where ϵ controls the closeness of the parameters. In the fol-
lowing, we propose a fast and efficient method to solve (3).

Recall that if neuron i is assigned to worker j, the signal at
that neuron can be rewritten as ŷi = bi+ŵT

i x = bi+ŵT
ijxj+∑

k ̸=j ŵ
T
ikxk, where ŵi is the i-th column of Ŵ , and ŵik

is the k-th block of ŵi corresponding to xk. Hence, the
communication cost from other workers to worker j would be
∥ŵi,\j∥0 :=

∑
k ̸=j ∥ŵik∥0. By incorporating an additional

optional cost to encourage the total sparsity of the parameters,
∥ŵi∥0, the cost of assigning neuron i to worker j would be

cji = min
ŵi

∥wi − ŵi∥22 + η1∥ŵi∥0 + η2∥ŵi,\j∥0, (4)

where η1 and η2 control the trade-off between the error, spar-
sity, and cross-communication.
Lemma 1. The solution of (4) is given by element-wise hard-
thresholding of wi, i.e.,

[ŵi]n =

{
0 | [wi]n | ≤

√
η

[wi]n o.w. (5)

where η = η1 or η1 + η2, depending on whether neuron ”n”
of the previous layer was assigned to the j-th worker or not.

Restructuring and neuron assignment can be interpreted as
selecting elements from the cost matrix C, whose (j, i)-th
element is given by (4), such that (1) from row k, nk elements

are selected, i.e., nk neurons are assigned to worker k, (2)
from each column, only one element is selected, i.e., each
neuron can be assigned to only one worker, and (3) the sum of
selected elements is minimized, i.e., the total cost of neuron
assignment and parameter adjustment is minimum.

Algorithm 1 summarizes the proposed solution, where
MUNKRES(·) uses the Munkres assignment algorithm (Kuhn
1955; Munkres 1957) to find the (row-column) index pairs
that minimizes the total sum cost

∑
n[C̃]

In,Jn
.

Theorem 2. Algorithm 1 finds the optimum solution of

∥Ŵ −WΠT∥2F + η1∥Ŵ ∥0 + η2∥M ⊙ Ŵ ∥0, (6)

with computational complexity O(N3), where N is the num-
ber of layer’s neurons (columns of W).

Note that by setting η1 = 0, (6) would be the Lagrangian
of (3) and choosing appropriate value for η2 can lead to
the desired error bound ∥Ŵ −WΠT∥2F ≤ ϵ. Finally, it is
worth mentioning that the bias term does not contribute to
the communication cost and is given by b̂ = Πb.

Remark 2. In model pruning and compression, it is com-
mon to fine-tune the parameters of the modified model to
improve the accuracy or performance of the model. The same
principle can be applied to the model obtained by the RePur-
pose algorithm, where the fine-tuning does not affect zeroed
coefficients and hence the communication among workers.

Experiments
To evaluate the performance of the RePurpose framework,
we consider different DNN architectures and compare the ac-
curacy, communication, and wall-clock times of the proposed
framework to the following approaches; (1) naive implemen-
tation where the input data (or locally computed features)
are communicated to all nodes in the network, so they all
have the entire input data and process the entire deep model
locally. This approach results in higher computational com-
plexity, and possibly more communication overhead in some
scenarios. (2) baseline: direct parallel implementation of the
deep model over distributed system without any modification
to the parameters or structures. Hence, there is an excessive
amount of communication among workers. (3) sparse imple-
mentation which directly sparsifies the parameters to reduce
cross-edges between the workers without rearranging the neu-
rons. (4) model distillation where the input data (or features
computed by the workers) are transmitted to a single work-
er/server for further processing. For fair comparisons, the
distilled model is designed to have approximately the same
computational complexity as the model obtained from RePur-
pose and is trained using (Hinton, Vinyals, and Dean 2015).
Note that both baseline and naive methods have the same
final model accuracy as they don’t change the the original
model.

First, We evaluate and compare the accuracy-
communication trade-off in different sensor networks. Next,
we investigate how the reduction in cross-communication
and model simplification by RePurpose can affect the total
wall-clock time in Edge networks and Data Center platforms.

6643

𝑥1
𝑥2

𝑐1
𝑐2

𝑥2

𝑥1

(a) Classification Regions (b) Original trained model (c) η2 = 0.01 (d) η2 = 0.1

W1 W2 W3 Ŵ1 Ŵ2 Ŵ3 Ŵ1 Ŵ2 Ŵ3

Figure 4: Setup 1. Distributed inference over a sensor network to classify location of an object. The zero coefficients in the
weight matrices are represented by empty (white) spaces, inner-worker connection by green pixels and cross-worker edges by
red pixels in the images. Note that for the illustration purposes, the coefficient matrix of the first layer is transposed.

C
o

n
v., m

ax-p
o

o
lin

g

C
o

n
v., m

ax-p
o

o
lin

g

Flatten
in

g

FC
1

 (5
1

2
)

FC
2

 (5
1

2
)

FC
3

 (2
5

6
)

O
u

tp
u

t

𝒙1

𝒙2

𝒙𝑃

𝑦 = 4

Figure 5: Structure of CNN for Setup 2

FC
1

 (5
1

2
)

FC
2

 (5
1

2
)

FC
3

 (2
5

6
)

O
u

tp
u

t

𝒙1

𝒙2

𝒙𝑃

𝑦 = 𝟎/𝟏

𝒇1R
es.

B
lo

ck

R
es.

B
lo

ck

𝒇2R
es.

B
lo

ck

R
es.

B
lo

ck

𝒇𝑃R
es.

B
lo

ck

R
es.

B
lo

ck

Figure 6: Structure of DNN for Setup 3

Sensor Network
Setup 1. As an illustrative example, figure 4(a) shows a net-
work of 2 sensors, sensor i observes coordinate xi of a target
object and the task is to determine whether the object is in
the blue or green region. A simple fully connected neural
network with 2 hidden layers of size 64 (Fig. 4(b)) is trained
at a central node to perform the task with accuracy 94.5%. In
the naive approach, the sensors exchange their observations
(xi’s) and run the inference (NN) independently. Hence, the
NN is executed twice throughout the network at the cost of
higher computational complexity. Alternatively, we can apply
RePurpose to efficiently distribute the inference over the sen-
sors. We applied RePurpose with η1 = 0, η2 ∈ {0.01, 0.1}
(figures 4(c)-(d)). As a result, the cross-communication is
reduced significantly to 1.7%, 1.5% and 1.6% for η2 = 0.01,
and 0.7%, 0.1% and 0.3% for η2 = 0.1 for layers 1, 2, and
3, respectively. Moreover, with only 6 communicated values,
the computational complexity at each sensor is reduced by
almost a factor of 4 compared to the naive implementation.
However, the accuracy of the RePurposed model is reduced
to 93.5%. By fine-tuning the parameters, the accuracy of the
RePurposed model is enhanced to 94.4%.

Setup 2. Next, we consider a network of P sensors
where each sensor observes an image of a digit xi (from
MNIST dataset) and the goal is finding the rounded average
[(
∑

i xi)/P]. We adapted a Lenet-5 like structure (LeCun
et al. 1998) for the neural network which is trained in a

central server (Fig. 5), and repeated the experiments several
times. Note that one might attempt to classify the digits at
each individual sensor and then share the values with other
sensors to compute the average. However, in addition to the
increased computational complexity at each individual sensor,
it is worth mentioning that if the accuracy of digit recognition
is ρ, close to 1, then the final accuracy in this naive approach
will be reduced to approximately 1+8ρP

9 . For example, for
a network with 6 sensors and ρ = 0.98, the final accuracy
would be less than 90%. We applied RePurpose on the trained
model for distributed inference over the sensor network with
different communication (cross-worker edges) constraints.
The results are shown in Fig. 7 for P = 6 sensors.

Setup 3. Next, we consider P cameras that observe dif-
ferent parts of a scene and detect whether a specific object
exists or not. For this purpose, we used a Resnet-like neural
network (He et al. 2016) over CIFAR10 to extract features
of the input image locally at each node. Then, these features
are communicated and processed to detect the presence of a
”dog” in any of the images (Fig. 6). The simulation results
are shown in Fig. 8 for a network with P = 2 sensors.

Figures 7a and 8a compare the performance of RePurpose
with the baseline, naive sparsification, and model distillation.
Clearly, RePurpose significantly outperforms sparsification.
Although its accuracy is dropped for large η2, with 1 or 10
epochs of post-training for MNIST and CIFAR10, respec-
tively, (”FT RePurpose” compared to ”FT Sparsify” in the
figures) it achieves almost the same accuracy as the original
model, while direct sparsification fails to provide good accu-
racy. On the other hand, model distillation fails to provide
good accuracy, especially when the computational complex-
ity of the model has to be small. Moreover, interestingly,
RePurpose sparsifies the cross-edges between workers signif-
icantly for the hidden layers (Figures 7b and 8b), and in some
situations, there is no need to transfer any data among work-
ers for some of the hidden layers. The restructured model
can achieve the same performance as the original model by
using less than 0.0003 of the cross-edges (i.e., between 10
to 30 connections out of more than 100000 edges between
workers). Finally, figures 7c and 8c compare the accuracy vs
the cross-communication between workers. Clearly, direct
sparsification performs well only when there are enough num-
ber of cross-edges between the workers, while the accuracy
of the model obtained by RePurpose does not change for vast
sparsity ranges. Finally, it is worth mentioning that in the

6644

Compute Memory Bandwidth
Datacenter 125 TOPS 32GB 150 GB/s (NVLink)

Edge 0.5 TOPS 1GB 100 MB/s (Ethernet)

Table 1: Target Accelerator Evaluation Platforms

naive approach to inference over the sensor network, each
node has to transmit its observations to other nodes, hence
the communication between any two pair of nodes would be
784 or 1024 values for Setups 2 and 3, respectively. How-
ever, RePurpose can achieve the same accuracy with less than
200 total communicated values across the entire network. On
the other hand, the baseline (direct parallelization), although
achieves the same accuracy as the original model, has to
transfer more than 100,000 values among workers.

System Evaluations
Methodology- We evaluate RePurpose on two distributed
accelerator platforms, described in Table ??, simulated us-
ing ASTRA-sim (Rashidi et al. 2020). ASTRA-sim is an
open-source distributed Deep Learning platform simulator
that models cycle-level communication behavior in details
for any partitioning strategy across multiple interconnected
accelerator nodes. ASTRA-sim takes the compute cycles
for each layer of the model as an external input, and man-
ages communication scheduling similar to communication
libraries like NVIDIA NCCL (NVIDIA 2018). We obtained
compute cycles for two scenarios: (i) the Datacenter configu-
ration from a NVIDIA V100 GPU implementation, and (ii)
the Edge configuration (e.g., sensor network) from a separate
DNN accelerator simulator (Samajdar et al. 2020).

We tried to stress the aforementioned platforms under var-
ious sized problems to show the efficiency of RePurpose
and compared it with the centralized scenario where all data
is gathered at a single node (server) for processing. In all
models, we assumed a stack of 5 layers with same number
of neurons. For the datacenter system, N varies from 1K to
1M , while for edge system the variation is from 1K to 32K.
We also assumed strict ordering between communication and
computation, meaning that each node begins computation of
each layer only when it has all inputs available.

We picked 4 different flavors of RePurpose with 50%, 75%,
90% and 99% sparsity factor named as RP-50, RP-75, RP-90,
and RP-99, respectively. In addition, we changed the number
of worker nodes from 2 to 32 for both system configurations.
Remark 3. Please note that in our evaluations, we decided to
separate the hardware and model accuracy simulations, since
the trade-offs are generally determined by the application,
hardware, communication bandwidth, and the amount of
penalty in model accuracy one might be willing to pay to
speed-up the inference. However, by combining our findings
in this section and the results from accuracy-communication
trade-off analysis (e.g., Figures 7 and 8), one can find out the
total latency of DNN inference under different scenarios and
accuracies. For example, without loss of accuracy, setup 2
and 3 can achieve 5.7 and 2.8 times speed-up over the edge
network using RePurpose.

Results- Fig. 9 shows the simulation results of the commu-
nication and computation breakdown for the baseline system
and RePurpose for N = 8k. As seen from Fig. 9a, in a
datacenter system, on average and across different number
of nodes, RP-50, RP-75, RP-90 and RP-99 achieve 1.7×,
2.76×, 4.77× and 10.47× speed-up in computations, respec-
tively. The average improvement for communication ratio
is 1.2×, 1.45×, 1.74× and 1.75×, respectively. The reason
for lower improvements of communication time is that due
to NVLink’s high bandwidth. For N = 8K, network com-
munication time is mostly network latency limited. Hence,
reduction in input size does not correspond to linear reduction
in communication time.

Fig. 9b shows the similar results but for edge system. Here,
due to much lower network bandwidth, the effect of commu-
nication is more considerable. On average applying RP-50,
RP-75, RP-90 and RP-99 improve computation times by
1.7×, 2.77×, 4.78× and 11.01×, respectively. This value for
communication is 1.2×, 1.38×, 1.82× and 3.04× respec-
tively. As the number of nodes grow, the communication gap
between the baseline and RePurpose decreases. This is mostly
because of the congestion in the network (e.g. switch) which
signifies the importance of reducing the cross-communication
among workers to speed-up the inference time.

Fig. 10 shows how communication, computation and to-
tal times change as the the number of neurons grows. For
each network size, computation and communication times
are averaged across different sparsity factors and node counts.
For Datacenter (Fig10a), computation is the dominant fac-
tor. This is expected since the computation grows as O(N2)
while communication increases as O(N). In general, the to-
tal time ratio increase from 1.01× at N = 1K to 2.06× at
N = 1M . Communication is a more significant and consid-
erable factor in the edge systems (Fig. 10b) due to: (i) low
network bandwidth, and (ii) lower workloads on edge sys-
tems. The total time improvement for edge system is 1.55×
for N = 1K and it increases to 3.8× for N = 32K.

Conclusion
In this paper, we considered the problem of efficient dis-
tributed inference of an already trained deep model over a
cluster of processing units or a sensor network. Required
communication and synchronization among workers can ad-
versely affect the computation time. Moreover, in the wireless
sensor networks, it may significantly increase the delay and
power consumption due to the transmission of large amount
of data. Traditional approaches fail to consider the constraints
imposed in such distributed inference systems. To overcome
the shortcomings of the existing methods, we devised RePur-
pose, a framework to restructure the deep model by simul-
taneously rearranging the neurons, optimum assignment of
neurons to the workers, and pruning the parameters, such that
the dependency among workers is reduced. RePurpose can
significantly reduce the cross-communication between work-
ers and improve the computation time, while the performance
loss of the modified model is remained negligible. Moreover,
the proposed technique can reduce the computational com-
plexity of the distributed model significantly, resulting in
reduced inference time.

6645

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5
30

40

50

60

70

80

90

100

original model
Sparsify
FT Sparsify

Distilled model
RePurpose
FT RePurpose

(a) Accuracy

-4 -3 -2 -1 0 1
0

10

20

30

40

50
FC1
FC2
FC3

(b) % of total communications

0.05 0.1 0.15 0.2 0.25 0.3
60

70

80

90

100

Sparsify
RePurpose

(c) Accuracy vs communication

Figure 7: RePurpose vs Sparsification and Distillation, a network with 6 nodes in Setup 2

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5

30
40
50
60
70
80
90

100

original model
Sparsify
FT Sparsify

Distilled model
RePurpose
FT RePurpose

(a) Accuracy

-4 -3 -2 -1 0 1
0

20

40

60

80
FC1
FC2
FC3

(b) % of total communications

0.1 0.2 0.3 0.4 0.5
40

60

80

100

Sparsify
RePurpose

(c) Accuracy vs communication

Figure 8: RePurpose vs Sparsification and Distillation, a network with 2 nodes in Setup 3

0
10
20
30
40
50
60

ce
nt
ra
liz
ed

ba
se

RP
-5
0

RP
-7
5

RP
-9
0

RP
-9
9

ce
nt
ra
liz
ed

ba
se

RP
-5
0

RP
-7
5

RP
-9
0

RP
-9
9

ce
nt
ra
liz
ed

ba
se

RP
-5
0

RP
-7
5

RP
-9
0

RP
-9
9

ce
nt
ra
liz
ed

ba
se

RP
-5
0

RP
-7
5

RP
-9
0

RP
-9
9

ce
nt
ra
liz
ed

ba
se

RP
-5
0

RP
-7
5

RP
-9
0

RP
-9
9

2	nodes 4	nodes 8	nodes 16	nodes 32	nodes

ti
m
e	
(u
s)

total	comp total	comm

(a) Datacenter Platform

0

5

10

15

20

ce
nt
ra
liz
ed

ba
se

RP
-5
0

RP
-7
5

RP
-9
0

RP
-9
9

ce
nt
ra
liz
ed

ba
se

RP
-5
0

RP
-7
5

RP
-9
0

RP
-9
9

ce
nt
ra
liz
ed

ba
se

RP
-5
0

RP
-7
5

RP
-9
0

RP
-9
9

ce
nt
ra
liz
ed

ba
se

RP
-5
0

RP
-7
5

RP
-9
0

RP
-9
9

ce
nt
ra
liz
ed

ba
se

RP
-5
0

RP
-7
5

RP
-9
0

RP
-9
9

2	nodes 4	nodes 8	nodes 16	nodes 32	nodes

ti
m
e	
(m
s)

total	comp total	comm

(b) Edge Platform

Figure 9: Communication and computation breakdown across different systems and N = 8K

1

10

100

1000

10000

100000

1000000

1K 8K 64K 256K 1M

ti
m
e	
(u
s)

baseline	comm baseline	comp
baseline	total RP	comp
RP	comm RP	total

(a) Datacenter Platform results

100

1000

10000

100000

1000000

1K 8K 16K 24K 32K

ti
m
e	
(u
s)

baseline	comp baseline	comm
baseline	total RP	comp
RP	comm RP	total

(b) Edge Platform results

Figure 10: The effect of communication vs. computation times as the model size N grows

6646

Acknowledgments
The research work in this paper was supported by National
Science Foundation under award ID MLWiNS-2003002 and
a Gift from Intel Co.

References
Abdi, A.; and Fekri, F. 2020. Quantized Compressive Sam-
pling of Stochastic Gradients for Efficient Communication in
Distributed Deep Learning. In AAAI conference on Artificial
Intelligence.
Aghasi, A.; Abdi, A.; Nguyen, N.; and Romberg, J. 2017.
Net-trim: Convex pruning of deep neural networks with per-
formance guarantee. In Advances in Neural Information
Processing Systems, 3177–3186.
Aghasi, A.; Abdi, A.; and Romberg, J. 2020. Fast convex
pruning of deep neural networks. SIAM Journal on Mathe-
matics of Data Science, 2(1): 158–188.
Alistarh, D.; Li, J.; Tomioka, R.; and Vojnovic, M. 2016.
QSGD: Randomized Quantization for Communication-
Optimal Stochastic Gradient Descent. arXiv preprint
arXiv:1610.02132.
Castellano, G.; Fanelli, A. M.; and Pelillo, M. 1997. An
iterative pruning algorithm for feedforward neural networks.
IEEE Transactions on Neural Networks, 8(3): 519–531.
Chen, X.; Zhang, J.; Lin, B.; Chen, Z.; Wolter, K.; and Min,
G. 2021. Energy-efficient offloading for DNN-based smart
IoT systems in cloud-edge environments. IEEE Transactions
on Parallel and Distributed Systems, 33(3): 683–697.
Cheng, Y.; Felix, X. Y.; Feris, R. S.; Kumar, S.; Choudhary,
A.; and Chang, S.-F. 2015. Fast neural networks with circu-
lant projections. arXiv preprint arXiv:1502.03436.
Chilimbi, T.; Suzue, Y.; Apacible, J.; and Kalyanaraman, K.
2014. Project Adam: Building an Efficient and Scalable
Deep Learning Training System. In Proceedings of the 11th
USENIX Conference on Operating Systems Design and Im-
plementation, OSDI’14, 571–582. ISBN 9781931971164.
Chung, I.-H. H.; Sainath, T. N.; Ramabhadran, B.; Picheny,
M.; Gunnels, J.; Austel, V.; Chauhari, U.; and Kingsbury, B.
2014. Parallel Deep Neural Network Training for Big Data on
Blue Gene/Q. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and
Analysis, volume 28 of SC ’14, 745–753. Piscataway, NJ,
USA: IEEE Press. ISBN 978-1-4799-5500-8.
Cun, Y. L.; Denker, J. S.; Sola, S. A.; Laboratories, T. B.; and
Solla, S. A. 1990. Optimal Brain Damage. In Advances in
Neural Information Processing Systems 2, 598–605. San Fran-
cisco, CA, USA: Morgan Kaufmann Publishers Inc. ISBN
1-55860-100-7.
De Grazia, M. D. F.; Stoianov, I.; and Zorzi, M. 2012. Paral-
lelization of deep networks. Proceedings of 2012 European
Symposium on Artificial NN, Computational Intelligence and
Machine Learning, 621–626.
Dean, J.; Corrado, G.; Monga, R.; Chen, K.; Devin, M.; Mao,
M.; Senior, A.; Tucker, P.; Yang, K.; Le, Q. V.; and Others.
2012. Large scale distributed deep networks. In Advances in
neural information processing systems, 1223–1231.

Dryden, N.; Jacobs, S. A.; Moon, T.; and Van Essen, B. 2016.
Communication Quantization for Data-parallel Training of
Deep Neural Networks. In Proceedings of the Workshop on
Machine Learning in High Performance Computing Environ-
ments, MLHPC ’16, 1–8. Piscataway, NJ, USA: IEEE Press.
ISBN 978-1-5090-3882-4.
Han, S.; Pool, J.; Tran, J.; and Dally, W. J. 2015. Learning
both Weights and Connections for Efficient Neural Networks.
CoRR, abs/1506.02626: 1–9.
Harlap, A.; Narayanan, D.; Phanishayee, A.; Seshadri, V.;
Devanur, N. R.; Ganger, G. R.; and Gibbons, P. B. 2018.
PipeDream: Fast and Efficient Pipeline Parallel DNN Train-
ing. CoRR, abs/1806.03377.
Hassibi, B.; Stork, D. G.; Road, S. H.; and Park, M. 1993.
Second Order Derivatives for Network Pruning: Optimal
Brain Surgeon. In Advances in Neural Information Process-
ing Systems 5, [NIPS Conference], 164–171. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc. ISBN 1-55860-
274-7.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, 770–
778.
Hinton, G.; Vinyals, O.; and Dean, J. 2015. Distilling
the Knowledge in a Neural Network. arXiv preprint
arXiv:1503.02531.
Hu, C.; Bao, W.; Wang, D.; and Liu, F. 2019. Dynamic
Adaptive DNN Surgery for Inference Acceleration on the
Edge. In IEEE INFOCOM 2019 - IEEE Conference on
Computer Communications. IEEE.
Huang, Y.; Cheng, Y.; Chen, D.; Lee, H.; Ngiam, J.; Le,
Q. V.; and Chen, Z. 2018. GPipe: Efficient Training of Giant
Neural Networks using Pipeline Parallelism. arXiv preprint,
arXiv:1811.06965, 2014.
Kuhn, H. W. 1955. The Hungarian method for the assignment
problem. Naval Research Logistics Quarterly, 2(1-2): 83–97.
LeCun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998.
Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 86(11): 2278–2324.
Leung, C.-S. S.; Wong, K.-W. W.; Sum, P.-F. F.; and Chan,
L.-W. W. 2001. A pruning method for the recursive least
squared algorithm. Neural Networks, 14(2): 147–174.
Louizos, C.; Welling, M.; and Kingma, D. P. 2018. Learning
Sparse Neural Networks through ℓ0 Regularization. In ICLR,
1–13.
Mohammed, T.; Joe-Wong, C.; Babbar, R.; and Di Francesco,
M. 2020. Distributed inference acceleration with adaptive
DNN partitioning and offloading. In IEEE INFOCOM 2020-
IEEE Conference on Computer Communications, 854–863.
IEEE.
Munkres, J. 1957. Algorithms for the Assignment and Trans-
portation Problems. Journal of the Society for Industrial and
Applied Mathematics, 5(1): 32–38.
NVIDIA. 2018. NVIDIA Collective Communications Li-
brary (NCCL). https://developer.nvidia.com/nccl. Accessed:
2018-05-01.

6647

Ouyang, S.; Dong, D.; Xu, Y.; and Xiao, L. 2020. Communi-
cation Optimization Strategies for Distributed Deep Learning:
A Survey. arXiv preprint arXiv:2003.03009.
Rashidi, S.; Sridharan, S.; Srinivasan, S.; and Krishna, T.
2020. ASTRA-SIM: Enabling SW/HW Co-Design Explo-
ration for Distributed DL Training Platforms. In IEEE In-
ternational Symposium on Performance Analysis of Systems
and Software, ISPASS.
Rigamonti, R.; Sironi, A.; Lepetit, V.; and Fua, P. 2013. Learn-
ing Separable Filters. In 2013 IEEE Conference on Computer
Vision and Pattern Recognition. IEEE.
Romero, A.; Ballas, N.; Kahou, S. E.; Chassang, A.; Gatta,
C.; and Bengio, Y. 2015. Fitnets: Hints for thin deep nets. In
ICLR.
Samajdar, A.; Joseph, J. M.; Zhu, Y.; Whatmough, P.; Mat-
tina, M.; and Krishna, T. 2020. A Systematic Methodology
for Characterizing Scalability of DNN Accelerators using
SCALE-Sim. In IEEE International Symposium on Perfor-
mance Analysis of Systems and Software.
Tai, C.; Xiao, T.; Zhang, Y.; Wang, X.; et al. 2016. Convo-
lutional neural networks with low-rank regularization. In
ICLR.
Wang, L.; Wu, W.; Bosilca, G.; Vuduc, R.; and Xu, Z. 2017.
Efficient Communications in Training Large Scale Neural
Networks. In Proceedings of the on Thematic Workshops of
ACM Multimedia, 110–116.
Wen, W.; Wu, C.; Wang, Y.; Chen, Y.; and Li, H. 2016. Learn-
ing structured sparsity in deep neural networks. In Advances
in Neural Information Processing Systems, Nips, 2074–2082.
ISBN 1878-3686 (Electronic).
Xu, Z.; Zhao, L.; Liang, W.; Rana, O. F.; Zhou, P.; Xia, Q.;
Xu, W.; and Wu, G. 2020. Energy-aware inference offloading
for DNN-driven applications in mobile edge clouds. IEEE
Transactions on Parallel and Distributed Systems, 32(4): 799–
814.
Yang, Z.; Moczulski, M.; Denil, M.; Freitas, N. D.; Smola,
A.; Song, L.; Wang, Z.; de Freitas, N.; Smola, A.; Song, L.;
and Wang, Z. 2015. Deep Fried Convnets. In The IEEE
International Conference on Computer Vision (ICCV), 1476–
1483. ISBN 9781467383912.
Zagoruyko, S.; and Komodakis, N. 2017. Paying more atten-
tion to attention: Improving the performance of convolutional
neural networks via attention transfer. In ICLR.
Zhang, S.; Li, Y.; Liu, X.; Guo, S.; Wang, W.; Wang, J.; Ding,
B.; and Wu, D. 2020. Towards real-time cooperative deep
inference over the cloud and edge end devices. Proceedings
of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies, 4(2): 1–24.
Zhou, H.; Alvarez, J. M.; and Porikli, F. 2016. Less is more:
Towards compact cnns. In European Conference on Com-
puter Vision, 662–677. Springer.
Zinkevich, M. A.; Smola, A. J.; Weimer, M.; Li, L.; and
Smola, A. J. 2010. Parallelized Stochastic Gradient Descent.
In Lafferty, J. D.; Williams, C. K. I.; Shawe-Taylor, J.; Zemel,
R. S.; and Culotta, A., eds., Advances in Neural Information
Processing Systems 23, 2595–2603. Curran Associates, Inc.

6648

