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Abstract

Data scarcity is a very common real-world problem that poses
a major challenge to data-driven analytics. Although a lot
of data-balancing approaches have been proposed to miti-
gate this problem, they may drop some useful information
or fall into the overfitting problem. Generative Adversarial
Network (GAN) based data synthesis methods can alleviate
such a problem but lack of quality control over the gener-
ated samples. Moreover, the latent associations between the
attribute set and the class labels in a relational data cannot
be easily captured by a vanilla GAN. In light of this, we in-
troduce an end-to-end self-training scheme (namely, Quality-
Aware Self-Training) for rare relational data synthesis, which
generates labeled synthetic data via pseudo labeling on GAN-
based synthesis. We design a semantic pseudo labeling mod-
ule to first control the quality of the generated features/sam-
ples, then calibrate their semantic labels via a classifier com-
mittee consisting of multiple pre-trained shallow classifiers.
The high-confident generated samples with calibrated pseudo
labels are then fed into a semantic classification network as
augmented samples for self-training. We conduct extensive
experiments on 20 benchmark datasets of different domains,
including 14 industrial datasets. The results show that our
method significantly outperforms state-of-the-art methods,
including two recent GAN-based data synthesis schemes.
Codes are available at https://github.com/yaxinhou/QAST.

Introduction

Data scarcity poses a great challenge to the analysis and
learning of data in many different domains and applications.
It is often associated with class-imbalanced distributions, in
which the rare classes have significantly inadequate sample
size, while the majority classes have an overly large amount
of samples that may dominate the machine learning process.
Compared to unstructured (image) data (Li, Kamnitsas, and
Glocker 2020; Yang et al. 2022c¢; Liu, Chen, and Jia 2022),
relational data often consists of multiple continuous and dis-
crete attributes (feature dimensions) with diverse modes (Xu
et al. 2019). Moreover, dependencies between a subset of at-
tributes and the class labels as well as correlations between
the attributes commonly exist in relational data, making the
synthesis of relational data very challenging.
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Figure 1: Comparison of the projected feature distributions
of the proposed QAST method with two comparative base-
lines CTGAN (Xu et al. 2019) and GLGAN (Wang et al.
2020), as well as the original data distribution, via T-SNE
on the CWRU fault diagnosis dataset with an imbalance ra-
tio of 1:20.

Existing approaches to the imbalance learning of rela-
tional data can be divided into two categories, which are
cost-sensitive learning and data-balancing. The former at-
tempts to improve the robustness of classifiers via introduc-
ing different penalties on the mis-classified samples in the
cost functions, while the latter balances the number of sam-
ples across different classes to reduce the negative impact of
imbalanced distributions, where data synthesis for the rare
classes is an important and powerful option.

In the context of deep learning, data augmentation algo-
rithms such as Mixup (Zhang et al. 2018) and its extensions
can remarkably alleviate the suffer from data scarcity in the
rare classes, but cannot ensure stable performance in view of
the random operations in these augmentation methods. More
importantly, these data augmentation methods rely on sim-



ple linear operations such as interpolation and shuffle, there-
fore cannot avoid low-confident samples of rare classes off
the manifolds. Inspired by recent success of differentiable
rendering on the synthesis for semantic analysis such as un-
supervised domain adaptation (Zhang et al. 2020), we aim
to design an end-to-end learning based quality-aware self-
training (QAST) scheme for the differentiable synthesis of
rare relational data with high reliability and diversity.

Generative Adversarial Networks (GANs) (Goodfellow
et al. 2014) are a class of deep learning based generative
methods that aim to learn the distribution of real data and
create synthetic samples via the continuous competition be-
tween the generator and discriminator sub-networks. They
are powerful in image generation, but their application to
relational data is not straightforward (Xu et al. 2019). Al-
though multiple tricks, e.g. mode-specific normalization and
conditional generator, can be applied to relational data, the
generated samples by GANSs are typically lack of seman-
tic labels, which therefore cannot be used to supervise deep
models. Selection and annotation of high-confident gener-
ated samples should be a powerful option, which has been
investigated in semi-supervised learning and unsupervised
domain adaptation (Zhang et al. 2020; Zou et al. 2021; Chen
et al. 2022). However, little attention has been devoted to the
differentiable synthesis of rare relational data in the context
of imbalance learning (Wang et al. 2020). Moreover, GANs
cannot ensure that the generated data can preserve the strong
and complicated correlations underlying in the attributes as
well as the dependencies between a subset of attributes and
the class labels that exist in the real relational data.

A Motivating Example. Consider a relational table with
records of blood lipid levels of different patients. The
attributes/features include <Age, TC, TG, HDL-C, LDL-
C, Apo Al, Apo B, Lp(a)>, and the labels are {Normal,
Coronary Artery Disease, Stroke}. Besides the normal val-
ues/ranges of the attributes, it presents the following associ-
ations: 1) High levels of TG are typically accompanied with
low levels of HDL-C; ii) Apo Al is positively correlated
with HDL-C, and so is Apo B with LDL-C. Such inherent
correlations between the features and the dependencies be-
tween a subset of features and the class labels are strong log-
ical relationships that can not be easily identified and learned
by a vanilla GAN.

To address the above issues, we propose QAST for the dif-
ferentiable synthesis of rare relational data. Besides the or-
dinary generator-discriminator structure of a GAN, an extra
classification branch is added in QAST for supervising the
learning process, since high-quality synthetic samples are
expected to promote the learning of a more powerful classifi-
cation model. More importantly, we design a quality-aware
semantic pseudo labeling module to control the quality of
the generated samples and calibrate their semantic labels in
a unified manner. In specific, the generator of a GAN can
produce a large amount of unlabeled data (samples), we use
the confidence of the discriminator on a synthetic sample to
reflect its similarity to the real samples, and only the high-
confident samples will be kept. For semantic pseudo labeling
(Zou et al. 2021; Chen et al. 2022), our solution is simple yet
effective: label quality is supported by a classifier commit-
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tee consisting of multiple off-the-shelf pre-trained shallow
classifiers which enable the representations of the relation-
ships between the attribute set and the class labels from di-
verse perspectives, and the majority vote of class predictions
is assigned as the semantic pseudo label to a high-confident
sample.

In brief, in QAST, we first use the discriminator of a GAN
to make a preliminary filtering on the quality of the gener-
ated features/samples. Next, in the semantic pseudo labeling
module, we will check the dependencies between the fea-
tures and the class labels in the generated samples using the
classifier committee, which can further filter out less ratio-
nal synthetic samples. For the remaining synthetic samples,
we will calibrate their semantic labels via the majority vote
by the classifier committee, then feed them into the semantic
classifier as augmented samples for self-training. As shown
in Figure 1, after generating samples for the rare classes us-
ing QAST, samples of different classes are more uniformly
distributed in the feature space, and they can be more easily
distinguished from those of other classes.

Main contributions of this work are summarized as fol-
lows:

* We propose a novel quality-aware self-training (QAST)
scheme on the differentiable synthesis of rare relational
data, which is a semantic task driven data generation
approach to balance data distributions in an end-to-end
learning manner.

* Technically, for selection and annotation of unlabeled
synthetic samples, reliable samples with semantic pseudo
labels calibrated via the majority vote of multiple pre-
trained classifiers as geometric priors of feature distribu-
tions are selected for self-training.

* Results of extensive experiments on 20 benchmark
datasets verify the effectiveness of our method, which
consistently outperforms existing methods with signifi-
cantly large margins.

Related Work

Imbalance Learning of Relational Data Existing ap-
proaches can be divided into cost-sensitive learning and
data-balancing categories (Zhang et al. 2019a). Under-
sampling and over-sampling are typical data balancing
strategies for imbalance learning. Tomek link (Ivan 1976)
and One-Sided Selection (OSS) (Kubat and Matwin 1997)
are well-known under-sampling methods, while Random
Over-Sampling (ROS) (Batista, Prati, and Monard 2004),
SMOTE (Chawla et al. 2002), ADASYN (He et al. 2008),
and MWMOTE (Barua et al. 2014) are representative over-
sampling techniques. The Hellinger Distance Decision Trees
(HDDT) (Cieslak et al. 2012) and EasyEnsemble (Liu, Wu,
and Zhou 2009) are classical cost-sensitive learning algo-
rithms for two-class imbalance learning, while (Zhou and
Liu 2006) and (Murphey et al. 2007) are ensemble methods
for multi-class imbalance learning. In recent years, many re-
searchers have also explored using deep neural networks for
imbalance classification, in which they often up-weight the
rare classes or the difficult instances in the loss functions
(Zhang et al. 2019b; Fernando and Tsokos 2022). Different
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Figure 2: The architecture of our QAST scheme. It consists of three modules, i.e. a typical GAN for generating relational
data, a quality-aware semantic pseudo annotator for synthetic samples, and a semantic classifier for multi-class imbalance
classification. The first module is composed of the basic components of a GAN model, i.e. a generator and a discriminator. The
second module first selects the high-confident samples then calibrates their semantic labels via the majority vote of multiple
pre-trained shallow classifiers. The semantic classifier module first supervises the generator in sample generation, then builds

the final classification model via a decoupled training process.

from the above approaches, we aim at designing an end-to-
end self-training scheme for the differentiable synthesis of
rare relational data with quality guarantees.

Deep Imbalance Learning of Image Data Deep imbal-
ance learning is a research focus in recent years (Yang et al.
2022a). Existing approaches can also be divided into cost-
sensitive learning and data-balancing categories. CB Loss
(Cui et al. 2019) and LDAM (Cao et al. 2019) are typical
cost-sensitive learning methods. The former is a class-wise
re-weighting method that assigns weights to the prediction
losses of samples using the inverse class frequency, while
the latter modifies the Softmax loss function by adding a
class-wise margin that reflects the class sparsity. The Gaus-
sian Clouded Logit adjustment (GCL) loss (Li, Cheung, and
Lu 2022) disturbs the margin with a random parameter to
improve the robustness of the model. In (Li et al. 2022), a
supervised contrastive learning method is designed that adds
a loss term between the samples and the pre-defined class
centers to regularize representation learning with geometric
priors. CMO (Park et al. 2022) and RareGAN (Lin et al.
2022) are the latest data-balancing methods for deep im-
balance learning. But their settings are different from ours,
since we deal with labeled data and aim to improve the per-
formance of imbalance learning through self-training.

Relational Data Synthesis Based on GAN The most re-
lated line of research to this work is GAN-based relational
data synthesis. Table-GAN (Park et al. 2018) is the first at-
tempt to generate relational data using deep learning, but
its aim is to use the generated fake records to replace the
original records for privacy concerns. The Conditional Tab-
ular GAN (CTGAN) (Xu et al. 2019) exploits a conditional
generator to generate relational data. The Medical Genera-
tive Adversarial Network (medGAN) (Choi et al. 2017) em-
ploys an auto-encoder structure to learn the salient features
of discrete attributes in the embedding space. However, all
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the above methods have not investigated the synthesis of the
rare classes in datasets with skewed distributions. GLGAN
(Wang et al. 2020) employs both Auto-encoder and SMOTE
to generate new samples with the consideration of local and
global distributions, but the diversity of the generated sam-
ples is very limited due to the use of SMOTE. Overall, the
feature quality and label semantics of the synthetic samples
are uncontrolled in all the above methods, which may result
in low-confident samples or noise labels that are detrimental
to supervised learning.

Methodology
Given a training set of {(z;,y;)};, where z; € X is an
input relational sample and its corresponding class label is
y; € Y, N is the number of training instances, the prob-
lem of relational data classification aims to learn a mapping
function ® : X — ) that classifies any test instance into one
of the K = || object categories. Note that, the problem for-
mulation for imbalanced data distributions is generally the
same. The difference lies in the evaluation criteria, in which
the performance on the rare classes is a critical concern. The
mainstream deep learning based object classification algo-
rithms can be formulated into a cascade of a feature extractor

P, : X — F and a classifier s : F — Y as
(I)(.’L‘) = (I)cls(.f)oq)fea<x) (1)
where f € F denotes the feature output of Pge,().

Our end-to-end Quality-Aware Self-Training (QAST)
scheme for rare relational data synthesis is composed of
three modules, i.e. a shared GAN for generating relational
data, a quality-aware semantic pseudo annotator for control-
ling both the feature quality and label quality of the gener-
ated samples, and a semantic classifier for multi-class im-
balance classification, as depicted in Figure 2.

The shared GAN module consists of a generator follow-
ing (Xu et al. 2019) to generate samples z to approach real



samples’ distribution to fool a discriminator for distinguish-
ing real and synthetic samples, until reaching the Nash equi-
librium. The semantic pseudo labeling module first removes
a fraction of generated samples with low confidence in the
binary classification of the discriminator, next assigns a ma-
jority vote of class predictions as the semantic pseudo label
for a selected high-confident synthetic sample z, based on a
classifier committee consisting of multiple pre-trained shal-
low classifiers.

Given augmented synthetic data (Z, §) together with orig-
inal real data (z,y), the semantic classifier module ® is
updated in a self-training style to guide data generation.
A typical option is multiple fully-connected layers, i.e. the
multiple-layer perceptron (MLP), which is adopted in the
Phase 1 training of QAST in our experiments. During test-
ing, each new sample is directly fed into the semantic clas-
sifier module ® to predict the probabilities that it belongs to
different classes.

GAN-Based Differentiable Synthesis

The differentiable synthesis of rare relational data in our
QAST scheme is based on the popular GAN paradigm,
which can produce a large amount of unlabeled data.

Generator of Relational Data The generator of a typical
GAN desires diverse and reliable seeds as inputs to generate
synthetic data of sufficient quality and diversity, which can
be achieved via a random noise or SMOTE.

On one hand, randomness is introduced into the gener-
ation of seeds when using standard normal distributions,
which can enrich the diversity of the seeds but also suffer
from their unstable quality. On the other hand, SMOTE can
generate more realistic samples from neighboring real sam-
ples of the same class, so the seeds generated via SMOTE
are of high quality but are limited in diversity. Besides,
Mixup (Zhang et al. 2018) creates a new synthetic image
(sample) via the linear interpolation of two randomly se-
lected images in both the feature space and label space,
which can also be applied to the seed generation for GANS.

In our generator, we employ all the seed generation meth-
ods above to improve the quality and diversity of seeds gen-
eration for GANs. The rationale behind this design is as fol-
lows: if only random noise vector is used, the generator is
very weak at the beginning, and the distribution of the syn-
thetic samples encoded from the random noise vector using
the generator is very different from the real data distribu-
tion, which are not conducive to the training of GANs. The
addition of SMOTE and Mixup helps generate more reliable
seeds, enabling the generator to quickly contact and learn the
distribution of real data in the feature space, which should be
beneficial in guiding the generator in encoding the seeds into
more realistic data.

Such a generator is supervised by the the reconstruction
loss Lye.(X, Z) in (Rosca et al. 2017):

Lrec(Xaz): Z ||Z*£BH2
z€Z,xeX
where X = {z} denotes the set of the normalized original

samples by following (Xu et al. 2019), Z = {z} denotes the
set of synthetic samples created by the generator.

@
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Discriminator The discriminator of a typical GAN is de-
signed as a binary classification task to distinguish between
synthetic and real samples, i.e. X = {X U Z}. Following
(Engelmann and Lessmann 2021), we employ a combination
of the Binary Cross Entropy (BCE) loss and the Wassertein
distance with gradient penalty as Eqn. (3):

Lp(X) =Lpce(X)+ Lwgan—-apr(X) 3)

where Lp(X) is the discrimination loss, Lpcg (X) denotes
the BCE loss and Lyygan—gp(X) is the Wassertein dis-
tance with gradient penalty. Lpcg(X) is depicted as

S ~[t],ex log D(x)

zeX

Lpcr(X)

“4)
+ 1lzezlog(1 — D(2))]

where D(z) is the probability that a sample = belongs to
the original data. 1|,cx denotes the function is equal to
1 when the sample comes from the original data, while
1|zecz denotes the function is equal to 1 when the sam-
ple is synthesized by the generator. The Wassertein distance
Lwean—-cp(X) is formulated as follows:

Lwgan-cp(X) = Eunz[D(G(7))] — BExnx [D(x)]+
AEinp, [([[VaD(@)]|2 — 1)225)

where E,z[D(G(z))] — Ex~x[D(x)] is the original loss,
and E;p, [(|[V2D(2)||2—1)?]is a penalty loss by reducing
the gradients of the discriminator to 1 using a combination of
the normalized original sample = and the generated sample
2, which is formulated as:

Z=cx+ (1 —¢)z,e ~ Uniform[0,1],2 ~ X,z ~ Z (6)
where 7 is a randomly averaged sample between x and z.

Quality-Aware Semantic Pseudo Labeling

Given a set of labeled real relational samples X and a set
of unlabeled synthetic samples Z generated by the GAN-
based differentiable synthesis, the problem of improving
classification performance falls into the scope of typical
semi-supervised learning. Self-training schemes (Zoph et al.
2020; Yang et al. 2022b) have verified their effectiveness in
different semi-supervised learning problems, which assign
semantic pseudo labels to unlabeled samples to complement
the original data for more effective model training. QAST
selects the high-confident synthetic samples that cannot be
easily distinguished by the discriminator, using Eqn. (7):

_ f1,D(z) > P,
Qs(2) = {O, Otherwise

where D(z) denotes the probability that a synthetic sam-
ple is mis-classified as "real" by the discriminator, due to its
realistic feature vectors, and P is the threshold. Qs(z) > Ps
indicates that the sample z € Z is of high quality (i.e., with
high confidence). When P is higher, fewer samples are se-
lected, which sacrifices data synthesis efficiency for improv-
ing the feature quality of the samples, and vice-versa. In our

)



approach, we set a self-adaptive P, value that will gradu-
ally increase with the number of training epochs elapsed (de-
noted as 1). Specifically, Ps = (i + 50),/1000.

For minimizing label noises of semantic pseudo annota-
tion on synthetic relational samples, a number of off-the-
shelf pre-trained shallow classifiers on real relational data
are employed to form a classifier committee C'., providing
multi-view priors on relational data distribution and the log-
ical dependencies between the attribute set and the class la-
bels, which are therefore significantly more robust and reli-
able for semantic pseudo labeling than existing self-training
schemes that rely on the predictions of a single integrated
classifier. Specifically, when each classifier makes a prob-
abilistic prediction on a sample, we count the majority vote
of different classifiers (let n,, denote the vote count) to deter-
mine the final semantic pseudo label of the sample. To con-
trol the label quality, n,, should satisfy another self-adaptive
threshold 73, whereas samples with n,, < 7T; will be aban-
doned. The whole procedure is formulated as follows:

1,n, > T; and T; = floor(i / 100)

0, Otherwise ®)

Qu(z) = {

where Q;(z) = 1 indicates that sample z is of high label
quality, floor(-) denotes the round down function, 4 is the
index of training epochs. To balance between label quality
control and curriculum learning, we set the value of 7; to
evolve with the number of training epochs elapsed. Let z
denote a selected synthetic sample, Q4(Z) > Pk, let § be
the class that receives the most votes (denoted as n,, ) from
the predictions of multiple pre-trained classifiers on z, and
n, > T, then {(Z,7)} will be the final synthetic sample to
be fed into the semantic classifier module.

Self-Training for Semantic Classification

As a semantic task driven data synthesis method, QAST de-
vises a semantic classifier module to train a classifier on both
the real samples (x, y) and pseudo-labeled samples (Z, §) to
guide the generation of samples. The loss function for su-
pervising semantic classification is presented in Eqn. (9) as:

Le(X)

> L@, y)lyemrc + 9L, y)lyemac
(z.y)e(X)

) ©)
where the data X includes both the original samples and the
generated ones. M IC' denotes the set of the samples in the
rare classes, while M AC' denotes the set of the samples in
the majority classes. ¢ is the weight to trade-off between the
rare classes and majority classes. L(+) is the cross entropy
loss as follows:

eV(z,c)

L(l‘,y) = - IOg( Viz.c' )H|C:y
e ( ’ )
Zc’ey

(10)

where V (x, ¢) is the logit element on class ¢ for sample z,
and 1|.=, denotes the function is equal to 1 when the sample
belongs to class y.

To improve classification performance on the rare classes,
we design a weighted Softmax loss to assign different
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weights to the loss of the MIC and MAC samples, respec-
tively. The weight ¢ is inversely proportional to the number
of samples in each class. Since the original dataset has a
skewed data distribution, to balance the number of samples
across classes, we set the total number of samples for each
rare class (including both the real samples and the synthetic
samples to be created by QAST) to be the averaged sample
size of the majority classes.

End-To-End Model Training

For training the proposed model in an end-to-end style, the
overall loss function is written as follows:

Le = Lree(Z,X) — Lp(X) + Le(X) (1)

Since Z is expected to be very close to X, the reconstruc-
tion loss L;..(Z, X) should be small.

Similar to typical GANSs, the generator of QAST is also
expected to generate synthetic samples that can "fool" the
discriminator, thus the loss function (11) has a minus dis-
crimination loss.

The whole training procedure of QAST is divided into
two decoupled training phases, i.e. the synthesis of high-
confident samples with calibrated pseudo labels (Phase 1)
and the final semantic classifier training (Phase 2). Within
Phase 1, we focus on training a reliable generator and adopt
a semantic classifier with moderate-depth (i.e. MLP). As
with a vanilla GAN, the generator and discriminator are
trained interactively. Moreover, we adopt the discriminator
and a classifier committee of pre-trained shallow classifiers
to filter out the out-of-distribution (low-confident) samples
and less rational synthetic samples (if the majority vote n,,
of a sample is smaller than 7; ), respectively. The remain-
ing synthetic samples will be assigned with labels via the
majority vote of the classifier committee, which will then
be combined with original real data for training a semantic
classifier to supervise the generator in sample generation.

During Phase 2, we focus on deriving a powerful classifi-
cation model. We first freeze the generator and discrimina-
tor networks, then replace the semantic classifier in Phase 1
(i.e. Semantic Classifier I) with a complex yet strong neural
network (i.e. Semantic Classifier II) to build the final classi-
fication model. In our implementations, we adopt MLP for
Semantic Classifier I and the BLSTM network (Sak, Senior,
and Beaufays 2014) for Semantic Classifier II.

Note that typical GANs are often challenging to train,
since they need careful regularization and expensive hyper-
parameter sweeps (Sauer et al. 2021). In contrast, our QAST
scheme follows a self-training style and the critical hyper-
parameters are self-adaptive, which will be very easy to de-
ploy and more applicable to real-world problems.

Experiments
Datasets and Settings

Datasets We evaluate comparative methods on 6 multi-class
imbalanced datasets from the UCI repository. Moreover, we
include 14 industrial datasets, which are the CWRU Bearing
(Li et al. 2020) and Gearbox fault diagnosis datasets (Lin
and Zuo 2003), and the NASA software defect repository
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Acc Macro-F1 G-Mean PAR Acc Macro-F1 G-Mean PAR Acc Macro-F1 G-Mean pPAR
ROS 96.06 91.98 93.89 70.54 81.36 74.17 7191 20.97 67.45 56.10 24.06 11.71
SMOTE 95.11 89.05 92.05 69.95 81.30 75.48 73.42 23.18 67.08 59.61 52.13 15.40
BOSI 94.73 88.14 90.86 69.16 81.30 75.36 72.73 2376 | 67.92 60.01 51.82 14.30
BOS2 88.12 75.09 84.58 67.40 | 79.82 73.73 70.78 2332 | 66.51 54.13 18.41 6.40
SVM-SMOTE | 95.50 86.18 87.31 66.28 82.10 75.21 72.50 22.92 65.85 58.36 51.28 17.66
ADASYN 96.54 90.69 91.54 69.00 82.53 76.27 73.41 23.10 | 6547 58.13 51.14 17.66
CTGAN 79.92 60.21 74.62 58.44 82.59 75.64 71.87 2226 | 67.08 57.84 53.03 16.26
GLGAN 94.43 84.68 86.47 62.20 82.82 717.35 75.27 2478 | 70.23 62.12 53.69 14.77
QAST w/o ft 97.86 94.69 95.46 71.30 85.89 80.69 80.19 27.52 | 74.77 71.23 66.57 24.06
QAST 98.15 94.96 9630 7279 | 86.50 84.70 8525  31.14 | 74.77 71.55 69.78  30.05
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Acc Macro-F1 G-Mean pPAR Acc Macro-F1 G-Mean PAR Acc Macro-F1 G-Mean PAR
ROS 94.88 68.09 33.12 34.57 89.30 87.50 86.91 39.93 98.44 91.86 93.71 69.25
SMOTE 95.25 73.86 66.47 34.60 89.62 87.87 87.30 40.08 98.44 91.86 93.71 69.25
BOS1 95.84 75.70 54.85 35.69 89.26 87.50 87.12 40.52 98.52 92.43 95.05 70.60
BOS2 95.07 71.70 60.87 34.46 88.95 87.12 86.97 40.62 | 96.38 81.70 87.55 64.45
SVM-SMOTE | 94.77 67.28 34.78 34.52 89.38 87.65 87.06 39.33 98.13 91.05 92.31 66.26
ADASYN 95.14 70.42 58.83 35.66 89.21 87.51 87.09 39.36 | 98.16 91.27 92.70 66.54
CTGAN 94.55 67.95 61.29 35.69 89.03 86.87 85.79 38.64 | 93.40 75.09 85.96 64.18
GLGAN 95.07 74.47 70.13 35.42 89.88 87.72 86.20 39.08 98.41 90.59 91.23 67.78
QAST w/o ft 96.70 83.27 80.53 40.74 | 90.52 88.43 87.12 39.54 | 99.03 93.49 97.53 73.44
QAST 97.07 85.96 81.25 44.99 | 91.17 89.60 89.33 42.20 | 98.06 90.88 95.88 69.74

Table 1: Classification performance of comparative methods on 6 UCI datasets, in terms of Acc (%), Macro-F1 (%), G-Mean
(%) and pAR (%). "QAST w/o ft" denotes the degenerated QAST without semantic classifier fine-tuning in Phase 2.

that contains 12 datasets (Shepperd et al. 2013). In the ex-
periments, 10 cross-validations are adopted. Since there are
no official splits for the above datasets, in each validation
we randomly select half of the samples of each dataset as
the training set, and use the other half as the test set.

Comparative Methods We compare QAST with eight
baseline methods, including six well-established methods,
which are ROS, SMOTE, BOS1 and BOS2 (Han, Wang, and
Mao 2005), SVM-SMOTE (Nguyen, Cooper, and Kamei
2011), and ADASYN (He et al. 2008), and two recent GAN-
based data synthesis schemes, i.e. CTGAN and GLGAN.
For fair comparisons with the baselines on the quality of the
generated samples, we degenerate our QAST without the se-
mantic classifier fine-tuning in Phase 2 (i.e. QAST w/o ft),
then let QAST w/o ft and each baseline method generate
the same amount of samples, next adopt the same classifica-
tion algorithm, i.e. gradient boosting decision tree (GBDT)
(Friedman 2001; Zhang et al. 2019c), to build a specific clas-
sification model for each method and report their classifica-
tion performance.

Performance Metrics The quantitative evaluation on the
usability of the generated samples in supervised learning
tasks is still an open question. Metrics such as the Inception
Score (IS) (Salimans et al. 2016) and the Fréchet Inception
Distance (FID) (Heusel et al. 2017) are just unsupervised
metrics for evaluating the quality of the generated images.
It would be ideal to use the rules/patterns underlying in the
data (e.g., medical data), which are provided by experts, to
evaluate the correlation among the attributes/dependencies
in the generated relational data. Alternatively, classification
accuracy as a surrogate can also reflect the quality/usability
of the generated data. To this end, we adopt the commonly
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used metrics for imbalance classification (Zhang, Bi, and
Soda 2017; Zhang et al. 2022), which are Acc (the overall ac-
curacy), Macro-F1 (macro-averaged F1 score) (Urbanowicz
and Moore 2015), and G-Mean (the geometric mean of the
per-class recall rate). Moreover, to reflect the specific per-
formance on the rare classes, we also report the averaged
per-class recall rate of the rare classes, denoted as pAR. In
the empirical comparisons, we first use different generative
methods to generate the same amount of synthetic samples.
In specific, we set the total number of samples for each rare
class (including both the real samples and the synthetic sam-
ples to be created by each method) to be the averaged sample
size of the majority classes. Next, we use the same classifica-
tion algorithm GBDT (or SVC/LinearSVC) to build a classi-
fication model upon the generated data (after combined with
the original data) of each method, then compare the classi-
fication performance of each method on the same test set of
each benchmark dataset which follows the same imbalanced
distribution as the original data, to reflect the usability of the
generated samples by each method.

Details about the Classifier Committee In our implemen-
tation, shallow classification algorithms in the scikit-learn li-
brary are adopted to train classification models with their de-
fault settings on the same training data to comprise the clas-
sifier committee. In total, we adopt /2 classification algo-
rithms. Among them, there are 6 imbalance learning meth-
ods, which are SMOTE (Chawla et al. 2002), ADASYN (He
et al. 2008), SMOTEENN and SMOTETomek (Batista, Baz-
zan, and Monard 2003), EasyEnsemble (Liu, Wu, and Zhou
2009), and RUSBoost (Seiffert et al. 2010). Meanwhile, we
also include 6 ordinary classification algorithms, which are
SVC and LinearSVC (Chang and Lin 2011), MLP, the Gra-



Datasets Over-Sampling Methods GAN-based Methods Strategies car ecoli glass
SMOTE BOS1 SVM-SMOTE|CTGAN GLGAN QAST Macro-F1 pAR |Macro-F1 pAR |Macro-F1 pAR
CWRU (IR=2) 93.10 93.16 93.80 94.45 93.04 94.83 Ps > 0.1 9145 67.72| 7770 22.66| 64.10 17.81
CWRU (IR=5) 90.71 91.38 90.66 87.83  88.51 94.53 Ps > 0.2 89.90 6440 69.29 20.39| 59.79 11.37
CWRU (IR=10) | 86.65 89.02 86.36 81.62 87.97 91.94 Ps > 0.3 86.00 67.72| 74.60 18.12 63.53 10.92
CWRU (IR=20) | 85.48 76.53 69.70 78.18 75.41 91.58 T >1 90.90 66.88| 78.13 27.43| 60.86 11.56
Gearbox (IR=2) | 52.34 5239 5246 5155 47.62 53.59 T 22 8749 6545\ 7920 2532| 63.38 1089
Gearbox (IR=5) | 47.73 4770  47.75 4610 47.18 49.50 Ti 23 88.85 ©68.57| 77.87 2430| 6162 11.56
Gearbox (IR=10)| 45.38 46.73  48.68 4757 4931 50.80 Random 9152 69.58| 7834 2643| 6899 2398
Gearbox (IR=20)| 42.51 45.85  47.65 4877 48.66 49.57 Mixup 9129 66.88| 7645 2295 59.18 1050
SMOTE 90.59 64.60| 7446 2274 62.71 11.76
NASA CMI 35.35 5406 57.31 5448 5754 60.62 Mixup+tSMOTE | 88.16 65.31| 79.02 25.54| 63.65 17.81
NASA M1 952 59.88 3968 | 5633 3414 57.02 QASTwio Ji | 94.69 7130| 80.69 27.52| 7123  24.06
NASA KC1 62.65 60.50 63.39 60.19 60.32 65.13
Eizi ﬁ?l g;’g; g;zi gégi ZZ;Z 2i§g % Table 3: Ablation studies on the effects of different 7; and
NASA MC?2 69.74 6330 6477 64.00 6340 72.35 P settings on the Macro-F1 and pAR performance of QAST
NASA MW1 66.84 66.67 6591 6137 6294 71.85 w/o ft, and comparisons on the performance of QAST when
NASA PC1 61.43 59.45 62.40 64.13 5940 71.44 adopting different strategies for setting up generator seeds.
NASA PC2 5482 5692  56.92 5879 57.63 67.69
NASA PC3 61.21 62.08 62.19 59.31 61.06 65.86
NASA PC4 75.85 7540  73.98 73.37 7127 81.29 erated QAST w/o ft, it is evident that the semantic classifier
NASA PC5 6458 62.36  63.79 6650  64.53  68.58 fine-tuning with a stronger network in Phase 2 is often ben-

Table 2: The Macro-F1 (%) results of different methods on
the CWRU Bearing and Gearbox Fault diagnosis datasets
with varying imbalance ratios, and the NASA datasets. Due
to space limit, here "QAST" denotes "QAST w/o ft".

dient Boosting Decision Tree (GBDT) (Friedman 2001), Lo-
gistic Regression (Hosmer Jr, Lemeshow, and Sturdivant
2013), and BLSTM (Sak, Senior, and Beaufays 2014). Each
classifier committee is composed of & classification algo-
rithms, half of which are randomly selected from the 6 im-
balance learning methods and the other half come from the 6
ordinary classification algorithms. We will show that QAST
is insensitive to the selection of the classification algorithms
in the classifier committee.

Implementation Details In all the experiments, the Adam
optimizer is used with a default learning rate of 0.0002, and
the training epochs is set to 300 for all different methods. For
fair comparisons, our QAST follows the baseline CTGAN
to adopt PacGAN(Lin et al. 2018), which was designed to
mitigate mode collapse.

Experimental Results

Evaluation on the UCI Datasets Table 1 presents the re-
sults of our QAST and other baseline methods. It can be ob-
served that QAST outperforms all the baseline approaches
on all the datasets, which confirms its effectiveness in im-
balance classification. Specifically, the performance gain of
QAST over the best competitor at each dataset are 5.67% on
average in terms of Macro-F1, 7.35% on average in terms of
G-Mean, and 5.7% on average in terms of pAR, all of which
are very significant. These results support our motivation of
self-training with high-confident synthetic samples with cal-
ibrated pseudo labels for improving the imbalance learning
performance on the rare classes in datasets with skewed dis-
tributions. Besides, when comparing QAST with its degen-
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eficial to the performance enhancement of QAST.
Evaluation on Multiple Industrial Datasets Results on in-
dustrial datasets, i.e. the CWRU Bearing and Gearbox Fault
diagnosis datasets under different imbalance ratios (IR), and
the NASA software defect repository, are shown in Table 2.
Note that, for fair comparisons on the quality of the gener-
ated samples with the baselines, we only adopt QAST w/o
ft. Tt is evident that QAST w/o ft can consistently out-
perform recent GAN-based synthesis, achieving the state-
of-the-art performance on all the datasets (except the NASA
JMI). The performance gain of QAST over the best competi-
tor on each dataset is 3.39% on average in terms of Macro-
F1, which demonstrates the effectiveness of our method
when applying to real data of industrial applications.

Ablation Study

Impact of Self-adaptive Parameters in QAST In QAST,
P, and T; are critical parameters for selecting high-confident
samples and calibrating their semantic labels. In our de-
sign, both parameters will gradually increase with training
epochs evolve, which will favour model training in a cur-
riculum learning manner. In Table 3, experiments with dif-
ferent fixed values of P; and 7} are conducted to compare
with our QAST method on 3 UCI datasets. It is evident
that, selecting high-confident samples with a fixed threshold
P consistently yields inferior results than our self-adaptive
mechanism. Similarly, the performance of semantic label
calibration with a fixed threshold 7; often falls behind our
self-adaptive mechanism as well. In the beginning, as the
discriminator is relatively strong, it is highly likely that it
can easily distinguish synthetic samples (recall that P, de-
notes the probability threshold that the discriminator mis-
classifies a synthetic sample as "real"), which encourages
a smaller P;. When the generator is gradually improved
during training, the probability that the discriminator mis-
classifies a synthetic sample increases, therefore a larger P;
is desired to keep more realistic samples. Similarly, with



gradually increasing 7; during training, high-confident sam-
ples will be assigned with more reliable semantic labels.
Overall, the self-adaptive parameter setting in QAST leads
to high-quality synthetic samples with semantic labels.
Impact of the Hybrid Strategy for Setting Up Genera-
tor Seeds For setting up generator seeds, QAST combines
three different approaches (Random, SMOTE and Mixup)
to enrich the diversity of the input seeds. On one hand, the
random mechanism generates seeds with good diversity, but
the validity of the seeds cannot be guaranteed. On the other
hand, SMOTE interpolates neighboring minority samples to
generate more realistic samples, but suffers from the diver-
sity problem, while Mixup interpolates the samples from
different classes in both the feature space and label space,
but cannot ensure a more balanced data distribution with the
augmented samples. To integrate the strength of these strate-
gies, QAST combines all of them to enhance the diversity of
seeds for the generator. The third block in Table 3 reports the
results of different generation strategies. It is clear that, the
hybrid input seeds generation strategy for QAST achieves
better performance than each single strategy.

Impact of the Selection of Classifier Committee on QAST
To study the effects of the selection of classifier commit-
tee in the semantic pseudo labeling module, we compare the
performance of QAST using the default classifier committee
(Classifier Group_1) with another four groups of classifier
combinations. For each competing classifier group, we ran-
domly select 8 methods out of a set of 12 common classifi-
cation algorithms, half of which are designed for imbalance
classification. Details about these algorithms are provided in
the supplementary file. We use GBDT to build a classifica-
tion model over the real data and the synthetic data gener-
ated by the generator of QAST using each specific classifier
committee. Table 4 reports the best performance among the
baseline methods on each dataset (namely "Best Competi-
tor"), then presents the results of QAST with five different
groups of classifier committee. First of all, we observe that,
irrespective of the selection of the classifier committee, our
QAST consistently outperforms the best baseline methods
on all the 3 datasets, and the improvement over the best com-
petitor is 4.64% on average in terms of the Macro-F1, and
3.81% on average in terms of the pAR, both of which are
significant. Second, comparing the performance of QAST
with the other four groups of classifier committee, it is evi-
dent that their performance variance on each dataset is small.
In summary, QAST is less sensitive to the selection of off-
the-shelf classifiers for pseudo labeling.

Discussions

The novelty of QAST lies in utilizing an ensemble of model-
driven shallow classifiers to supervise the data-driven self-
supervised learning process for generating annotated syn-
thetic samples. On one hand, decision boundaries of some
shallow classifiers can intrinsically reveal feature distribu-
tion. On the other hand, all the classifiers aim to discover the
inherent relations between the attributes and the class labels.
As a result, using multiple pre-trained shallow classifiers for
synthetic data annotation can benefit from an ensemble of
geometric priors from different perspectives.
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Strategies car ecoli glass
Macro-F1 pAR [Macro-F1 pAR [Macro-F1 pAR
Best Competitor 9198 70.54| 7735 24.78] 62.12 17.66
Classifier Group_1| 94.69 71.30| 80.69 27.52| 71.23 24.06
Classifier Group_2| 93.39 70.54| 79.43 28.22| 72.06 29.99
Classifier Group_3| 94.10 71.32| 80.21 28.17| 68.63 24.70
Classifier Group_4| 94.26 70.54| 78.66 27.80| 72.08 23.39
Classifier Group_5| 95.06 72.06] 80.05 28.23| 7230 24.26

Table 4: Ablation studies on the influence of the choices of
classifier committee on the performance of QAST w/o ft.

The main concern in this work lies in the generation and
annotation of high-quality synthetic data for rare classes in
an end-to-end learning manner, which are then combined
with real data to construct a more balanced data set for se-
mantic classification. To this end, our paper proposes an ef-
fective self-training scheme on the differentiable synthesis
of rare classes with built-in quality control, while both mod-
ules of the GAN based data synthesis and pseudo labelling
are not claimed as our contribution. Technically, consider-
ing lack of semantic labels of generated synthetic samples,
reliable samples with pseudo labels calibrated via the ma-
jority voting of multiple pre-trained classifiers are selected
for self-training, which are verified to achieve remarkable
performance gain in our large-scale experiments.

Conclusions

In this work, we propose a general end-to-end learning
scheme (QAST) on the differentiable synthesis of rare re-
lational data to mitigate the data scarcity problem. QAST
separates data synthesis into two perspectives: the discrim-
inator of a GAN is used to control the quality of feature
generation, while a semantic pseudo labeling module with
a diverse committee of pre-trained classifiers is proposed to
control the quality of label generation. We carry out exten-
sive experiments on 20 benchmark datasets of different do-
mains, which show that QAST consistently outperforms the
baselines by a large margin. We also show that QAST is less
sensitive to the selection of classifiers in the committee and
demonstrates consistent advantages over the competitors. In
future work, we will extend QAST to generate labeled im-
ages for data augmentation in vision tasks.
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