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Abstract
DatalogMTL is a powerful extension of Datalog with oper-
ators from metric temporal logic (MTL) which has received
significant attention in recent years. In this paper, we inves-
tigate materialisation-based reasoning (a.k.a. forward chain-
ing) in the context of DatalogMTL programs and datasets
with bounded intervals, where partial representations of the
canonical model are obtained through successive rounds of
rule applications. Although materialisation does not naturally
terminate in this setting, it is known that the structure of
canonical models is ultimately periodic. Our first contribution
in this paper is a detailed analysis of the periodic structure of
canonical models; in particular, we formulate saturation con-
ditions whose satisfaction by a partial materialisation implies
the ability to recover the full canonical model via unfolding;
this allows us to compute the actual periods describing the
repeating parts of the canonical model as well as to estab-
lish concrete bounds on the number of rounds of rule appli-
cations required to achieve saturation. Based on these the-
oretical results, we propose a practical reasoning algorithm
where saturation can be efficiently detected as materialisa-
tion progresses, and where the relevant periods used to eval-
uate entailment of queries via unfolding are efficiently com-
puted. We have implemented our algorithm and our experi-
ments suggest that our approach is both scalable and robust.

Introduction
DatalogMTL is a powerful rule-based language for repre-
senting temporal knowledge that has found applications in
ontology-based data access (Brandt et al. 2018; Kikot et al.
2018; Kalaycı et al. 2018; Koopmann 2019) and stream
reasoning (Wałęga, Kaminski, and Cuenca Grau 2019). It
extends Datalog (Ceri, Gottlob, and Tanca 1989) with op-
erators from metric temporal logic (Koymans 1990) inter-
preted over the rational timeline. For example, the following
DatalogMTL rule states that a person can travel if they had a
negative COVID test at some point in the last 2 days (x[0,2])
and have been double-vaccinated for 14 days (⊟[0,14]):

CanTravel(x)← x[0,2]NegTest(x) ∧ ⊟[0,14]DblVacc(x).

Reasoning in DatalogMTL is of high complexity, which
makes its adoption in applications problematic. In particu-
lar, satisfiability and fact entailment are ExpSpace-complete
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(Brandt et al. 2018) and PSpace-complete in data complexity
(Wałęga et al. 2019). Decision procedures are based on the
observation that, although the timeline is densely ordered,
the canonical model of a program and a dataset can be par-
titioned according to discrete sequences of intervals, inside
which all time points satisfy the same facts. This enables the
reduction (with exponential blow-up) of fact entailment in
DatalogMTL to satisfiability of linear temporal logic (LTL)
formulas (Brandt et al. 2018) or to non-emptiness of Büchi
automata (Wałęga et al. 2019). As a result, canonical mod-
els have a periodic structure, with periods of bounded length
(Artale et al. 2021a). Although these techniques are useful
for providing complexity upper bounds for reasoning, they
are based on exponential reductions and were not designed
for efficient implementation.

The most common technique of choice in scalable Dat-
alog reasoners is materialisation (a.k.a. forward chaining),
where facts entailed by a program and dataset are derived
in successive rounds of rule applications until a fixpoint is
reached (Bry et al. 2007; Motik et al. 2014; Carral et al.
2019; Bellomarini, Sallinger, and Gottlob 2018).1 Once the
materialisation has been computed, queries can be answered
directly and rules are not further considered. In contrast
to Datalog where materialisation naturally terminates, in
DatalogMTL a fixpoint may only be reachable after in-
finitely many rounds of rule applications. To circumvent this
challenge, the MeTeoR reasoner (Wang et al. 2022) com-
bines materialisation and automata-based reasoning, where
automata construction ensures completeness where materi-
alisation does not terminate; experiments, however, show a
significant performance reduction in such cases (Wang et al.
2022). An alternative approach is to focus on DatalogMTL
fragments for which materialisation is guaranteed to termi-
nate (Wałęga, Zawidzki, and Cuenca Grau 2021); such frag-
ments, however, impose significant restrictions effectively
disallowing ‘recursion through time’.

In this paper, we investigate the design of reasoning al-
gorithms for DatalogMTL that rely solely on materialisa-
tion, dispense with automata construction altogether, and do
not limit recursion. We focus on bounded DatalogMTL pro-
grams and datasets, where ∞ is not mentioned as an end-

1In this setting, both the reasoning process and its output are
often referred to as materialisation.

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

6566



point of any interval; this is a natural and expressive frag-
ment, in which reasoning is as hard as in the unrestricted
language (Wałęga, Zawidzki, and Cuenca Grau 2021).

Our first contribution is a detailed analysis of the periodic
structure of canonical models. We formulate saturation con-
ditions that a partial materialisation needs to satisfy so that
the canonical model can be recovered via unfolding; this al-
lows us to compute the actual periods describing the repeat-
ing parts of the model based only on the form of the partial
materialisation constructed so far, as well as to establish con-
crete bounds on the number of rounds of rule applications re-
quired to achieve saturation. This is a challenging problem
since DatalogMTL rules may recursively propagate facts to-
wards both future and past time points, and hence regulari-
ties observed in a partial materialisation may not correspond
to the periodic structure of the full canonical model.

Based on these theoretical results, we propose a practi-
cal reasoning algorithm where saturation can be efficiently
detected as materialisation progresses, and where the rele-
vant periods used to evaluate entailment queries via unfold-
ing are efficiently computed. We have implemented our al-
gorithm and evaluated its performance on a temporal exten-
sion of Lehigh University Benchmark (Wang et al. 2022)
as well as using the iTemporal benchmark generator (Bel-
lomarini, Nissl, and Sallinger 2022). Our results show that
the overhead introduced by saturation checks during ma-
terialisation is negligible, saturation can be reached after a
reasonable number of rounds of rule applications, and en-
tailment checks performed after reaching saturation can be
conducted very efficiently.

Preliminaries
We recapitulate the syntax and semantics of DatalogMTL,
focusing on the standard continuous semantics over the ra-
tional timeline (Brandt et al. 2018; Wałęga et al. 2019).

Time and Intervals. The (rational) timeline is the ordered
set Q of rational numbers; each element of the timeline is
called a time point. We consider binary representations of in-
tegers, and represent each rational number as a fraction with
an integer numerator and a positive integer denominator.

An interval ϱ is a non-empty subset of Q satisfying
two properties: (i) for all t1, t2, t3 ∈ Q with t1 < t2 < t3
and t1, t3 ∈ ϱ, it is the case that t2 ∈ ϱ, and (ii) both
the greatest lower bound ϱ− and the least upper bound
ϱ+ of ϱ are in Q ∪ {−∞,∞}. The bounds ϱ− and ϱ+

are the left and right endpoints of ϱ, respectively, and
|ϱ| = ϱ+ − ϱ− is the length of ϱ. Interval ϱ is punctual if
it has a single time point, it is positive if it does not con-
tain negative time points, and bounded if both of its end-
points are rationals numbers. For intervals ϱ and ϱ′ we
define the operations ϱ+ ϱ′ = {t+ t′ | t ∈ ϱ and t′ ∈ ϱ′}
and −ϱ = {−t | t ∈ ϱ}. We use the standard representation
⟨ϱ−, ϱ+⟩ for an interval ϱ, where the left bracket ⟨ is either
[ or (, the right bracket ⟩ is either ] or ), and ϱ− and ϱ+ are
representations of the left and right endpoints of ϱ, respec-
tively. Brackets [ and ] indicate that the corresponding end-
points are included in the interval, whereas ( and ) indicate
that they are not included. We often abbreviate a punctual

interval [t, t] as t. Since different intervals cannot have the
same representation, we will often abuse notation and iden-
tify an interval representation with the interval it represents.
Syntax. Assume a function-free first-order signature. A re-
lational atom is a first-order atom of the form P (s), with
P a predicate and s a tuple of terms whose length matches
the arity of P . A metric atom is an expression given by the
following grammar, where P (s) is a relational atom and ϱ a
positive interval:

M ::= ⊤ | ⊥ | P (s) | xϱM | |ϱM |
⊟ϱ M | ⊞ϱM |MSϱM |MUϱM.

A rule is an expression of the form

M ′ ←M1 ∧ · · · ∧Mn, for n ≥ 1, (1)

where each Mi is a metric atom, whereas M ′ is a metric
atom not mentioning x, |, S , and U , and hence generated
by the following grammar:2

M ′ ::= ⊤ | P (s) | ⊟ϱM ′ | ⊞ϱM ′.

The conjunction M1∧· · ·∧Mn in Expression (1) is the rule’s
body; each Mi is a body atom and M ′ is the rule’s head. A
rule is safe if all its variables occur in the body.

A program is a finite set of safe rules. A program is
bounded if all intervals it mentions are bounded. An expres-
sion (metric atom, rule, or program) is ground if it has no
variables. The grounding ground(Π) of Π is the set of all
ground rules obtained by assigning constants to variables
in Π. A metric fact over an interval ϱ is an expression M@ϱ,
with M a ground metric atom; it is relational if so is M and
bounded if so is ϱ. A dataset is a finite set of relational facts;
it is bounded if so is each of its facts. For a dataset D we let
t−D and t+D be, respectively, the minimal and maximal ratio-
nal numbers mentioned as endpoints of intervals in D (or 0
if D mentions no numbers).

Semantics. An interpretation I specifies, for each ground
relational atom P (s) and each time point t, whether P (s)
is satisfied at t, in which case we write I, t |= P (s). This
notion extends to other ground metric atoms as specified in
Table 1. Interpretation I satisfies a metric fact M@ϱ, written
I |= M@ϱ, if I, t |= M for all t ∈ ϱ. Interpretation I satis-
fies a ground rule r if, for any time point t, whenever I sat-
isfies each body atom of r at t, then I also satisfies the head
of r at t. Interpretation I satisfies a (possibly non-ground)
rule r if I satisfies each rule in ground({r}); it satisfies a
program Π if I satisfies each rule in Π; moreover, I satis-
fies Π in an interval ϱ if, for each r ∈ ground(Π) and each
t ∈ ϱ, whenever I satisfies each body atom of r at t, then
I satisfies the head of r at t. Interpretation I is a model of
a program Π if it satisfies Π, and it is a model of a dataset
D if it satisfies each fact in D. A program Π and a dataset
D entail a metric fact M@ϱ, written as (Π,D) |= M@ϱ, if
each model of both Π and D is also a model of M@ϱ. We
may write D |= M@ϱ instead of (∅,D) |= M@ϱ.

2For convenience, we additionally disallow ⊥ in rule heads,
which ensures consistency and allows us to focus on fact entail-
ment and the computation of canonical interpretations.

6567



I, t |= ⊤ for each t

I, t |= ⊥ for no t

I, t |= xϱM iff I, t′ |= M for some t′ with t− t′ ∈ ϱ

I, t |= |ϱM iff I, t′ |= M for some t′ with t′ − t ∈ ϱ

I, t |= ⊟ϱM iff I, t′ |= M for all t′ with t− t′ ∈ ϱ

I, t |= ⊞ϱM iff I, t′ |= M for all t′ with t′ − t ∈ ϱ

I, t |= M1SϱM2 iff I, t′ |= M2 for some t′ with t− t′ ∈ ϱ

and I, t′′ |= M1 for all t′′ ∈ (t′, t)

I, t |= M1UϱM2 iff I, t′ |= M2 for some t′ with t′ − t ∈ ϱ

and I, t′′ |= M1 for all t′′ ∈ (t, t′)

Table 1: Semantics of ground metric atoms

An interpretation I contains an interpretation I′, written
I′ ⊆ I, if I′, t |= P (s) implies I, t |= P (s), for each ground
relational atom P (s) and time point t. Then, I is the least in-
terpretation in a set X of interpretations if I ⊆ I′ for every
I′ ∈ X . Each dataset D admits the least interpretation ID
among all models of D and we say that a dataset D repre-
sents an interpretation I if I = ID.

Canonical Model We let the immediate consequence op-
erator TΠ for a program Π be the function mapping
an interpretation I to the least interpretation TΠ(I) con-
taining I and satisfying the following property for each
r ∈ ground(Π): whenever I satisfies each body atom of r
at a time point t, then TΠ(I) satisfies the head of r at t.
Successive applications of TΠ to ID define a transfinite se-
quence of interpretations Tα

Π (ID) for ordinals α as follows:
(i) T 0

Π(ID) = ID, (ii) Tα+1
Π (ID) = TΠ(T

α
Π (ID)) for α an

ordinal, and (iii) Tα
Π (ID) =

⋃
β<α T β

Π(ID) for α a limit
ordinal. The canonical model CΠ,D of Π and D is the in-
terpretation Tω1

Π (ID), where ω1 is the first uncountable or-
dinal. Since we do not allow ⊥ in rule heads, CΠ,D is al-
ways a model of Π and D, and it is the least such model
(Brandt et al. 2017). Interpretation CΠ,D can be divided into
regularly distributed (Π,D)-intervals whose time points sat-
isfy the same ground atoms (Wałęga et al. 2019). In partic-
ular, the (Π,D)-ruler is the set of time points of the form
t + i · div(Π), for t ∈ Q mentioned in D and i ∈ Z, and
where div(Π) = 1

k , with k being the product of all denomi-
nators in the rational endpoints of the intervals mentioned in
Π (for definiteness, if Π has no intervals with rational end-
points, we let k = 1 and hence div(Π) = 1).

A (Π,D)-interval is either a punctual interval over a time
point on the (Π,D)-ruler or an interval (t1, t2) with t1 and t2
consecutive time points on the (Π,D)-ruler. We say than an
interpretation I is a (Π,D)-interpretation if, for every rela-
tional fact M@t, it holds that I |= M@t implies I |= M@ϱ,
where ϱ is the (Π,D)-interval containing t. It turns out that
CΠ,D as well as Tα

Π (ID), for any ordinal α, is a (Π,D)-
interpretation (Wałęga et al. 2019).

Reasoning. We consider fact entailment, that is, checking
if a relational fact is entailed by a program and a dataset.
This problem is PSpace-complete in data complexity, that is,
when the size of a program is considered as fixed (Wałęga
et al. 2019), and ExpSpace-complete in combined complex-
ity, where complexity is measured also with respect to the
program (Brandt et al. 2017). The same complexity bounds
hold already in the case of bounded programs and datasets
(Wałęga, Zawidzki, and Cuenca Grau 2021).

Periodic Structure of the Canonical Model
In this section, we establish the theoretical basis for our
novel reasoning approach. Given a bounded program Π and
a dataset D, we present saturation conditions stating the
properties that a partial materialisation T k

Π(ID) needs to sat-
isfy so that the full canonical model can be recovered. We
call an interpretation satisfying these conditions saturated
and show how to compute relevant periods and exploit them
to unfold the interpretation into the canonical model of Π
and D. This allows us to check entailment of any fact.

For convenience of presentation, we fix for the remainder
of this section an arbitrary bounded program Π, bounded
dataset D, and natural number k. Moreover, for an interpre-
tation I and an interval ϱ, we let the projection I |ϱ of I over
ϱ be the interpretation that coincides with I on ϱ and makes
all relational atoms false outside ϱ. We say that an interpre-
tation I′ is a shift of I if there is a rational number q such
that I |= M@ϱ if and only if I′ |= M@(ϱ+ q), for each
(relational) fact M@ϱ. Furthermore, for a rule r, we define
its depth, written as depth(r), as the sum of right endpoints
of all intervals occurring in the operators of r (or 0 if r men-
tions no intervals), and we let depth(Π) be the maximum
depth of its rules. As shown in the following proposition,
the depth of a bounded rule determines the time points that
can be ‘affected’ by an application of this rule.
Proposition 1. For every interpretation I, time point t, and
bounded rule r, it holds that I satisfies r at t if and only if
so does I |[t−depth(r),t+depth(r)].

Proof. By definition, I satisfies r at t if and only if the body
of r does not hold at t or the head of r holds at t. By the
definition of depth(r), all the facts corresponding to the sat-
isfaction of the body and the head of r at t are over intervals
contained in [t − depth(r), t + depth(r)]. This directly im-
plies the claim in the proposition.

Having introduced these basic concepts, we are now ready
to define our notion of a saturated interpretation.
Definition 2. Interpretation T k

Π(ID) is saturated if there ex-
ist closed intervals ϱ1, ϱ2, ϱ3, and ϱ4 of length 2depth(Π),
whose endpoints are located on the (Π,D)-ruler and satisfy
ϱ+1 < ϱ+2 < t−D and t+D < ϱ−3 < ϱ−4 , and such that the
following properties hold:
– T k

Π(ID) satisfies Π in [ϱ−1 , ϱ
+
4 ];

– T k
Π(ID) |ϱ1

and T k
Π(ID) |ϱ3

are shifts of T k
Π(ID) |ϱ2

and
T k
Π(ID) |ϱ4

, respectively.

Any pair of intervals [ϱ−1 , ϱ
−
2 ) and (ϱ+3 , ϱ

+
4 ], for ϱ1, ϱ2, ϱ3,

ϱ4 as above, will be referred to as periods of T k
Π(ID).

6568



Intuitively, a saturated interpretation contains a ‘central
fragment’ [ϱ−1 , ϱ

+
4 ] which satisfies D and such that a single

application of TΠ does not derive any new facts within this
fragment (i.e., the interpretation satisfies Π within [ϱ−1 , ϱ

+
4 ]).

In the left segment of this ‘central fragment’ there are two
intervals ϱ1 and ϱ2—each of length 2depth(Π)—in which
T k
Π(ID) satisfies the same relational facts modulo a shift.

Analogously, in the right segment of the ‘central fragment’
there are intervals ϱ3 and ϱ4 also with repeating contents.

It is worth emphasising that in the definition of a satu-
rated interpretation (first item), we consider only a single
materialisation step, which can be effectively checked. As
we will show in Theorem 5, rather surprisingly, this condi-
tion is enough to guarantee that a saturated interpretation can
be unfolded into the canonical model.

We next define the unfolding of a saturated interpretation
relatively to a pair (ϱleft, ϱright) of its periods. Although there
can be many such pairs of intervals, the key properties of the
unfolding are independent of the choice of periods.

Definition 3. The (ϱleft, ϱright)-unfolding, of a saturated in-
terpretation T k

Π(ID) with periods (ϱleft, ϱright), is the inter-
pretation C such that:

– C |[ϱ−
left,ϱ

+
right]

= T k
Π(ID) |[ϱ−

left,ϱ
+
right]

,

– C |ϱleft−n·|ϱleft| is a shift of T k
Π(ID) |ϱleft

, for any n ∈ N,
– C |ϱright+n·|ϱright| is a shift of T k

Π(ID) |ϱright
, for any n ∈ N.

We observe that the unfolding is unique and can be ob-
tained from the least interpretation coinciding with T k

Π(ID)
on [ϱ−left, ϱ

+
right] by subsequently copying the fragment of this

interpretation that spans ϱleft infinitely many times to the left
and the fragment of this interpretation that spans ϱright in-
finitely many times towards the right on the timeline.

In Theorem 5 we will show that the unfolding of a satu-
rated interpretation coincides with the canonical model. The
proof of this theorem exploits a generalisation of a technical
lemma from the literature (Wałęga, Zawidzki, and Cuenca
Grau 2021, Lemma 11), which we provide next.

Lemma 4. Let ϱ be a closed interval of length depth(Π)
and D′ a dataset representing CΠ,D |ϱ. Then both of the
following hold:

1. If ϱ+ ≥ t+D, then CΠ,D |(ϱ+,∞)= CΠ,D′ |(ϱ+,∞).
2. If ϱ− ≤ t−D, then CΠ,D |(−∞,ϱ−)= CΠ,D′ |(−∞,ϱ−).

Proof sketch. Both items have similar proofs, so we focus
on the first one. The inclusion CΠ,D′ |(ϱ+,∞)⊆ CΠ,D |(ϱ+,∞)

follows from the fact that CΠ,D |= D′, so CΠ,D′ ⊆ CΠ,D. To
show that CΠ,D |(ϱ+,∞)⊆ CΠ,D′ |(ϱ+,∞) it suffices to prove
inductively that, for every ordinal α and relational fact M@t
with t > ϱ+, if Tα

Π (ID) |= M@t, then Tα
Π (ID′) |= M@t.

We conduct the induction similarly to the proof due to
Wałęga, Zawidzki, and Cuenca Grau (2021, Lemma 11), but
using depth(Π) in the inductive step.

Theorem 5. The (ϱleft, ϱright)-unfolding C of a saturated
interpretation T k

Π(ID) with periods (ϱleft, ϱright) coincides
with the canonical model CΠ,D.

Proof sketch. We first show that CΠ,D ⊆ C. Since CΠ,D is
the least model of Π and D, it suffices to show that C is
a model of Π and D. As [t−D, t

+
D] ⊆ [ϱ−left, ϱ

+
right], we obtain

that the projection of T k
Π(ID) over [ϱ−left, ϱ

+
right] is a model

of D. However, by Definition 3, C and T k
Π(ID) coincide

on [ϱ−left, ϱ
+
right], so C is also a model of D. To show that

C satisfies Π in ϱ = [ϱ−left + depth(Π), ϱ+right − depth(Π)],
it suffices, by Proposition 1, to show that the projection
of C over [ϱ−left, ϱ

+
right] satisfies Π in ϱ; this holds since C

and T k
Π(ID) coincide on [ϱ−left, ϱ

+
right] and T k

Π(ID) satis-
fies Π in [ϱ−left, ϱ

+
right], as it is saturated. It remains to ar-

gue that C satisfies Π at each t outside ϱ. Assume that
t < ϱ−, so t < ϱ−left + depth(Π). Then, there exists a unique
pair of n ∈ N and t′ ∈ [ϱ−left + depth(Π), ϱ+left + depth(Π))
such that t + n · |ϱleft| = t′. This, by the definition
of C, implies that C |[t−depth(Π),t+depth(Π)] is a shift of
C |[t′−depth(Π),t′+depth(Π)]. Thus, by Proposition 1, C satis-
fies Π at t if and only if C satisfies Π at t′. The latter holds
since t′ ∈ ϱ and, as we already showed, C satisfies Π in ϱ.
The proof for t > ϱ−right−depth(Π) is similar, so CΠ,D ⊆ C.

We show that C ⊆ CΠ,D. The projection of C over
[ϱ−left, ϱ

+
right] is in CΠ,D since C and T k

Π(ID) coincide
on this interval and T k

Π(ID) ⊆ CΠ,D. To show that
the projection of C over (−∞, ϱ−left] is in CΠ,D, we
argue that C |[ti,ϱ+

right]
⊆ CΠ,D |[ti,ϱ+

right]
by induction on

consecutive timepoints ti on the (Π,D)-ruler, with
t0 = ϱ−left. The base holds since C and T k

Π(ID) coincide
on [ϱ−left, ϱ

+
right]. For the inductive step, let ϱA = [ti, ti−1),

ϱB = [ti−1, ti−1 + depth(Π)], ϱ′A = ϱA + |ϱleft|, and
ϱ′B = ϱB + |ϱleft|. Hence, it suffices to show that
C |ϱA

⊆ CΠ,D |ϱA
. We note that C |ϱB

is a shift of
C |ϱ′

B
by the construction of C and the fact that

(ϱ′B)
+ ≤ ϱ+left + depth(Π). Thus, by the inductive as-

sumption and CΠ,D ⊆ C, we obtain that CΠ,D |ϱB
is a

shift of CΠ,D |ϱ′
B

. By the construction of C we know
that C |ϱA

is a shift of C |ϱ′
A

and since the lengths of ϱB
and ϱ′B equal depth(Π), we can use Lemma 4 to show
that CΠ,D |ϱA

is a shift of CΠ,D |ϱ′
A

. By the inductive
assumption, C |ϱA′⊆ CΠ,D |ϱA′ and so, C |ϱA

⊆ CΠ,D |ϱA
.

The proof of the inclusion C |[ϱ+
right,∞)⊆ CΠ,D |[ϱ+

right,∞) is
symmetric; thus, C ⊆ CΠ,D.

Theorem 5 states that the unfolding of a saturated inter-
pretation around any pair of its periods coincides with the
canonical model. Thus, we can refer to an unfolding of a
saturated interpretation without explicitly referring to its pe-
riods.

We conclude this section by establishing a bound kmax,
depending on Π and D, which ensures that T k

Π(ID) is sat-
urated for some k ≤ kmax. Intuitively, kmax is the number
of facts that we can construct by combining atoms relevant
to Π and D with (Π,D)-intervals contained in a sufficiently
large interval ϱ. The interval ϱ is chosen so that [t−D, t

+
D] ⊆ ϱ,

and such that its fragments [ϱ−, t−D) and (t+D, ϱ
+] to the left
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and right of D, respectively, contain so many intervals of
length 2depth(Π) with endpoints on the (Π,D)-ruler, that
their contents need to repeat. These repetitions guarantee the
existence of intervals ϱ1, . . . , ϱ4 from Definition 2.

Theorem 6. There exists k ≤ kmax such that T k
Π(ID)

is saturated, where the bound kmax is defined as follows.
Let A be the number of ground relational atoms in the
grounding of Π with constants from Π and D, let B be the
number of (Π,D)-intervals within [t−D, t

−
D + 2depth(Π)],

and let ϱ = [t−w − 2depth(Π), tw + 2depth(Π)], where
· · · < t−2 < t−1 < t−D and t+D < t1 < t2 < . . . are se-
quences of consecutive time points on the (Π,D)-ruler, whil
w = 1 +B · (2A)B . Then kmax is the product of A and the
number of (Π,D)-intervals contained in ϱ.

Proof sketch. The canonical model CΠ,D satisfies at most
kmax relational facts over (Π,D)-intervals contained in ϱ.
Since each application of TΠ (before reaching a fix-
point) introduces at least one new relational fact over a
(Π,D)-interval, there needs to exist k ≤ kmax such that
T k
Π(ID) |ϱ= T k+1

Π (ID) |ϱ. We argue that T k
Π(ID) is sat-

urated for such k by showing that ϱ contains intervals
ϱ1, . . . , ϱ4 satisfying the conditions from Definition 2. To
show the existence of ϱ1 and ϱ2, we observe that ϱ con-
tains w = 1 + B · (2A)B intervals of length 2depth(Π)
whose endpoints are located on the (Π,D)-ruler to the left
of t−D. We can show that there must exist amongst them
two distinct intervals ϱ1 and ϱ2 such that T k

Π(ID) |ϱ1
is

a shift of T k
Π(ID) |ϱ2

. Indeed, each interval of the form
[t, t + 2depth(Π)], for t on the (Π,D)-ruler, contains the
same number of (Π,D)-intervals as [t−D, t

−
D + 2depth(Π)]

does, which equals B. In each of these (Π,D)-intervals
there can hold at most 2A combinations of relational atoms,
which gives rise to (2A)B different contents of an interval
of the form [t, t + 2depth(Π)]. Additionally, these inter-
vals can differ depending on the location of (Π,D)-intervals
they contain. By the definition of the (Π,D)-ruler, there
are at most B different layouts of (Π,D)-intervals con-
tained in an interval of the form [t, t + 2depth(Π)]. Hence,
in total, there are at most B · (2A)B intervals of the form
[t, t + 2depth(Π)] with different contents. Thus, in a set of
w = 1 + B · (2A)B such intervals, there needs to be a pair
of distinct intervals ϱ1 and ϱ2 such that T k

Π(ID) |ϱ1
is a shift

of T k
Π(ID) |ϱ2

. Analogously, we can show the existence of
required ϱ3 and ϱ4 to the right of t+D, so the second item
from Definition 2 holds. Moreover, since [ϱ−1 , ϱ

+
4 ] ⊆ ϱ and

T k
Π(ID) |ϱ= T k+1

Π (ID) |ϱ, we obtain that T k
Π(ID) satisfies

Π in [ϱ−1 , ϱ
+
4 ]. Thus, the first item from Definition 2 holds as

well, and so, T k
Π(ID) is saturated.

The bound kmax from Theorem 6 is doubly exponential in
the size of Π and D, but only exponential in the size of D.
Essentially, this bound shows us how much time is needed
to perform reasoning, which is consistent with the compu-
tational complexity of reasoning in DatalogMTL, namely
ExpSpace in combined complexity (Brandt et al. 2017) and
PSpace in data complexity (Wałęga et al. 2019).

Algorithm 1: Reasoning via Periods Detection
Input: a bounded program Π, a bounded dataset D,

and a relational fact M@ϱ
Output: a Boolean value True or False

1 Dnow := D;
2 loop
3 if Dnow |= M@ϱ then return True;
4 (ϱleft, ϱright) := Periods(Π,D,Dnow);
5 if ϱleft ̸= ∅ and ϱright ̸= ∅ then
6 if Entails(Π,D,Dnow, ϱleft, ϱright,M@ϱ)

then return True;
7 else return False;
8 Dnow := ApplyRules(Π,Dnow);

Algorithm
The results from the previous section suggest the reasoning
procedure in Algorithm 1, which checks if a bounded pro-
gram Π and a dataset D entail a relational fact M@ϱ.

The algorithm successively applies the rules of Π to the
dataset (Line 8) until one of two stopping conditions hold.
The first condition (Line 3) detects if the materialisation
Dnow constructed thus far entails the input fact M@ϱ, in
which case the algorithm reports that the input fact is en-
tailed. The second condition checks ifDnow is saturated (i.e.,
represents a saturated interpretation). To this end, the algo-
rithm computes in Line 4 two non-empty intervals which
are periods of Dnow (if Dnow is saturated), or introduces two
empty intervals (if Dnow is not saturated). If Dnow is satu-
rated, the algorithm exploits Dnow and its periods to check
whether M@ϱ is entailed (Lines 6–7).

We next describe in detail the computations of the algo-
rithm and establish their correctness. In what follows, we
fix an arbitrary input Π, D, and M@ϱ to Algorithm 1 and
assume that the notions of a saturated interpretation and its
periods are relative to Π and D. We also let the projection
D′ |ϱ′ of a dataset D′ over an interval ϱ′ be the dataset ob-
tained by intersecting all intervals in facts from D′ with ϱ′.

Rule Application In each iteration of the loop, Algo-
rithm 1 applies the procedure ApplyRules (Line 8), which
implements a single round of rule applications to Dnow, and
thus, mimics an application of the immediate consequence
operator TΠ to IDnow . Hence, in the beginning of a (k+ 1)st
iteration of the loop, the dataset Dnow in Algorithm 1 rep-
resents T k

Π(ID). This is a basic component of materialisa-
tion in DatalogMTL, already implemented in the literature
(Wang et al. 2022, Algorithm 1).

First Stopping Condition In Line 3, Algorithm 1 checks
whether the materialisation Dnow constructed so far entails
the input fact M@ϱ. Since facts in Dnow are stored in a co-
alesced form, to check if Dnow |= M@ϱ, it suffices to scan
Dnow and verify whether there is M@ϱ′ ∈ Dnowwith ϱ ⊆ ϱ′.

Second Stopping Condition Algorithm 1 calls the
Periods procedure in Line 4 to check, in an iteration k + 1
of the loop, if T k

Π(ID) is saturated. The procedure searches
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for intervals ϱ1, . . . , ϱ4 satisfying the conditions in Defini-
tion 2 and returns the periods of the interpretation T k

Π(ID)
if it is saturated or a pair of empty intervals otherwise. To
this end, the procedure performs one round of rule applica-
tions to Dnow, computing Dnext. Then, it computes an inter-
val ϱmax as either the empty interval (if Dnow and Dnext do
not coincide on [t−D, t

+
D]), or otherwise as the maximal inter-

val containing [t−D, t
+
D] and such that Dnow and Dnext coin-

cide on ϱmax. Interval ϱmax is next used to search for ϱ1 and
ϱ2, namely all pairs of intervals contained in ϱmax, located
to the left of t−D, with endpoints on the (Π,D)-ruler, and of
lengths 2depth(Π), are compared. The first pair of such in-
tervals with the same contents in Dnow is set as ϱ1 and ϱ2;
otherwise ϱ1 and ϱ2 are empty intervals. In a similar way in-
tervals ϱ3 and ϱ4 are computed. Finally, the procedure out-
puts a pair of intervals ([ϱ−1 , ϱ

−
2 ), (ϱ

+
3 , ϱ

+
4 ]), or (∅, ∅) if any

of the intervals ϱ1, . . . , ϱ4 is empty.

Fact Entailment Checking after Saturation After con-
structing a saturated datasetDnow (representing T k

Π(ID), for
some k ∈ N) with periods (ϱleft, ϱright), Algorithm 1 calls
the procedure Entails (Line 6) to check whether the input
fact M@ϱ holds in the unfolding of T k

Π(ID). This can be
easily checked by exploiting Definition 3 of unfolding.

From our theoretical results in the previous section it fol-
lows that the algorithm is sound and complete:

Theorem 7. Algorithm 1 outputs True if (Π,D) |= M@ϱ,
otherwise it outputs False. Moreover, the algorithm termi-
nates after at most kmax +1 (c.f. Theorem 6) iterations of its
main loop.

We conclude this section with an example illustrating the
execution of Algorithm 1.

Example 8. Consider Π = {⊞[0,1]P ← P,⊟[1,1]Q← Q},
D = {P@0, Q@1.5}, and a query fact M@t = Q@−4.5.
After 5 iterations of the loop in Algorithm 1, the
dataset Dnow consists of facts P@[0, 5] and Q@t, for all
t ∈ {−3.5,−2.5,−1.5,−0.5, 0.5, 1.5}. The stopping condi-
tion from Line 3 does not hold, but the condition in Line 5
does. Indeed, Dnow is saturated and its periods computed
in Line 4 are ϱleft = [−3.5,−2.5) and ϱright = (4.0, 4.5].
The unfolding of Dnow is the canonical model of Π and D
depicted in Figure 1. Then, in Line 6, Algorithm 1 can ex-
ploit Dnow, ϱleft, and ϱright to detect entailment of any fact.
In particular, the input fact Q@−4.5 is entailed, and so, Al-
gorithm 1 returns True in Line 6.

P

. . .

−5 −4 −3 −2 −1 0 1 2 3 4 5 6

Q Q Q Q Q Q Q

ϱright=(4.0, 4.5]ϱleft=[−3.5,−2.5) t−Dex
t+Dex

Saturated dataset

Figure 1: Canonical model CΠ,D of Π and D

Experimental Evaluation
We have implemented Algorithm 1 and conducted two ex-
periments.3 The first experiment compares our implementa-
tion with MeTeoR (Wang et al. 2022), which we take as the
baseline; we did not consider other reasoners, such as Ontop
(Kalaycı et al. 2018), as they support only non-recursive pro-
grams, where canonical interpretations are always finite. The
second experiment tests the scalability of our implementa-
tion on datasets of increasing size. All experiments were
conducted on a Dell PowerEdge R730 server with 512 GB
of RAM and two Intel Xeon E5-2640 2.6 GHz processors
running Fedora 33, kernel version 5.8.17. We used as bench-
marks a temporal extension of the Lehigh University Bench-
mark (LUBM) (Wang et al. 2022) and the iTemporal bech-
mark generator (Bellomarini, Nissl, and Sallinger 2022).
The LUBM extension provides a fixed DatalogMTL pro-
gram which extends the 56 Datalog rules in LUBM with 29
temporal rules involving recursion and mentioning all met-
ric operators in DatalogMTL. We used the iTemporal bench-
mark generator to construct another recursive DatalogMTL
program with 19 rules. Both of the benchmarks allow for the
generation of datasets of increasing size.

Comparison with the Baseline. We compared our imple-
mentation with MeTeoR, which combines materialisation
with automata-based reasoning techniques. For the LUBM
benchmark, Figure 2 (left), we considered a dataset D with
5 million facts and query facts F@t, where F is a fixed re-
lational atom (about the predicate FullProfessor ) and t ∈
{−500,−400, . . . , 500}. Reasoning with D and the frag-
ment Π of the benchmark’s program that is relevant for F is
non-trivial and materialisation does not terminate for them.

Facts F@t with t > 0 are entailed by Π and D, so such
facts are decided by MeTeoR using materialisation only.
Thus, the larger t, the larger the number of materialisation
steps the baseline performs; as shown in Figure 2, material-
isation times increase linearly with t. In our new approach,
we observe a similar linear growth up until t = 300, where
saturation is achieved. This indicates that saturation checks
during materialisation come with negligible overhead. Once
saturation is reached, our approach does not require fur-
ther materialisation steps and fact entailment can be decided
based on the saturated dataset. Thus, fact entailment running
times are roughly identical for all facts with t ≥ 300, while
for MeTeoR they continue to grow with t.

Facts F@t, with t < 0 are not entailed, hence MeTeoR
must resort to automata-based techniques. Due to the opti-
misations implemented in MeTeoR, automata-based reason-
ing works well for facts with time points that lie close to
the dataset, but performance degrades as t becomes located
further away. In contrast, our approach proceeds as in the
previous case; it will materialise in linear running time until
a saturated dataset is obtained, at which point running times
stabilise and become independent of t.

In the case of the iTemporal benchmark, we considered a
dataset with 1000 facts and facts G@t with a specific atom

3Our implementation can be accessed through the following
link: https://github.com/wdimmy/DatalogMTLPeriodicity.
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Figure 2: Comparison with the baseline on the LUBM (on
the left) and iTemporal (on the right) benchmarks

G and t ∈ {−100,−80, . . . , 100}; we observed the same
type of behaviour as for LUBM (see Figure 2, right).

Scalability in Data Size. In the second experiment, we
analysed how saturation times increase with the size of the
input dataset. We considered the same programs as in the
first experiment, together with sequences of datasets of in-
creasing size. For the LUBM benchmark, we generated two
sequences, each containing 6 datasets. In the first sequence
all the intervals of temporal facts are contained within the
range [0, 50] and we increase the size of datasets by intro-
ducing atoms with new constants. In the second sequence,
the number of constants is the same but the number of facts
increases; facts occupy increasing ranges of time, namely,
[0, 5·10i], for i ∈ {1, . . . , 6}. In both sequences, the datasets
have 103, 104, 105, 106, 107, and 108 facts, respectively.

As depicted in Figure 3 (left), in both cases running times
grow proportionally with data size; this suggests that our ap-
proach is scalable with respect to both the number of con-
stants and the temporal range of the dataset. We observe
that the running times for the second sequence of facts are
around twice smaller than for the first sequence (except the
first dataset which is the same in both sequences), so increas-
ing the number of constants seems to have a larger impact on
our approach than increasing the temporal domain.

We performed a similar experiment for the iTemporal
benchmark (see Figure 3, right), which confirmed our ob-
servations from the LUBM experiment.
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Figure 3: Scalability of our approach tested on the LUBM
(on the left) and iTemporal (on the right) benchmarks

Related Work
The complexity of reasoning in DatalogMTL and its frag-
ments has been studied in recent years (Brandt et al. 2018;
Wałęga et al. 2019, 2020b), as well as their alternative se-
mantics with favourable computational properties have been
proposed (Wałęga et al. 2020a; Ryzhikov, Wałęga, and Za-
kharyaschev 2019). DatalogMTL has also been extended
with stratified negation (Tena Cucala et al. 2021) and with
unrestricted negation under stable model semantics (Wałęga
et al. 2021), which is related to recent research on metric
temporal ASP (Cabalar et al. 2020).

Several techniques have been proposed for reasoning
in DatalogMTL. Brzoska (1998) introduced proof systems
based on solving linear inequalities, MeTeoR (Wang et al.
2022) is based on an algorithm combining materialisation
and automata-based techniques, whereas Ontop implements
a reasoning algorithm based on query rewriting that is appli-
cable to non-recursive programs (Kalaycı et al. 2018).

The use of blocking conditions to stop further application
of inference rules while retaining completeness is routinely
exploited in automated reasoning, especially in the context
of modal (Bolander and Blackburn 2007; Schmidt and Wald-
mann 2015; Areces and Orbe 2015), temporal (Reynolds
2016; Chafik et al. 2021), and description logics (Horrocks
and Sattler 1999; Schmidt and Tishkovsky 2011; Glimm,
Horrocks, and Motik 2010).

Periodicity of temporal models has been extensively in-
vestigated for LTL (Manna and Wolper 1982; Sistla and
Clarke 1985) and its fragments (Artale et al. 2013), the
temporal logic TPTL for the specification of real-time sys-
tems (Alur and Henzinger 1994), the temporalised descrip-
tion logic EL (Gutiérrez-Basulto, Jung, and Kontchakov
2016), and the metric temporal extension LTLbin

ALC of the de-
scription logic ALC (Baader et al. 2020). It has been shown
that canonical models in LTL-based rule-languages are peri-
odic and the lengths of offsets and periods in such interpreta-
tions are bounded by an exponential function of the number
of predicates involved (Artale et al. 2021b). In contrast to
our approach, however, no effective method of computing
such periods was established.

There have been various other proposals for extending
Datalog with temporal constructs (Baudinet, Chomicki, and
Wolper 1993; Beck et al. 2015) such as Datalog1S and
DatalognS (Chomicki and Imieliński 1988; Chomicki 1990,
1995); in particular problems corresponding to finite mate-
rialisability have been considered in this setting (Chomicki
and Imieliński 1988).

Conclusions and Future Work
We have proposed a novel materialisation-based approach
for reasoning in DatalogMTL—a highly expressive exten-
sion of Datalog with operators from metric temporal logic.
Our algorithm achieves termination by exploiting a specific
saturation condition, which ensures that materialisation can
be stopped after a bounded number of rounds of rule appli-
cations, without compromising completeness of reasoning.
We have implemented our approach and conducted experi-
ments supporting its feasibility in practice.
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Wałęga, P. A.; Kaminski, M.; and Cuenca Grau, B. 2019.
Reasoning over streaming data in metric temporal Datalog.
In Proc. of AAAI, 3092–3099.
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