
Neurosymbolic Reasoning and Learning with Restricted Boltzmann Machines

Son N. Tran1, Artur d’Avila Garcez2

1The University of Tasmania, Launceston, Tasmania, 7248, Australia
2City, University of London, Northampton Square, London, EC1V 0HB, UK

sn.tran@utas.edu.au, a.garcez@city.ac.uk

Abstract

Knowledge representation and reasoning in neural networks
has been a long-standing endeavour which has attracted much
attention recently. The principled integration of reasoning
and learning in neural networks is a main objective of the
area of neurosymbolic Artificial Intelligence. In this paper,
a neurosymbolic system is introduced that can represent any
propositional logic formula. A proof of equivalence is pre-
sented showing that energy minimization in restricted Boltz-
mann machines corresponds to logical reasoning. We demon-
strate the application of our approach empirically on logical
reasoning and learning from data and knowledge. Experimen-
tal results show that reasoning can be performed effectively
for a class of logical formulae. Learning from data and knowl-
edge is also evaluated in comparison with learning of logic
programs using neural networks. The results show that our
approach can improve on state-of-the-art neurosymbolic sys-
tems. The theorems and empirical results presented in this
paper are expected to reignite the research on the use of neu-
ral networks as massively-parallel models for logical reason-
ing and promote the principled integration of reasoning and
learning in deep networks.

Introduction
Increasing attention has been devoted in recent years to
knowledge representation and reasoning in neural networks.
The principled integration of reasoning and learning in neu-
ral networks is a main objective of the area of neurosymbolic
Artificial Intelligence (AI) (d’Avila Garcez and Lamb 2020).
In neurosymbolic AI, neural networks and symbolic AI are
combined. Typically, an algorithm is provided to translate
some form of symbolic knowledge representation into the
architecture and initial set of parameters of a neural network.
Ideally, a theorem then shows that the neural network can be
used as a massively-parallel model of computation capable
of reasoning about such knowledge. Finally, when trained
with data and knowledge, the network is expected to pro-
duce a better performance - either a higher accuracy or faster
learning - than when trained from data alone.

Symbolic knowledge may be provided to a neural network
in the form of general rules which are known in a given do-
main, or rules which are expected to be true across domains

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

when performing transfer learning. Over the years, many
neurosymbolic approaches have used a form of knowledge
representation based on if-then rules (Towell and Shavlik
1994; França, Zaverucha, and Garcez 2014; Tran and Garcez
2018; Evans and Grefenstette 2018; Yang, Yang, and Cohen
2017; Manhaeve et al. 2018; Tran 2021). Assuming Modus-
Ponens1 as the only rule of inference, given a logical formula
of the form B ← A (read “B is true if A is true”), under
the convention that 1 represents true and 0 represents false,
a neurosymbolic network would infer that approximately
B = 1 given A = 1. This has two shortcomings. First,
Modus-Ponens alone may not capture the entire reasoning
required by the application, e.g. the use of Modus-Tollens2

may be needed. Second, other forms of knowledge may need
to be represented by the neural network, including with the
use of negation (¬), conjunction (∧), disjunction (∨) and bi-
conditional (↔), e.g. (¬A∨B)← (C∧D), read “notA orB
holds true ifC andD are true”, orA↔ B, read “A is true
if and only if B is true”. Although an equivalence between
propositional calculus and connectionist networks has been
shown in (Pinkas 1991, 1995), the translation and represen-
tation of knowledge by such networks can become convo-
luted, making it difficult to integrate with modern learning
techniques.

In this paper, we introduce a method to translate logical
formulae into simple 2-layer neural networks. The networks,
called Logical Boltzmann Machines (LBM), work as a neu-
rosymbolic system capable of (i) representing any formula
in propositional logic, (ii) reasoning efficiently given such
knowledge, (iii) learning from knowledge and data. We in-
troduce an algorithm to translate any set of propositional
logic formulae into a restricted Boltzmann machine (RBM)
and we prove equivalence between the logical formulae and
the energy-based connectionist model. In other words, we
prove soundness of the translation algorithm. Specifically,
the connectionist model (the RBM) is shown to assign min-
imum energy to the assignments of truth-values that satisfy
the formulae. This provides a new way of performing rea-
soning in symmetrical neural networks by employing the
network to search for the models of a logical theory, i.e.
search for the assignments of truth-values that map the logi-

1If P implies Q and P is true then Q must also be true.
2If P implies Q and Q is false then P must also be false.

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

6558

cal formulae to true3.
In the experiments, we demonstrate the applications of

our neurosymbolic system in reasoning and learning. We
show that knowledge-encoded networks (LBMs) can find
all satisfying assignments of a class of logical formulae
by searching fewer than 0.75% of the possible (approxi-
mately 1 billion) assignments. We also show the ability of
LBMs at solving satisfiability (SAT) problem without the
need for training data as done in (Selsam et al. 2019), al-
though LBMs are not as efficient as long-standing, purpose-
built symbolic SAT solvers . When applied to benchmark
data sets for neurosymbolic AI, logical Boltzmann machines
achieved in five out of seven data sets a higher test set
accuracy than a purely-symbolic learning system ALEPH
(Srinivasan 2007), a neurosymbolic system based on if-then
rules CILP++ (França, Zaverucha, and Garcez 2014), and
a standard RBM (Smolensky 1995). Finally, we show that
LBM can be deployed as a logical layer on top of convolu-
tional neural networks. We compare effectiveness with Deep
Logic Nets (Tran and Garcez 2018), Compositional Neu-
ral Logic Programming (Tran 2021), and Logic Tensor Net-
works (Serafini and d’Avila Garcez 2016; Badreddine et al.
2022) in a typical semantic image interpretation task.

The contribution of this paper is twofold. The paper of-
fers:
• A proof of equivalence between classical propositional

logic and restricted Boltzmann machines, and
• A foundation and neurosymbolic system for statistical in-

ference, learning and logical reasoning.

Related Work
One of the earliest work on the integration of neural
networks and symbolic knowledge is known as KBANN
(Knowledge-based Artificial Neural Network (Towell and
Shavlik 1994)), which encodes if-then rules into a hier-
archical multilayer perceptron. In another early approach
(Garcez, Broda, and Gabbay 2001), a single-hidden layer re-
current network is proposed to support logic programming
rules. An extension of that approach to work with first-
order logic programs, called CILP++ (França, Zaverucha,
and Garcez 2014), uses the concept of propositionalisation
from Inductive Logic Programming (ILP), whereby first-
order variables can be treated as propositional atoms in the
neural network. Also based on first-order logic programs,
(Evans and Grefenstette 2018) propose a differentiable ILP
approach that can be implemented by neural networks, and
(Cohen, Yang, and Mazaitis 2017) maps stochastic logic
programs into a differentiable function also trainable by neu-
ral networks. These are all supervised learning approaches.

Early work in neurosymbolic AI has also shown a cor-
respondence between propositional logic and symmetrical
neural networks (Pinkas 1991), in particular Hopfield net-
works, which nevertheless did not scale well with the num-
ber of variables and whose training regimen was ineffi-
cient. Variants of this work have been proposed, based on

3We use the term model to refer to both a model of a logical
theory and a neural network model. When the intended meaning is
not clear from the context, we shall use the term logic model.

Conjunctive Normal Form, to solve the satisfiability prob-
lem using Boltzmann machines and higher-order Boltz-
mann machines (Hernandez et al. 2001; d’Anjou et al.
1993) . Among unsupervised learning approaches, Penalty
Logic (Pinkas 1995) was the first to integrate nonmonotonic
logic into symmetrical neural networks. However, these ap-
proaches require the use of higher-order connectionist net-
works, which can be difficult to construct 4 and inefficient
to train. More recently, several attempts have been made to
extract and encode symbolic knowledge into RBMs trained
with the more efficient Contrastive Divergence algorithm
(Penning et al. 2011; Tran and Garcez 2018). Such ap-
proaches explored the structural similarity between sym-
metric networks and logical rules using bi-conditional im-
plication, but do not enjoy soundness results. By contrast,
and similarly to Penalty Logic, the approach introduced in
this paper is based on a proof of equivalence between the
logic formulae and the symmetric networks; differently from
Penalty Logic, it does not require the use of higher-order
networks. Alongside the above approaches, which translate
symbolic representations into neural networks, there are hy-
brid approaches that combine neural networks and symbolic
AI systems as communicating modules of a neurosymbolic
system. These include DeepProbLog (Manhaeve et al. 2018)
and Logic Tensor Networks (LTN) (Serafini and d’Avila
Garcez 2016).

Knowledge Representation in RBMs
Our approach is based on classical propositional logic, thus
including all five connectives {←,¬,∧,∨,↔} and satisfy-
ing both Modus-Ponens and Modus-Tollens. Let us return
to the simple B ← A example used earlier. Given B ← A
as knowledge, if neuron A is assigned value 1 in the cor-
responding neurosymbolic network, we expect the network
to converge to a state where neuron B has value approxi-
mately 1. If B is assigned value 0, we expect the network
to converge to a state where A is approximately 0. If A is
assigned 0, B should converge to approximately 0.5, since
in the classical interpretation of logical implication, B ← A
is equivalent to ¬A ∨ B, i.e. B ← A is true if A is false
regardless of the truth-value of B. Finally, if B is assigned 1
then A should converge to approximately 0.5, for the same
reason.

An RBM (Smolensky 1995) is a two-layer neural net-
work with bidirectional (symmetric) connections, which
is characterised by an energy function E (x,h) =
−
∑

i,j wijxihj −
∑

i aixi −
∑

j bjhj , where ai and bj are
the biases of input unit xi and hidden unit hj , respectively,
and wij is the connection weight between xi and hj . This
RBM represents a joint probability distribution p(x,h) =
1
Z e

−E(x,h), where Z =
∑

xh e
−E(x,h) is the partition func-

tion, x = {xi} is the set of visible units, and h = {hj} is
the set of hidden units of the RBM.

In propositional logic, any well-formed formula (WFF) φ
can be mapped onto Disjunctive Normal Form (DNF), i.e.

4Building such higher-order networks requires transforming the
energy function into a quadratic form by adding hidden variables
that are not present in the original logic formulae.

6559

disjunctions (∨) of conjunctions (∧), as follows:

φ ≡
∨
j

(
∧

t∈STj

xt ∧
∧

k∈SKj

¬xk)

where (
∧

t∈STj
xt ∧

∧
k∈SKj

¬xk) is called a conjunctive
clause with the propositional variables xi divided into posi-
tive literals xt and negative literals ¬xk, e.g. x1 ∧ x2 ∧ ¬x3
(read “x1 and x2 and not x3”).
Definition 1. Let sφ(x) ∈ {0, 1} denote the truth-value of a
WFF φ given an assignment of truth-values x to the literals
of φ, where truth-value true is mapped to 1 and truth-value
false is mapped to 0. Let E (x,h) denote the energy func-
tion of an energy-based neural networkN with visible units
x and hidden units h. φ is said to be equivalent to N if and
only if there exists a function ψ, for any assignment x, such
that sφ(x) = ψ(E (x,h)).

This definition of equivalence is similar to that of Penalty
Logic (Pinkas 1995), whereby all assignments of truth-value
satisfying a WFF φ are mapped to global minima of the en-
ergy function of network N . In our case, by construction,
assignments that do not satisfy the WFF will be mapped to
maxima of the energy function.
Definition 2. A strict DNF (SDNF) is a DNF with at most
one conjunctive clause that maps to true for any assign-
ment of truth-values x. A full DNF is a DNF where each
propositional variable must appear at least once in every
conjunctive clause.
Lemma 1. Any SDNF φ ≡

∨
j(
∧

t∈STj
xt ∧

∧
k∈SKj

¬xk)
can be mapped onto an energy function:

E (x) = −
∑
j

(
∏

t∈STj

xt
∏

k∈SKj

(1− xk))

where STj (resp. SKj) is the set of Tj (resp. Kj) indices of
the positive (resp. negative) literals in φ.

Proof. Each conjunctive clause
∧

t∈STj
xt∧

∧
k∈SKj

¬xk in

φ can be represented by
∏

t∈STj
xt

∏
k∈SKj

(1− xk) which
maps to 1 if and only if xt = 1 (i.e. true) and xk = 0 (i.e.
false) for all t ∈ STj and k ∈ SKj . Since φ is a SDNF, it
is true if and only if one conjunctive clause is true. Then,
the sum

∑
j(
∏

t∈STj
xt

∏
k∈SKj

(1 − xk)) = 1 if and only
if the assignment of truth-values to xt, xk is a logical model
of φ. Hence, the neural network with energy function E =
−
∑

j(
∏

t∈STj
xt

∏
k∈SKj

(1 − xk)) is such that sφ(x) =

−E (x).

Theorem 1. Any SDNF φ ≡
∨

j(
∧

t∈STj
xt∧

∧
k∈SKj

¬xk)
can be mapped onto an equivalent RBM with energy:

E (x,h) = −
∑
j

hj(
∑

t∈STj

xt−
∑

k∈SKj

xk − |STj
|+ ϵ) (1)

where 0 < ϵ < 1, STj
and SKj

are, respectively, the sets
of indices of the positive and negative literals in each con-
junctive clause j of the SDNF, and |STj

| is the number of
positive literals in conjunctive clause j.

Proof. We have seen in Lemma 1 that any
SDNF φ can be mapped onto energy function
E = −

∑
j

∏
t∈STj

xt
∏

k∈SKj
(1 − xk). For each ex-

pression ẽj(x) = −
∏

t∈STj
xt

∏
k∈SKj

(1− xk), we define
an energy expression associated with hidden unit hj as
ej(x, hj) = −hj(

∑
t∈STj

xt −
∑

k∈SKj
xk − |STj

| + ϵ).

The term ej(x, hj) is minimized with value −ϵ when
hj = 1, written minhj (ej(x, hj)) = −ϵ. This is because
−(

∑
t∈STj

xt −
∑

k∈SKj
xk − |STj

| + ϵ) = −ϵ if and
only if xt = 1 and xk = 0 for all t ∈ STj and k ∈ SKj .
Otherwise, −(

∑
t xt∈STj

−
∑

k∈SKj
xk − |STj | + ϵ) > 0

and minhj
(ej(x, hj)) = 0 with hj = 0. By repeating

this process for each ẽj(x) we obtain that any SDNF
φ is equivalent to an RBM with the energy function
E (x,h) = −

∑
j hj(

∑
t∈STj

xt−
∑

k∈SKj
xk − |STj

|+ ϵ)

such that sφ(x) = − 1
ϵminhE (x,h).

Knowledge Representation Capacity
We now show that any formulae in propositional logic can
be encoded in RBMs by translation into SDNF.

Clausal Form. A clause (or disjunctive clause) is one of
the most popular forms of knowledge representation used in
AI. Horn clauses (or if-then rules in implication form) have
at most one negated literal. Any statement in propositional
logic can be transformed into clausal form by using the rules
of equivalence. A set of statements can be transformed into
an equivalent set of clauses. Consider a clause:

φ ≡
∨

t∈ST

¬xt ∨
∨

k∈SK

xk (2)

which can be rearranged as φ ≡ φ′ ∨ x′, where φ′ is a
disjunctive clause obtained by removing x′ from φ. x′ can
be either ¬xt or xk for any t ∈ ST and k ∈ SK . We have
that:

φ ≡ (¬φ′ ∧ x′) ∨ φ′ (3)

because (¬φ′ ∧x′)∨φ′ ≡ (φ′ ∨¬φ′)∧ (φ′ ∨x′) ≡ True∧
(φ′ ∨ x′). By De Morgan’s law (¬(a∨b) ≡ ¬a∧¬b; ¬(a∧
b) ≡ ¬a ∨ ¬b), one can always convert ¬φ′ (and therefore
¬φ′ ∧ x′) into a conjunctive clause.

By applying Eq. (3) repeatedly, each time we can elimi-
nate a variable out of a disjunctive clause by moving it into a
new conjunctive clause. The disjunctive clause φ holds true
if and only if either the disjunctive clause φ′ holds true or
the conjunctive clause (¬φ′ ∧ x′) holds true. The SDNF of
the clause in Eq. (2) is:∨

j∈ST∪SK

(
∧

t∈ST \j

xt ∧
∧

k∈SK\j

¬xk ∧ x′j) (4)

where S\j denotes a set S from which j has been removed.
x′j ≡ ¬xj if j ∈ ST . Otherwise, x′j ≡ xj . This SDNF only
has |ST |+ |SK | clauses, making the translation efficient.

Disjunctive Normal Form (DNF). Any formula φ can
be converted into DNF. If φ is not SDNF then by definition
there is a group of conjunctive clauses in φ which map to
true when φ is satisfied. This group of conjunctive clauses

6560

can always be converted into SDNF by extending Eq. (3) to
each conjunctive clause, i.e. replacing x′ by a conjunction
φ′′. Therefore, any WFF can be converted into SDNF. For
example:

(a ∧ b) ∨ (a ∧ c) ≡ (¬(a ∧ b)︸ ︷︷ ︸
¬φ′

∧ (a ∧ c)︸ ︷︷ ︸
φ′′

) ∨ (a ∧ b)︸ ︷︷ ︸
φ′

Conjunctive Normal Form (CNF). Every WFF can be con-
verted into CNF. A CNF is a conjunction of disjunctive
clauses:

φCNF ≡
M∧

m=1

(
∨

t∈Sm
T

¬xt ∨
∨

k∈Sm
K

xk) (5)

We now discuss the transformation of CNFs into restricted
Boltzmann machines. We apply the transformation steps in
Eq. (4) to each conjunctive clause in the CNF. The result is
a conjunction of M SDNFs.

φCNF ≡
M∧

m=1

(
∨

j∈Sm
T ∪Sm

K

(
∧

t∈Sm
T \j

xt ∧
∧

k∈Sm
K \j

¬xk ∧ x′j))

(6)
This transformation increases the space complexity from
O(M ×N) toO(M ×N2)), where M is the number of dis-
junctive clauses andN is the number of variables. This is not
much of a problem for current computer systems, especially
since inference with RBMs can be performed in parallel.

Although the formula in Eq. (6) is not in SDNF form (it
is a conjunction of SDNFs), equivalence between the CNF
and the RBM continues to hold. Let:

sφ =

{
1 when − 1

ϵminhE(x,h) =M

0 otherwise
(7)

The CNF is satisfied if and only if all M SDNFs are sat-
isfied. Under such circumstances, minhE(x,h) = −Mϵ,
otherwise minhE(x,h) = −M ′ϵ where M ′ < M . In the
Reasoning as Lowering Free Energy section, we consol-
idate this result by introducing the concept of confidence
value.

Reasoning in LBMs
We have seen how LBMs are constructed by mapping propo-
sitional logic formulae onto RBMs. In this section, we dis-
cuss inference in LBMs.

Reasoning as Sampling
There is a direct relationship between inference in LBMs
and logical satisfiability, as follows.
Proposition 1. Let N be an LBM constructed from a for-
mula φ. LetA be a set of indices of variables that have been
assigned to either true or false (we use xA to denote the
set {xα|α ∈ A}). Let B be a set of indices of variables that
have not been assigned a truth-value (we use xB to denote
{xβ |β ∈ B}). Performing Gibbs sampling on N given xA
is equivalent to searching for an assignment of truth-values
for xB that satisfies φ.

Proof. (sketch) Theorem 1 showed that the truth-value of φ
is inversely proportional to an LBM’s rank function, that is:
sφ(xB,xA) ∝ −minhE (xB,xA,h). Therefore, a value of
xB that minimises the energy function also maximises the
truth value, because:

x∗
B = argmin

xB

(min
h

E (xB,xA,h)) = argmax
xB

(sφ(xB,xA))

We can use an iterative process to search for truth-values
x∗
B by minimising an LBM’s energy function. This can be

done by using gradient descent to update the values of h and
then xB one at a time (similarly to the Contrastive Diver-
gence algorithm) to minimise E (xB,xA,h) while keeping
the other variables (xA) fixed. The alternating updates are
repeated until convergence. In the case of Gibbs sampling,
given the assigned variables xA, the process starts with a
random initialisation of xB, and proceeds to infer values for
the hidden units hj and then the unassigned variables xβ in
the visible layer of the LBM, using the conditional distribu-
tions hj ∼ p(hj |x) and xβ ∼ p(xβ |h), respectively, where
x = {xA,xB}. These distributions are monotonic functions
of the negative energy’s gradient over h and xB. Therefore,
performing Gibbs sampling on those functions can be seen
as moving towards a local minimum that is equivalent to an
assignment of truth-values that satisfies formula φ.

Since the energy function of the LBM and the satisfiabil-
ity of the formula are inversely proportional, each step of
Gibbs sampling to reduce the energy should intuitively gen-
erate a sample that is closer to satisfying the formula.

Reasoning as Lowering Free Energy
While the energy function of a LBM is intractable, its
free-energy function can be computed analytically as:
F=

∑
j(− log(1+ exp(c

∑
i wijxi + bj))). The free energy

term− log(1+exp(c
∑

i wijxi+ bj)) is a negative softplus
function scaled by a non-negative value c called confidence
value. It returns a negative output for a positive input and a
close-to-zero output for a negative input. The value of c can
be adjusted to make the function smooth.

Each free energy term is associated with a conjunctive
clause in the SDNF through the weighted sum

∑
i wijxi +

bj . Therefore, if a truth-value assignment of x does not sat-
isfy the formula, all energy terms will be close to zero. Oth-
erwise, one free energy term will be − log(1+ exp(cϵ)), for
a choice of 0 < ϵ < 1 obtained from Theorem 1. Thus, the
more likely a truth assignment is to satisfy the formula, the
lower the free energy. Formally:

sφ(x) = −
1

cϵ
minhE(x,h) = lim

c→∞
− 1

cϵ
F(x) (8)

As an example, Figure 1 shows the values of the energy
functions for a CNF with 55 disjunctive clauses. The CNF
is satisfied if and only if all 55 clauses are satisfied. As can
be seen, the relationship is linear. The strong correlation
between the free-energy function and the energy function of
LBMs can increase its reasoning capability in practice. Since
it is tractable, one can employ the free energy to infer logical
variables deterministically.

6561

(a) (c=1) (b) (c=5) (c) (c=10) (d) (c=15)

Figure 1: Linear correlation between satisfiability of a CNF and minimization of the free energy function for various confidence
values c. Minimum energy and free energy values converge with an increasing value of c.

Experimental Results
Reasoning
In this experiment we apply LBM to effectively search for
satisfying truth assignments of variables in large formulae.
Let us define a class of formulae:

φ ≡
M∧
i=1

xi ∧ (
M+N∨
j=M+1

xj) (9)

A formula in this class consists of 2M+N possible truth
assignments of the variables, with 2N − 1 of them mapping
the formula to true (call this the satisfying set). Converting
to SDNF as done before but now for the class of formulae,
we obtain:

φ ≡
M+N∨
j=M+1

(
M∧
i=1

xi ∧
M+N∧
j′=j+1

¬xj′ ∧ xj) (10)

Applying Theorem 1 to construct an LBM from φ, we
use Gibbs sampling to infer the truth values of all variables.
A sample is accepted as a satisfying assignment if its free
energy is lower than or equal to − log(1 + exp(cϵ) with
c = 5, ϵ = 0.5. We evaluate the coverage and accuracy
of accepted samples. Coverage is measured as the propor-
tion of the satisfying set that is accepted. In this experiment,
this is the number of satisfying assignments in the set of ac-
cepted samples divided by 2N − 1. Accuracy is measured as
the percentage of accepted samples that satisfy the formula.

Figure 2: Percentage coverage as sampling progresses with
different values for M and N averaged over 100 runs.

We test different values of M ∈ {20, 25, 30} and N ∈
{3, 4, 5, 6, 7, 8, 9, 10}. LBM achieves 100% accuracy in all

Figure 3: Time taken by LBM to collect all satisfying as-
signments compared with the size of the search space.

cases, meaning that all accepted samples do satisfy the for-
mula. Figure 2 shows the coverage as Gibbs sampling pro-
gresses (after each time that a number of samples is col-
lected). Four cases are considered: M=20 and N=5, M=20
and N=10, M=25 and N=10, M=30 and N=10.

In each case, we run the sampling process 100 times
and report the average results with standard deviations.
The number of samples needed to achieve 100% coverage
is much lower than the number of possible assignments
(2M+N). For example, when M=20, N=10, all satisfying as-
signments are found after ∼ 7.5 million samples are col-
lected, whereas the number of possible assignments is ∼ 1
billion, producing a ratio of sample size to the search space
size of just 0.75%. The ratio for M=30, N=10 is even lower
at 0.37% w.r.t. ∼ 1012 possible assignments. As far as we
know, this is the first study of reasoning in neurosymbolic
systems to produce results with such low ratios.

Figure 3 shows the time needed to collect all satisfying
assignments for different N in {3, 4, 5, 6, 7, 8, 9, 10} with
M = 20. LBM only needs around 10 seconds for N <= 8,
∼ 25 seconds for N = 9, and ∼ 68 seconds for N = 10.
The curve grows exponentially, similarly to the search space
size, but at a much lower scale.

Towards LBM as a SAT Solver
Boolean satisfiability is a long standing challenge in com-
puter science. While symbolic SAT solvers are considerably
more effective, solving SAT problems is still a challenge for
connectionist networks. Early attempts have modified Boltz-
mann machines by adding configurations to the energy func-

6562

(a) c=0.1 (b) c=0.5 (c) c=1 (d) c=5

Figure 4: Free energy function with different confidence values.

tion. Compared to their dense, higher-order structure, LBM
is much simpler. Recent deep learning methods used data
generated from SAT-solvers to train classification models
(Selsam et al. 2019; Wang et al. 2019). LBM is different
in that it only needs to convert the SAT problems into the
RBMs without grounding samples for training.

Formulae in SAT problems are represented in CNF. As
discussed earlier, CNF can be encoded into LBM where the
number of satisfied clauses will be proportional to the min-
imised energy and also to the free-energy. Therefore, we
solve a SAT problem by searching for a minimum of the
free-energy function, thus converting the SAT problem into
a continuous optimisation problem. Instead of searching in
a Boolean space for x ∈ {0, 1} to minimise the free en-
ergy function, we search in a continuous space for θ where
x = σ(θ) = 1/(1 + exp(−θ)). In the following example,
we show the landscape of the LBM for a SAT problem with
2 variables ((¬x1 ∨ ¬x2) ∧ (x1 ∨ ¬x2) ∧ (¬x1 ∨ x2)). Fig-
ure 4 shows the free-energy function for different values of
θs (x1 = σ(θ1), x2 = σ(θ2)). When both θ1 and θ2 are
more negative (x1, x2 ∼ 0), the function is approaching its
minimum. This is also a satisfying assignment of the CNF.
For all the free-energy functions (Figures 4a, 4b, 4c, 4d),
a smaller c would make the landscape smoother but it also
narrows the gap between local minima and global minima.
Higher values for c would raise the boundaries between the
optimal areas, making the global optima search harder.

We use random SAT (Amizadeh, Matusevych, and
Weimer 2019) as a case study and employ off-the-
shelf methods from the optimisation library in SciPy
(https://scipy.org/). Among all the available methods,
dual annealing and differential evolution can solve SAT
problems with up to ∼200 variables using LBM. Although
this is much inferior to symbolic SAT solvers, it is worth
noting that LBM does not have any prior knowledge about
the particular SAT problem. As future work, inference us-
ing LBM can be improved significantly by integrating back-
tracking tactics from symbolic solvers with the differen-
tiable optimisation in LBM.

Learning from Data and Knowledge
We now evaluate LBM at learning the same Inductive
Logic Programming (ILP) benchmark tasks used by neu-

rosymbolic system CILP++ (França, Zaverucha, and Garcez
2014) in comparison with ILP state-of-the-art system Aleph
(Srinivasan 2007). As mentioned earlier, the systems Aleph,
CILP++ and a fully-connected standard RBM were chosen
as the natural symbolic, neurosymbolic and neural system,
respectively, for comparison. An initial LBM is constructed
from the clauses provided as background knowledge. This
process creates one hidden neuron per clause. Further hid-
den neurons are added using random weights for training
and validation from data. Satisfying assignments can be se-
lected from each clause as a training or validation exam-
ple, for instance given clause y ← x1 ∧ ¬x2, assignment
y = true, x1 = true, x2 = false is converted into vector
[x1, x2, y] = (1, 0, 1) for training. Both the LBM and the
standard RBM are trained discriminatively using the con-
ditional distribution p(y|x) for inference (Larochelle et al.
2012). In both cases, all network weights are free parame-
ters for learning, with some weights having been initialized
by the background knowledge in the case of the LBM, such
that the background knowledge can be revised given data.

We carry out experiments on 7 data sets with available
data and background knowledge (BK): Mutagenesis (exam-
ples of molecules tested for mutagenicity and BK provided
in the form of rules describing relationships between atom
bonds) (Srinivasan et al. 1994), KRK (King-Rook versus
King chess endgame with examples provided by the coor-
dinates of the pieces on the board and BK in the form of row
and column differences) (Bain and Muggleton 1995), UW-
CSE (Entity-Relationship diagram with data about students,
courses taken, professors, etc. and BK describing the rela-
tional structure) (Richardson and Domingos 2006), and the
Alzheimer’s benchmark: Amine, Acetyl, Memory and Toxic
(a set of examples for each of four properties of a drug de-
sign for Alzheimer’s disease with BK describing bonds be-
tween the chemical structures) (King, Sternberg, and Srini-
vasan 1995). With the clauses converted into their equivalent
set of preferred models, i.e. vectors, and combined with the
available data, for Mutagenesis and KRK, 2.5% of the data
is used to build the initial LBM. For the larger data sets UW-
CSE and Alzheimer’s, 10% of the data is used as BK. The
remaining data are used for training and validation based on
10-fold cross validation for each data set, except for UW-
CSE which uses 5 folds (for the sake of comparison). Re-

6563

sults are shown in Table 1. It can be seen that LBM has the
best performance in 5 out of 7 data sets. Some of the results
of the LBM and RBM are comparable when the BK can be
learned from the examples, as in the case of the Alzheimer’s
amine data set. Aleph is better than all other models in the
alz-acetyl data set. This task probably relies more heavily on
the correctness of the BK than the data.

Aleph CILP++ RBM LBM
Mutagenesis 80.85

±10.5
91.70
±5.84

95.55
±1.36

96.28
±1.21

KRK 99.60
±0.51

98.42
±1.26

99.70
±0.11

99.80
±0.09

UW-CSE 84.91
±7.32

70.01
±2.2

89.14
±0.46

89.43
±0.42

alz-amine 78.71
±5.25

78.99
±4.46

79.13
±1.14

78.25
±1.07

alz-acetyl 69.46
±3.6

65.47
±2.43

62.93
±0.31

66.82
±0.28

alz-memory 68.57
±5.7

60.44
±4.11

68.54
±0.97

71.84
±0.88

alz-toxic 80.50
±3.98

81.73
±4.68

82.71
±1.18

84.95
±1.04

Table 1: Cross-validation performance of LBM against
purely-symbolic system Aleph, neurosymbolic system
CILP++ and a standard RBM on 7 benchmark data sets for
neurosymbolic AI. We run cross-validation on RBM and
LBM 100 times and report the average results with 95% con-
fidence interval.

Integration of Learning and Reasoning
Finally, we integrate LBM as a logical layer on top of
deep networks applied to a semantic image interpretation
task: to predict the relations between objects and their parts
in images. Our knowledge base consists of symbolic facts
such as “an object type is part of another object type”, e.g.
pt(“screen”, “tvmonitor”) (a tv screen is part (pt) of a tv
monitor), and a formula for the part-of relation (po):
(po(X1, X2)↔ pt(T1, T2))← type(X1, T1) ∧ type(X2, T2)

where X1, X2 are real-valued variables representing visual
features of objects, and T1, T2 are symbolic variables rep-
resenting object types. Predicate type is true when a visual
object is of a given type. Predicate pt is true when a type
is part of another type. Predicate po states that an object is
part of another object. The intended meaning of the formula
is that “if object 1 has type 1 and object 2 has type 2 then
the part-of relation between the two objects is the same as
the relation between the two object types”.

We characterise the predicates as functions from a set el-
ement to a truth value. In particular, we use faster RCNN
to extract features from object images, from which we build
two Neural Network Regressors (NNR) N type and N po as
functions for type and po respectively, as done in (Don-
adello, Serafini, and d’Avila Garcez 2017). We use an auto-
encoder N pt for the symbolic facts as a function for pt,
as done in (Tran 2021). We replace the predicates in the
above formula by corresponding propositions with values
true/false obtained from the functions, and apply Eq. (3)
to convert the formula to SDNF:

(ppo ↔ ppt)← (pt1 ∧ pt2) ≡ (ppo ∧ ppt ∧ pt1 ∧ pt2)

∨ (¬ppo ∧ ¬ppt ∧ pt1 ∧ pt2) ∨ (¬pt1 ∧ pt2) ∨ ¬pt2

where ppo = N po(X1, X2), ppt = N pt(T1, T2), pt1 =
N type(X1, T1), pt2 = N type(X2, T2). From this SDNF,
we build a LBM as the logical layer on top of the neural
networks. By using LBM we take advantage of its reason-
ing capability during learning by backpropagating inferred
knowledge to update the functions. In particular, we train
the entire system by minimising the following cost function:

||Npo
(x1, x2) − LBM(p

po|K(x1, x2)||22+

||[N type
(x1, t1),N type

(x2, t2)] − LBM(p
t1 , p

t2 |K(x1, x2))||22

where x1, x2,K(x1, x2) are drawn from the training
data. K(x1, x2) is the knowledge involving x1, x2, i.e. the
types of x1, x2, and whether x1 is part of x2. We use
LBM(ppo|K(x1, x2)) and LBM(pt1 , pt2 |K(x1, x2)) to de-
note the application of LBM to infer ppo and the pair
[pt1 , pt2], respectively. The first optimisation term above
leverages Modus-Ponens reasoning from the LBM to infer
ppo and updateN po. For example, given x1 = , x2 = ,
and assume we do not know if x1 is part of x2, but if we
draw from the data and knowledge base that K(x1, x2) =
{type(x1, “screen”) ≡ true, type(x2, “tvmonitor”) ≡
true} then the LBM can infer that ppo is true (because
“screen” is part of “tvmonitor”) and update N po. Similarly,
the second term leverages Modus-Tollens to use the type of
objects for updating N type.

We compare this LBM-based model with three neurosym-
bolic systems, including DLN (Tran and Garcez 2018), LTN
(Donadello, Serafini, and d’Avila Garcez 2017; Badreddine
et al. 2022) and CNLP (Tran 2021). The data set for this ex-
periment is the same as in (Donadello, Serafini, and d’Avila
Garcez 2017) with the exception of the above formula for
po. The Area Under the Curve (AUC) results in Table 2
show the effectiveness of the LBM-based model with higher
performance in the prediction of the part-of relation as a re-
sult of the end-to-end learning and reasoning. For the ob-
ject type prediction, the RBM-based model is comparable to
CNLP and better than DLN and LTN.

Object type (AUC) Part-of (AUC)
DLN 0.791± 0.032 0.605± 0.024
CNLP 0.816± 0.004 0.644± 0.015
LTN 0.800 0.598

LBM-based model 0.828± 0.002 0.645± 0.027

Table 2: AUC for semantic image interpretation.

Conclusion and Future Work
We introduced an approach and neurosymbolic system for
reasoning with knowledge in energy-based neural networks.
We showed equivalence between propositional logic and
RBMs. The findings led to a system, named Logical Boltz-
mann Machines, integrating learning and reasoning in neural
networks with improved performance. Future work will fo-
cus on scaling up applications to SAT and end-to-end learn-
ing and reasoning. Extensions include the use of probabilis-
tic programming with weighted clauses in comparison with
our confidence values in probabilistic learning tasks.

6564

References
Amizadeh, S.; Matusevych, S.; and Weimer, M. 2019.
Learning To Solve Circuit-SAT: An Unsupervised Differen-
tiable Approach. In ICLR.
Badreddine, S.; d’Avila Garcez, A.; Serafini, L.; and
Spranger, M. 2022. Logic Tensor Networks. Artificial In-
telligence, 303: 103649.
Bain, M.; and Muggleton, S. 1995. Machine Intelligence
13. chapter Learning Optimal Chess Strategies, 291–309.
New York, NY, USA: Oxford University Press, Inc. ISBN
0-19-853850-2.
Cohen, W. W.; Yang, F.; and Mazaitis, K. 2017. Ten-
sorLog: Deep Learning Meets Probabilistic DBs. CoRR,
abs/1707.05390.
d’Anjou, A.; Graña, M.; Torrealdea, F. J.; and Hernandez,
M. C. 1993. Solving Satisfiability Via Boltzmann Machines.
IEEE Trans. Pattern Anal. Mach. Intell., 15(5): 514–521.
d’Avila Garcez, A.; and Lamb, L. C. 2020. Neurosymbolic
AI: The 3rd Wave. arXiv:2012.05876.
Donadello, I.; Serafini, L.; and d’Avila Garcez, A. S. 2017.
Logic Tensor Networks for Semantic Image Interpretation.
In IJCAI-17, 1596–1602.
Evans, R.; and Grefenstette, E. 2018. Learning Explanatory
Rules from Noisy Data. JAIR, 61: 1–64.
França, M.; Zaverucha, G.; and Garcez, A. 2014. Fast re-
lational learning using bottom clause propositionalization
with artificial neural networks. Mach. Learning, 94(1): 81–
104.
Garcez, A.; Broda, K.; and Gabbay, D. 2001. Sym-
bolic knowledge extraction from trained neural networks: A
sound approach. Artif. Intel., 125(1–2): 155–207.
Hernandez, C.; Albizuri, F.; DAnjou, A.; Graña, M.; and
Torrealdea, F. 2001. EFFICIENT SOLUTION OF MAX-
SAT AND SAT VIA HIGHER ORDER BOLTZMANN. Re-
vista Investigación Operacional, 22.
King, R. D.; Sternberg, M. J. E.; and Srinivasan, A. 1995.
Relating chemical activity to structure: An examination of
ILP successes. New Generation Computing, 13(3).
Larochelle, H.; Mandel, M.; Pascanu, R.; and Bengio, Y.
2012. Learning Algorithms for the Classification Restricted
Boltzmann Machine. J. Mach. Learn. Res., 13(1): 643–669.
Manhaeve, R.; Dumancic, S.; Kimmig, A.; Demeester, T.;
and De Raedt, L. 2018. DeepProbLog: Neural Probabilistic
Logic Programming. In Bengio, S.; Wallach, H.; Larochelle,
H.; Grauman, K.; Cesa-Bianchi, N.; and Garnett, R., eds.,
Advances in Neural Information Processing Systems 31,
3749–3759. Curran Associates, Inc.
Penning, L. d.; Garcez, A. d.; Lamb, L.; and Meyer, J.-
J. 2011. A Neural-Symbolic Cognitive Agent for Online
Learning and Reasoning. In IJCAI, 1653–1658.
Pinkas, G. 1991. Symmetric Neural Networks and Proposi-
tional Logic Satisfiability. Neural Comput., 3(2): 282–291.
Pinkas, G. 1995. Reasoning, nonmonotonicity and learning
in connectionist networks that capture propositional knowl-
edge. Artif. Intell., 77(2): 203–247.

Richardson, M.; and Domingos, P. 2006. Markov logic net-
works. Mach. Learn., 62(1-2): 107–136.
Selsam, D.; Lamm, M.; Bünz, B.; Liang, P.; de Moura, L.;
and Dill, D. L. 2019. Learning a SAT Solver from Single-
Bit Supervision. In International Conference on Learning
Representations.
Serafini, L.; and d’Avila Garcez, A. S. 2016. Learning and
Reasoning with Logic Tensor Networks. In AI*IA, 334–348.
ISBN 978-3-319-49129-5.
Smolensky, P. 1995. Constituent Structure and Explanation
in an Integrated Connectionist/Symbolic Cognitive Archi-
tecture. In Connectionism: Debates on Psychological Ex-
planation.
Srinivasan, A. 2007. The Aleph Manual. http://www.cs.
ox.ac.uk/activities/machlearn/Aleph/aleph.html. Accessed:
2021-01-23.
Srinivasan, A.; Muggleton, S. H.; King, R.; and Stern-
berg, M. 1994. Mutagenesis: ILP experiments in a non-
determinate biological domain. In Proceedings of the 4th
International Workshop on Inductive Logic Programming,
volume 237 of GMD-Studien, 217–232.
Towell, G.; and Shavlik, J. 1994. Knowledge-Based Artifi-
cial Neural Networks. Artif. Intel., 70: 119–165.
Tran, S.; and Garcez, A. 2018. Deep Logic Networks: Insert-
ing and Extracting Knowledge From Deep Belief Networks.
IEEE T. Neur. Net. Learning Syst., (29): 246–258.
Tran, S. N. 2021. Compositional Neural Logic Program-
ming. In Zhou, Z.-H., ed., Proceedings of the Thirtieth Inter-
national Joint Conference on Artificial Intelligence, IJCAI-
21, 3059–3066. International Joint Conferences on Artificial
Intelligence Organization. Main Track.
Wang, P.; Donti, P. L.; Wilder, B.; and Kolter, J. Z. 2019.
SATNet: Bridging deep learning and logical reasoning using
a differentiable satisfiability solver. CoRR, abs/1905.12149.
Yang, F.; Yang, Z.; and Cohen, W. W. 2017. Differentiable
Learning of Logical Rules for Knowledge Base Reasoning.
In Guyon, I.; Luxburg, U. V.; Bengio, S.; Wallach, H.; Fer-
gus, R.; Vishwanathan, S.; and Garnett, R., eds., Advances
in Neural Information Processing Systems 30, 2319–2328.
Curran Associates, Inc.

6565

