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Abstract

The ability to efficiently solve hard combinatorial optimiza-
tion problems is a key prerequisite to various applications
of declarative programming paradigms. Symmetries in solu-
tion candidates pose a significant challenge to modern op-
timization algorithms since the enumeration of such candi-
dates might substantially reduce their optimization perfor-
mance. This paper proposes a novel approach using Induc-
tive Logic Programming (ILP) to lift symmetry-breaking con-
straints for optimization problems modeled in Answer Set
Programming (ASP). Given an ASP encoding with optimiza-
tion statements and a set of small representative instances,
our method augments ground ASP programs with auxiliary
normal rules enabling the identification of symmetries using
existing tools, like SBASS. Then, the obtained symmetries are
lifted to first-order constraints with ILP. We prove the correct-
ness of our method and evaluate it on real-world optimization
problems from the domain of automated configuration. Our
experiments show significant improvements of optimization
performance due to the learned first-order constraints.

Introduction
Combinatorial optimization problems appear in various
practical applications, including transportation, manufactur-
ing, healthcare, or power generation and distribution. An ef-
ficient and elegant approach to tackle these problems is to
model them in a declarative programming paradigm such
as Answer Set Programming (ASP) (Lifschitz 2019). How-
ever, finding optimal solutions to the vast majority of real-
world problems is challenging since their search spaces in-
clude many symmetric solution candidates, i.e., an isomor-
phic candidate can be obtained by permuting elements of a
known solution. Therefore, to be effective, the problem en-
coding must include symmetry-breaking constraints (SBCs)
that prune the search space of solution candidates by re-
moving symmetric ones. In the recent decades, several tech-
niques have been designed to improve performance by au-
tomatically identifying and discarding redundant solutions
(Margot 2010; Sakallah 2009; Walsh 2012), based on em-
bedding symmetry breaking in search algorithms or adding
SBCs to a given problem encoding or instance, respectively.
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In the context of ASP, Drescher, Tifrea, and Walsh (2011)
suggested an instance-specific approach to symmetry break-
ing, called SBASS. This approach identifies symmetries of
a ground ASP program by (i) representing the input pro-
gram as a colored graph, (ii) finding symmetric vertex per-
mutations in the graph using SAUCY (Codenotti et al. 2013;
Darga et al. 2004), and (iii) constructing ground SBCs from
the permutations. Recently, Tarzariol, Gebser, and Schekoti-
hin (2021) suggested an approach that learns first-order con-
straints by lifting ground SBCs of SBASS using Inductive
Logic Programming (ILP) (Cropper, Dumančić, and Mug-
gleton 2020). Their method applies SBASS to a set of repre-
sentative problem instances and then uses the obtained per-
mutations to define an ILP task. The learning phase returns
a set of first-order constraints that remove symmetric solu-
tions (classified as negative examples) while preserving the
representative solutions (positive examples).

The main shortcoming of existing methods (Tarzariol,
Gebser, and Schekotihin 2022; Tarzariol et al. 2022), which
learn constraints from SBCs of ASP programs, is their in-
ability to deal with optimization statements. A solver uses
the latter to assign a weight to every solution while search-
ing for a solution with the minimal weight. Consequently,
two solution candidates symmetric in the absence of opti-
mization statements may give rise to different optimization
values in their presence. If a non-optimal solution happens
to be lexicographically smallest and is taken as a witness
by previous methods to discard symmetric solutions, then
learned constraints might preclude a solver from finding op-
timal solutions.

In this paper, we extend the learning approaches of Tarzar-
iol et al. (2022); Tarzariol, Gebser, and Schekotihin (2022)
to optimization problems and make the following contribu-
tions:
• We propose a method that augments a ground ASP pro-

gram P with auxiliary rules, OP , that do not change the
solutions but tighten the applicable symmetries for op-
timization problems. We prove that SBASS on P ∪ OP
partitions solutions of P in a way that respects their qual-
ity determined by optimization statements. That is, each
cell of the partition is guaranteed to consist of symmetric
solutions sharing the same optimization value.

• We enhance the previous learning approaches to support
the learning of effective first-order constraints for opti-
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mization problems.
• Lastly, we test the proposed framework on combinatorial

configuration problems incorporating optimization state-
ments. Our results show that the learning performance is
comparable between ILP tasks defined with or without
taking optimization statements into account. Moreover,
the learned first-order constraints prune the symmetries
of optimization problems and thus speed up the compu-
tation of (representative) optimal solutions.

Background
Answer Set Programming
Answer Set Programming (ASP) is a declarative program-
ming paradigm based on non-monotonic reasoning and the
stable model semantics (Gelfond and Lifschitz 1991). We
briefly present the syntax and semantics of ASP, and refer
the reader to (Gebser et al. 2012; Lifschitz 2019) for details.

Syntax. An ASP program P is a finite set of (normal)
rules r of the form:

a0 ← a1, . . . , am,not am+1, . . . , not an.

where not stands for default negation and ai, for 0 ≤ i ≤ n,
are atoms. An atom is an expression of the form p(t), where
p is a predicate, t is a possibly empty vector of terms, and
the predicate ⊥ (with an empty vector of terms) represents
the constant false. Each term t in t is either a variable or a
constant. A literal l is an atom ai (positive) or its negation
not ai (negative). The atom a0 is the head of rule r, denoted
by H(r) = a0, and the body of r includes the positive or
negative, respectively, body atoms B+(r) = {a1, . . . , am}
and B−(r) = {am+1, . . . , an}. The rule r is called a fact
if B+(r) ∪ B−(r) = ∅, and a constraint if H(r) = ⊥. As
syntactic sugar, we admit writing choice rules c of the form:

b{a1; . . . ; ak}u← ak+1, . . . , am,not am+1, . . . , not an.

where ai, for 1 ≤ i ≤ n, are atoms, and b and u are non-
negative integers, which default to 0 or k, respectively. The
set H(c) = {a1, . . . , ak} is the head of choice rule c. We
can extend an ASP program with optimization statements or
weak constraints. A weak constraint has the following form:

:∼ a1, . . . , am,not am+1, . . . , not an. [w@p, t]

where ai, for 1 ≤ i ≤ n, are atoms, w and p are integers
representing the weight and priority level of the weak con-
straint, and t is a tuple of terms.

Semantics. The semantics of an ASP program P is given
in terms of its ground instantiation Pgrd , obtained by map-
ping each rule r ∈ P to ground instances producible by
substituting the variables in r with constants occurring in P ,
and likewise for choice rules and weak constraints. Then, an
interpretation I is a set of (true) ground atoms occurring in
Pgrd that does not contain ⊥. An interpretation I satisfies a
rule r ∈ Pgrd (or choice rule c ∈ Pgrd ) if B+(r) ⊆ I (or
B+(c) ⊆ I) and B−(r) ∩ I = ∅ (or B−(c) ∩ I = ∅) imply
H(r) ∈ I (or b ≤ |H(c) ∩ I| ≤ u). The interpretation I is
a model of P if it satisfies all rules r ∈ Pgrd and all choice

rules c ∈ Pgrd , and I is stable if it is a subset-minimal model
of the reduct {H(r)← B+(r) | r ∈ Pgrd , B

−(r) ∩ I = ∅}
∪{a0 ← B+(c) | c ∈ Pgrd , B

−(c)∩I = ∅, a0 ∈ H(c)∩I}.
We denote the set of all stable models, also called an-
swer sets, of P by AS (P ). Weak constraints in P do not
change AS (P ), but induce a preference among answer sets.
If {a1, . . . , am} ⊆ I and {am+1, . . . , an} ∩ I = ∅ for a
(ground) weak constraint in Pgrd , the vector t of terms is as-
sociated with the weight w at priority level p. Summing the
weights w of term tuples t at each priority level p yields a
vector of integers, where an optimal answer sets incurs the
smallest sum of weights at the highest priority level, then at
the second highest priority level in case of a tie, and so on.
Example 1. Let us consider the (ground) ASP program P1:

1 {a;b;c} 1.
:∼ a. [3@1] :∼ b. [2@1] :∼ c. [3@1]

The choice rule in the first line gives rise to three answer
sets, namely AS (P1) = {{a}, {b}, {c}}. Three weak con-
straints in the second line attribute the weight 3 to answer
sets including a or c, and 2 to an answer set comprising b.
Hence, the optimal answer set {b} yields the smallest sum
2 of weights at the single priority level 1.

Smodels Format. In the smodels format (Syrjänen
2001) for ground ASP programs, a weak constraint is ex-
pressed in terms of a single atom a that, if contained in an
interpretation, accounts for the weight w at priority level p.1
Thus, we denote by weak(P ) the set of all triples 〈w, p, a〉
standing for weak constraints in the smodels format rep-
resentation of a (ground) ASP program P . Without loss of
generality, we assume that levels p are denoted by consecu-
tive integers from 1 up to the number of distinct priority lev-
els, and also that there is at most one weight w per atom a at
the same level p, since multiple weights can be summed up.

Inductive Logic Programming
Inductive Logic Programming (ILP) is a form of machine
learning whose goal is to learn a logic program that explains
a set of observations in the context of some pre-existing
knowledge (Cropper, Dumančić, and Muggleton 2020). A
learning task is given by a triple 〈B,E,HM 〉, where an
ASP program B defines the background knowledge, the set
E comprises two disjoint subsetsE+ andE− of positive and
negative examples, and the hypothesis space HM is defined
by a language bias M , which limits the potentially learnable
rules. The most expressive ILP system for ASP is Inductive
Learning of Answer Set Programs (ILASP), which can solve
a variety of ILP tasks (Law, Russo, and Broda 2014, 2015).
Each example e ∈ E is a pair 〈epi , C〉 called Context Depen-
dent Partial Interpretation (CDPI), where (i) epi is a Partial
Interpretation (PI) defined as pair of sets of atoms 〈T, F 〉,
called inclusions (T ) and exclusions (F ), respectively, and
(ii) C is an ASP program defining the context of PI epi . A

1To be precise, weights w are always positive in the smodels
format, while a (single) negative literal not a may be associated
with w. In the latter case, we here consider an equivalent repre-
sentation in terms of the atom a and negative weight −w. While
positive weights express penalties, negative ones can be viewed as
rewards, and weak constraints with weight w = 0 may be dropped.
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(total) interpretation I extends epi if T ⊆ I and F ∩ I = ∅.
Given an ASP program P , an interpretation I, and a CDPI
e = 〈epi , C〉, we say that I is an accepting answer set of e
with respect to P if I ∈ AS (P ∪C) such that I extends epi .

Each hypothesis H ⊆ HM learned by ILASP must re-
spect the following criteria: (i) for each positive example
e ∈ E+, there is some accepting answer set of ewith respect
to B ∪H; and (ii) for any negative example e ∈ E−, there
is no accepting answer set of e with respect to B ∪H . Law,
Russo, and Broda (2018) extend the expressiveness of ILASP
by allowing noisy examples. In this setting, if an example e
is not covered (i.e., there is an accepting answer set for e
if e is negative, or none if e is positive), the corresponding
weight is taken as penalty. The learning task thus becomes
an optimization problem with two objectives: minimize the
size of H as well as the penalties for uncovered examples.

Inductive Learning from Symmetries
Tarzariol, Gebser, and Schekotihin (2021) presented an ap-
proach to lift ground SBCs for ASP programs using ILP.
Their system takes four kinds of inputs: (i) an ASP pro-
gram P modeling a combinatorial problem; (ii) two sets S
and Gen of small yet representative satisfiable instances of
the problem to be solved using P ; (iii) a hypothesis space
HM ; and (iv) an Active Background Knowledge ABK ,
i.e., an ASP program comprising auxiliary predicate defi-
nitions and constraints learned so far. For each instance g
from the generalization set Gen , a general positive exam-
ple 〈〈∅, ∅〉, g〉 with empty inclusions and exclusions requires
learned constraints to preserve some answer set, in order to
increase the likelihood that the learned constraints gener-
alize beyond the training examples. Each instance i from
the training set S is grounded together with P and then
passed to SBASS for identifying its symmetries, denoted by
Π(i). Such symmetries are represented as a set of permu-
tation group generators (also called permutations) charac-
terizing groups of symmetric answer sets for the analyzed
ground program. The framework by Tarzariol, Gebser, and
Schekotihin (2021) uses this information to define the posi-
tive and negative examples for an ILP task solved by apply-
ing ILASP. The negative examples, corresponding to sym-
metric answer sets that can be mapped to a lexicographically
smaller representative by means of the permutations in Π(i),
are associated with weights, so that as many, but not neces-
sarily all of them are to be eliminated by learned constraints.

In subsequent work, Tarzariol, Gebser, and Schekotihin
(2022) investigate four approaches to generate training ex-
amples for ground programs Pi, obtained by instantiat-
ing P with the instances i ∈ S. In particular, the full-
SBCs approach exploits the CLINGO API (Gebser et al.
2019) to interleave the computation of candidate answer sets
I ∈ AS (Pi) with the analysis of their symmetric solutions.
Exploiting the properties of permutation groups (Sakallah
2009), full-SBCs determines all symmetric answer sets by
repeatedly applying the permutations in Π(i) to I. This
leads to a partition of the answer sets in AS (Pi) whose
cells gather symmetric solutions. For each obtained cell,
full-SBCs labels the lexicographically smallest answer set as
a positive example and all remaining ones as negative ex-

amples. Letting atoms(Π(i)) denote the set of atoms occur-
ring in Π(i), an example consists of I ∩ atoms(Π(i)) and
atoms(Π(i)) \ I as inclusions or exclusions, respectively,
and the context is the instance i.

Example 2. Reconsider the program P1 introduced in Ex-
ample 1. When SBASS is run to analyze the choice rule in the
first line of P1, it determines permutations yielding that the
answer sets in AS (P1) = {{a}, {b}, {c}} are symmetric.
Hence, starting from either {a}, {b}, or {c} as the first so-
lution found, the full-SBCs approach produces the remaining
two answer sets and includes all three in a single cell. Taking
the lexicographically smallest answer set, {a}, as the rep-
resentative for the cell, 〈〈{a}, {b,c}〉, P1〉 is classified as
positive, while 〈〈{b}, {a,c}〉, P1〉 and 〈〈{c}, {a,b}〉, P1〉
are negative examples. That is, ILASP’s task is to learn some
constraint(s), e.g., :- not a., such that the optimal answer
set {b} with the smallest sum 2 of weights gets eliminated.

Tarzariol, Gebser, and Schekotihin (2022) evaluate their
methods on variants of the pigeon-hole problem and the
house-configuration problem (Friedrich et al. 2011). In
(Tarzariol et al. 2022), the authors extend their framework
further to address complex application problems such as
the Partner Units Problem (Aschinger et al. 2011; Teppan,
Friedrich, and Gottlob 2016), where small yet representative
training instances S are unavailable. To this end, the scal-
able full-SBCs approach is parametrized to sample (at most)
n cells from the partition of AS (Pi), thus limiting the exam-
ples to be included in an ILP task for ILASP to a manageable
amount when all solutions are out of reach.

Symmetries for Optimization Problems
In view of lacking support for weak constraints by SBASS,
we aim to introduce a set of auxiliary rules, OP , charac-
terizing the solution quality determined by weak constraints
in a ground ASP program P . The new program part OP is
devised to be stratified (Przymusinski 1988) and define aux-
iliary atoms that do not occur in P , so that OP is a con-
servative extension (Lifschitz and Turner 1994) for which
AS (P ∪OP ) and AS (P ) are in one-to-one correspondence.

In the following, we consider ground ASP programs P in
smodels format and let j denote the number of distinct pri-
ority levels incorporated in weak(P ). Then, for 1 ≤ p ≤ j,
Wp = {w | 〈w, p, a〉 ∈ weak(P ), w 6= 0} is the set
of (non-zero) weights in weak constraints at level p, and
Awp = {a | 〈w, p, a〉 ∈ weak(P )} is the set of atoms with
the weight w ∈ Wp at p. The basic idea for the rules in OP
is to, for 1 ≤ p ≤ j, w ∈ Wp, and i = |{w′ ∈ Wp |
w′ ≤ w}| +

∑
1≤p′<p |Wp′ |, define a fresh auxiliary atom

oi by (normal) rules oi ← a., for all a ∈ Awp , along with
oi ← oi−1. if i > 1. This construction introduces auxiliary
atoms oi for 1 ≤ i ≤ k, where k =

∑
1≤p≤j |Wp|, and con-

nects program atoms a ∈ Awp as well as oi−1, if i > 1, to oi
by directed edges in (a simplified version of) the dependency
graph used by SBASS to identify symmetries. Since a sym-
metry π is a permutation of atoms such that the dependency
graph contains an edge from π(a) to π(b) if and only if a has
an edge to b, π preserves the structure of paths. Hence, any
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a b c
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(a) Dependency graph of P1.

a b c

o1 o2

(b) Dependency graph of P1∪OP1 .

Figure 1: Dependency graphs for programs in Example 3.

mapping such that π(oi) = oi′ 6= oi is no symmetry, as the
paths from oi and oi′ = π(oi) to ok are of different lengths.
Example 3. Reconsider the program P1 introduced in Ex-
ample 1. Figure 1(a) illustrates the dependency graph re-
sulting from the choice rule in the first line of P1, while
weak constraints and the indicated weights of atoms are not
taken into account by SBASS. Hence, each permutation of
the atoms a, b, and c yields a symmetry, and the three sym-
metric atoms are highlighted in blue. By adding the rules

o2 :- a. o2 :- c. o2 :- o1. o1 :- b.
asOP1

to P1, we obtain the dependency graph in Figure 1(b)
for P1 ∪ OP1

. Now only the atoms a and c with the same
weight 3 are symmetric, as both are connected to the auxil-
iary atom o2. The atom b with the weight 2 is connected to
o1 instead, and the graph structure makes sure that symme-
tries of P1 ∪OP1 map b as well as o1 and o2 to themselves.

While the rules in OP are constructed such that auxiliary
atoms oi cannot be swapped with each other by symmetries,
it can still happen that program atoms from weak constraints
interact in a way making them symmetric to oi for P ∪OP .
Example 4. Consider the program and auxililiary rules
P2 ∪ OP2 that yield the dependency graph in Figure 2(a):

P2:

{a}.
b :- a.
:∼ b. [2@1]
:∼ a. [1@1]

OP2
:

o2 :- b.
o2 :- o1.
o1 :- a.

In view of corresponding incoming and outgoing edges, the
program atom b and the auxiliary atom o1 can be swapped
by a symmetry, thus mixing the original with introduced
atoms. In order to avoid such phenomena, let us include an
additional auxiliary atom o0 along with the rules

o1 :- o0. o0 :- a. o0 :- b.
connecting o0 to o1 as well as all program atoms from weak
constraints, regardless of their weights and priority levels, to
o0. The resulting dependency graph in Figure 2(b) disam-
biguates the program atoms that are subject to weak con-
straints from auxiliary atoms oi, since the former have non-
trivial paths to each oi, including o0, while at least one such
non-trivial path is missing when starting from any atom oi.

The following definition generalizes the idea in Exam-
ple 4 to construct OP using an additional auxiliary atom o0.
Definition 1. Let P be a ground ASP program in smodels
format. The auxiliary rules OP for P with fresh auxiliary
atoms o0, . . . , ok, where k =

∑
1≤p≤j |Wp|, are defined as:

OP =

o0 ← a.
oi ← a.
oi ← oi−1.

∣∣∣∣∣∣
1 ≤ p ≤ j, w ∈ Wp, a ∈ Awp ,
i = |{w′ ∈ Wp | w′ ≤ w}|

+
∑

1≤p′<p |Wp′ |



a b

o1 o2

(a) Dependency graph of P2∪OP2 .

a b

o1 o2o0

(b) Dependency graph with o0.

Figure 2: Dependency graphs illustrating the addition of o0.

To characterize the properties of auxiliary rules, given a
symmetry π = (a11 a21 . . . an1

) . . . (a1m a2m . . . anm
) of

P in cycle notation, let C(π) = {{a11 , a21 , . . . , an1
}, . . . ,

{a1m , a2m , . . . , anm
}} denote the sets of atoms belonging

to (non-trivial) cycles in π. Then, the first property of inter-
est is that the auxiliary atoms o0, . . . , ok can neither occur
jointly nor share any cycle with program atoms from weak
constraints in symmetries for P ∪ OP , where the introduc-
tion of o0 is crucial for the latter condition to hold.
Proposition 1. Let P be a ground ASP program in
smodels format and π be a symmetry of P ∪OP . Then, for
any C ∈ C(π), we have that C ∩ {o0, . . . , ok} = ∅ or |C ∩
({a | 1 ≤ p ≤ j, w ∈ Wp, a ∈ Awp } ∪ {o0, . . . , ok})| = 1.

Proof. Assume that C ∩{o0, . . . , ok} 6= ∅. By the construc-
tion of OP , each oi ∈ {o0, . . . , ok} has a single path of
length k−i to ok in the dependency graph of P∪OP . Hence,
any permutation π′ such that π′(oi) = oi′ 6= oi is not a sym-
metry of P ∪ OP , which implies that C ∩ {o0, . . . , ok} =
{oi} for some 0 ≤ i ≤ k. Moreover, any atom b ∈ {a |
1 ≤ p ≤ j, w ∈ Wp, a ∈ Awp } has a path of length
k + 1 > k − i to ok in the dependency graph of P ∪OP , so
that any permutation π′ such that π′(b) = oi is not a symme-
try of P ∪OP . Thus, we conclude that C ∩ ({a | 1 ≤ p ≤ j,
w ∈ Wp, a ∈ Awp } ∪ {o0, . . . , ok}) = {oi}.

As the auxiliary atoms o0, . . . , ok are on a path in the de-
pendency graph of P∪OP , a symmetry π of P∪OP contains
either zero or k cyclesC ∈ C(π) withC∩{o0, . . . , ok} 6= ∅.
In the latter case that there are k such cycles, π reproduces
the structure of the conservative extension to P made byOP .
However, when, e.g., augmenting the program P2 in Exam-
ple 4 with new atoms and rules mimicking the structure of
the dependency graph in Figure 2(b), a symmetry may map
a and b to new atoms that are not subject to weak constraints.
Hence, symmetries of P ∪OP such that o0, . . . , ok belong to
(non-trivial) cycles should not be taken as symmetries of P .

As shown in the following, when symmetries of P ∪ OP
map the auxiliary atoms o0, . . . , ok to themselves, they are
guaranteed to preserve the sum(s) of weights determined by
weak(P ) for symmetric answer sets.
Theorem 1. Let P be a ground ASP program in smodels
format and π be a symmetry of P such that {o0, . . . , ok} ∩⋃
C∈C(π) C = ∅. Then, π is a symmetry of P ∪ OP if and

only if C ∩ Awp = ∅ or C ∩ Awp = C for any C ∈ C(π),
priority level 1 ≤ p ≤ j, and weight w ∈ Wp.

Proof. (⇒) Assume that ∅ ⊂ C ∩ Awp ⊂ C for some C ∈
C(π), priority level 1 ≤ p ≤ j, and weight w ∈ Wp. Then,
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for i = |{w′ ∈ Wp | w′ ≤ w}| +
∑

1≤p′<p |Wp′ |, there
is some atom a ∈ C such that oi ← a. is contained in OP ,
but not oi ← π(a). That is, the dependency graph of P ∪
OP contains an edge from a to oi, but π(a) has no edge to
π(oi) = oi, so that π is not a symmetry of P ∪OP .

(⇐) Assume that π is not a symmetry of P ∪ OP . Then,
there is some oi ∈ {o1, . . . , ok} and C ∈ C(π) with an
atom a ∈ C such that oi ← a. is contained in OP , but
not oi ← π(a). That is, for p = min{p′′ | 1 ≤ p′′ ≤ j,
i ≤

∑
1≤p′≤p′′ |Wp′ |} and w = min{w′′ ∈ Wp | i ≤

|{w′ ∈ Wp | w′ ≤ w′′}| +
∑

1≤p′<p |Wp′ |}, we have that
∅ ⊂ {a} ⊆ C ∩ Awp ⊆ C \ {π(a)} ⊂ C.

Corollary 1. Let P be a ground ASP program in smodels
format and π be a symmetry of P ∪ OP such that {o0, . . . ,
ok} ∩

⋃
C∈C(π) C = ∅. Then, for any interpretation I and

priority level 1 ≤ p ≤ j, we have that
∑
w∈Wp,a∈Aw

p ∩I
w =∑

w∈Wp,a′∈Aw
p ∩{π(a)|a∈I}

w.

Corollary 1 is obtained from the fact that, given {o0, . . . ,
ok} ∩

⋃
C∈C(π) C = ∅, any symmetry π of P ∪OP is like-

wise a symmetry of P , while Theorem 1 establishes that π
cannot permute any atoms with diverging levels or weights.
Hence, symmetries identified on P ∪ OP can be applied
to the original program P without affecting the sum(s) of
weights determined by weak constraints in P . In general,
the rules in OP separate atoms having syntactically dif-
ferent occurrences in optimization statements, where weak
constraints constitute standard expressions (Calimeri et al.
2019) for which ASP systems provide built-in support. Since
our symmetry breaking approach is syntactic, other pro-
posed forms of optimization statements like, e.g., Answer
Set Optimization (ASO) programs (Brewka, Niemelä, and
Truszczyński 2003) and Logic Programs with Ordered Dis-
junction (LPODs) (Brewka, Niemelä, and Syrjänen 2004)
could similarly be addressed using the OP construction.

Learning Method for Optimization Problems
After introducing the auxiliary rules described in the pre-
vious section, we can apply the framework that performs
inductive learning from ground symmetries. Given an ASP
program P , an instance i ∈ S, and the set Π(i) of its sym-
metries, below abbreviated as Π for brevity, the learning ap-
proach full-SBCs picks a positive example from each cell,
obtained by permutations in Π, in the partition of AS (Pi).
However, this method is inappropriate for handling opti-
mization problems as it also preserves suboptimal solutions.
For this reason, we devise an extension of the approach
suited for programs incorporating optimization statements.

Algorithm 1 shows the modified version of full-SBCs for
addressing optimization problems. It takes as input P , i, Π,
and opt , where the latter is the best optimization value ob-
tained by running CLINGO on P ∪ i in a pre-solving step.
When i ∈ S is a small enough (representative) instance, a
short pre-solving time, like five seconds taken in our exper-
iments reported below, usually suffices to compute an opti-
mal answer set of P ∪ i along with its opt value.

Algorithm 1: Method full-SBCs to compute examples for an
instance i ∈ S of the optimization problem modeled by P
Input: P , i, Π, opt

1: cnt ← CLINGO.init(P ∪ i)
2: while (I, cI)← cnt .get new solution() do
3: Q← ∅
4: Q′ ← {I}
5: while Q′ 6= ∅ do
6: Q← Q ∪Q′
7: Q′ ← {{π(a) | a ∈ I} | I ∈ Q′, π ∈ Π} \Q
8: min ← {I ∈ Q | @I ′ ∈ Q : I ′ < I}
9: create examples(neg, Q \min , Π, i)

10: if cI ≤ opt then
11: create examples(pos, min , Π, i)
12: else
13: create examples(neg, min , Π, i)
14: cnt .ignore solution(Q)

In line 1 of Algorithm 1, a search control object cnt is cre-
ated by using the CLINGO API. This object keeps track of al-
ready identified solutions and provides the get new solution
method, which returns either a new answer set I together
with its cost cI , or false if all solutions have been exhausted.
Provided that the while-loop from line 2 is entered with a
new answer set I, the sets Q and Q′ of already explored or
newly obtained (symmetric) solutions, respectively, are set
to ∅ and {I} in line 3 and line 4. The while-loop from line 5
then repeatedly applies the generators in Π until the cell of
solutions symmetric to I is fully explored and the answer
sets are collected in Q. In line 8, we determine the lexico-
graphically smallest (according to some atom ordering) and
thus representative solution in Q and store it in the (single-
ton) set min . The subsequent generation of examples is ex-
pressed in terms of the procedure create examples(type, sol ,
Π, i), where the type is either pos(itive) or neg(ative) and
sol is a set of interpretations. For each I ∈ sol , the CDPI
〈〈I ∩ atoms(Π), atoms(Π) \ I〉, i〉 then constitutes a cor-
responding example of the selected type. Negative examples
are in line 9 created for all symmetric, but not representa-
tive, solutions in the computed cell Q, and depending on
whether the cost cI is at least as good as the opt value, the
representative solution in min is taken as a positive example
in line 11 or as a negative example in line 13, respectively.
Lastly, before querying cnt for the next solution, all answer
sets belonging to the explored cell Q are excluded from the
search space of cnt in line 14.

Figure 3(a) illustrates a space of examples obtained
with the full-SBCs method, where the explored partition of
AS (Pi) consists of seven cells with their representative so-
lutions indicated by points p1, . . . , p7. The colors of cells
represent different optimization values associated with the
contained answer sets, and the two blue cells with p1 and
p7 comprise optimal solutions. Hence, the full-SBCs method
generates positive examples for p1 and p7, while all other
solutions are taken as negative examples.

In case the number of answer sets in AS (Pi) is large,
as for the combinatorial problems investigated in (Tarzar-
iol et al. 2022), the full-SBCs method fails to exhaustively
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enumerate all solutions for training instances. For this rea-
son, an alternative approach called scalable full-SBCs has
been designed to sample at most n cells and generate at
most max cell negative examples as well as one posi-
tive example per cell. We adopt this approach to optimiza-
tion problems by restricting the number of iterations of
the while-loop from line 2 in Algorithm 1 to n and let-
ting the procedure create examples(type, sol , Π, i) generate
min{|sol |,max cell} many examples in each execution.

When dealing with training instances whose answer sets
are partitioned into plenty cells such that many of them com-
prise suboptimal solutions, it is important to still explore at
least one cell of optimal answer sets. Otherwise, all gener-
ated examples were negative and the resulting ILP task has
the trivial constraint ⊥ ← . as solution eliminating all an-
swer sets, including those that are optimal. For focusing on
cells with optimal solutions only, the opt-scalable full-SBCs
method restricts the search space of the cnt object to answer
sets with the best optimization value opt . Figure 3(b) illus-
trates this approach, now just exploring the two blue instead
of all cells as in Figure 3(a). While p1 and p7 yield positive
examples as before, opt-scalable full-SBCs generates nega-
tive examples for symmetric solutions in their cells only, but
does not explore suboptimal solutions in the remaining cells.

Example Orderings. The learning framework introduced
by Tarzariol, Gebser, and Schekotihin (2021) utilizes general
positive examples 〈〈∅, ∅〉, g〉 for instances g from the gener-
alization set Gen , so that learned constraints are required
to preserve some arbitrary answer set. However, when ad-
dressing optimization problems, this requirement must be
strengthened to the preservation of at least one optimal an-
swer set. To this end, the ILASP developers provided us with
a new system version supporting orderings on the accepting
answer sets of examples. For imposing upper bounds on the
sum(s) of weights admitted for an accepting answer set, we
use #brave ordering(p id,[bounds],<=) decla-
rations supplied by the new version of ILASP, where p id
identfies a general positive example 〈〈∅, ∅〉, g〉 and bounds
is the vector of optimization values by priority levels for an
optimal answer set of P ∪ g. Like the opt values for train-
ing instances S taken by Algorithm 1, the best optimization
values bounds are computed in a (short) pre-solving step.

p2

p3

p4

p1 p7

p5 p6

(a) full-SBCs

p1 p7

(b) opt-scalable full-SBCs

Figure 3: Examples of full-SBCs and opt-scalable full-SBCs.

Experiments
We evaluate the devised learning framework for optimiza-
tion problems on optimization versions of the combinato-
rial problems addressed in (Tarzariol, Gebser, and Schekoti-
hin 2022; Tarzariol et al. 2022) as well as on the fast-
food problem (Denecker et al. 2009). Our experiments
were performed on an Intel® i7-3930K machine under
Linux (Debian GNU/Linux 11), running ILASP (v4.3.1)
as ILP and CLINGO (v5.5.2) as ASP system. The bench-
marks and settings for reproducing our experiments can
be found in https://github.com/prosysscience/Symmetry
Breaking with ILP/tree/optimization.

Fastfood Problem. The fastfood problem has been con-
tributed as a benchmark to ASP system competitions. An in-
stance specifies a collection of highway restaurants, where
each fact restaurant(id,km) provides the identifier
id of a restaurant and its location km in terms of kilome-
ters along a highway. The goal is to select a subset of n
restaurants serving as depots such that the sum of supply
distances, i.e., the distance of each restaurant to its nearest
depot, is minimized. We use the following ASP encoding:

N {depot(ID,KM) : restaurant(ID,KM)} N
:- number_depots(N).

:∼ restaurant(ID,KM), D = #min{|MK-KM| :
depot(DI,MK)}. [D@1,ID]

An example instance can be specified by facts as follows:
restaurant(1,10). restaurant(3,5).
restaurant(2,10). number_depots(2).

This instance has three solutions, {depot(1,10),
depot(2,10)}, {depot(1,10),depot(3,5)}, and
{depot(2,10),depot(3,5)}, the last two of which
are optimal. However, without considering the weak con-
straint on supply distances, all three solutions are deemed
symmetric, so that {depot(1,10),depot(2,10)}
may be taken as representative and thus a positive example.

Following (Tarzariol, Gebser, and Schekotihin 2022), we
introduce an auxiliary predicate less(ID,ID’) in the
background knowledge, which holds for each pair of restau-
rants with identifiers ID < ID’ located at the same kilome-
ter KM. Then, running ILASP with a language bias containing
the predicate depot and the auxiliary predicate less leads
to two learned constraints as follows:

:- depot(Y,Z), less(X,Y), not depot(X,Z).
:- depot(X,Z), less(X,Y), not depot(Y,Z).

These constraints eliminate the two optimal solutions for the
above example instance. Unlike this, the extended learning
framework introduced in the previous sections determines
the optimal solution {depot(1,10),depot(3,5)} as
positive example, and the learned constraint

:- depot(Y,Z), less(X,Y), not depot(X,Z).
correctly discards its single symmetric (and also optimal)
solution {depot(2,10),depot(3,5)}.

Combinatorial Problems. The combinatorial problems
investigated by Tarzariol, Gebser, and Schekotihin (2022)
consist of the pigeon-hole problem, its extensions with color
and owner assignments, and the house-configuration prob-
lem. We derived optimization versions of these four prob-
lems by incorporating weak constraints that distinguish as-
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BASELINE BASELINE + CONSTRAINTS
Problem #o/#s min max avg stdev #o/#s min max avg stdev
pigeon-hole 0/10 – – – – 10/10 0.02 15.17 1.92 4.68
pigeon-color 1/ 4 248.75 248.75 248.75 – 10/10 0.08 258.58 52.15 83.47
pigeon-owner 2/ 5 1.41 66.26 33.83 45.86 10/10 0.02 180.66 34.24 58.91
house-config. 0/10 – – – – 10/10 0.04 155.37 30.13 49.65 BB
fastfood 1/10 277.25 277.25 277.25 – 10/10 0.07 12.12 2.81 4.27
pup-double 0/10 – – – – 10/10 0.03 192.49 37.17 67.72
pup-doublev 0/10 – – – – 10/10 0.04 70.58 15.47 23.33
pup-triple 1/10 19.54 19.54 19.54 – 2/10 0.05 0.83 0.44 0.56
pigeon-hole 0/ 0 – – – – 1/ 1 20.95 20.95 20.95 –
pigeon-color 0/ 5 – – – – 10/10 0.07 67.53 20.63 26.96
pigeon-owner 2/ 7 0.18 1.66 0.92 1.05 10/10 0.01 82.43 17.15 27.70
house-config. 0/ 0 – – – – 10/10 0.03 265.14 63.80 87.05 USC
fastfood 0/ 0 – – – – 2/ 2 0.06 0.17 0.11 0.07
pup-double 0/ 0 – – – – 8/ 8 0.05 276.60 37.29 96.82
pup-doublev 0/ 0 – – – – 10/10 0.06 189.52 29.19 58.85
pup-triple 1/ 1 25.52 25.52 25.52 – 2/ 2 0.04 2.76 1.40 1.92

Table 1: Runtime results for CLINGO on: (i) baseline encodings; and (ii) baseline encodings augmented with learned constraints.
#o and #s indicate the number of instances finished with a proven or unproven optimal solution, respectively. min , max , avg ,
and stdev provide the minimal, maximal, and average runtime in seconds along with the standard deviation over instances
counted in #o (finished with a proven optimal solution). The upper part of the table provides results for CLINGO with model-
guided optimization (i.e., branch and bound), while core-guided optimization (i.e., unsatisfiable core) is run in the lower part.

signed values, i.e., holes, colors, owners, or racks, and give
preference to smaller values. For the Partner Units Problem
(PUP) addressed in (Tarzariol et al. 2022), we included weak
constraints minimizing the number of assigned units, thus
switching to the PUP optimization version by Aschinger
et al. (2011), who also introduced the instance families de-
noted by double, doublev, and triple.

Learning Performance. We first compared the runtime
required to learn first-order constraints between decision and
optimization versions of the considered benchmark prob-
lems. This comparison includes the full-SBCs and scalable
full-SBCs methods: for decision problems, we applied them
unchanged from (Tarzariol, Gebser, and Schekotihin 2022;
Tarzariol et al. 2022), while the modified versions intro-
duced above were run on optimization problems. Since al-
ready the small training instances of PUP yield too many
solutions to enumerate them all, we resort to scalable full-
SBCs on PUP, and use the exhaustive full-SBCs method for
the other problems. As it turns out, the learning time re-
quired for decision and optimization versions of the three
pigeon-hole problem variants, the house-configuration prob-
lem, and the fastfood problem never exceeded five seconds.
In the following, we report more detailed results for the way
more complex PUP.

As training sets S for the double, doublev, and triple in-
stance families of PUP, we used two small yet representative
instances per family. One of the training instances admits a
minimal number of units only, so that each of its solutions
is optimal, while the decision and optimization versions of
scalable full-SBCs differ on the second instance offering one
more unit than needed for satisfiability. Given that scalable
full-SBCs samples a subset of solutions and the obtained ex-
amples depend on the search heuristics of CLINGO, we re-
peat each learning run 120 times with different seeds and

a time limit of one hour per run. The unchanged decision
version of scalable full-SBCs successfully finished runs with
104 seeds on the training set for double, 82 runs for doublev,
but not a single run for triple. Somewhat unexpectedly, such
a decline does not arise with scalable full-SBCs modified
to optimization problems, where 116, 84, and 108 learning
runs are successfully finished for double, doublev, and triple.
This can be explained by the addition of auxiliary rules dis-
tinguishing atoms from weak constraints, as they reduce the
symmetries identified by SBASS and thus also the size of
cells that must be explored to determine positive examples.

To also compare the scalable full-SBCs and opt-scalable
full-SBCs methods, where the latter explores cells with op-
timal solutions only, we turned the training sets for double,
doublev, and triple into singletons, comprising just the in-
stance that admits one more unit than needed. Moreover,
we used weak constraints taking the integer label instead of
the uniform weight 1 as penalty for an assigned unit, which
leads to fewer symmetries and a finer partition of answer sets
than before. This helps scalable full-SBCs and opt-scalable
full-SBCs to finish all of their 120 learning runs within the
time limit, where opt-scalable full-SBCs always yields opti-
mal solutions as positive examples. With scalable full-SBCs,
just 5 for double, 42 for doublev, and 17 runs for triple led
to some positive example needed for a non-trivial ILP task.

Solving Performance. Second, we compare the optimiza-
tion performance of CLINGO on the baseline problem en-
codings to the same encodings augmented with learned first-
order constraints, using a benchmark set of 10 (more chal-
lenging than the training) instances per problem with a time
limit of 300 seconds for each run. The #o/#s columns in
Table 1 provide the number of runs that finished with a
proven optimal solution in the time limit or led to some op-
timal solution without necessarily proving its optimality, re-
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PUP-ADVANCED BASELINE + CONSTRAINTS
Problem #o/#s min max avg stdev #o/#s min max avg stdev
pup-double 3/10 0.22 167.00 56.17 95.98 10/10 0.03 192.49 37.17 67.72
pup-doublev 4/10 0.38 70.01 21.49 33.00 10/10 0.04 70.58 15.47 23.33 BB
pup-triple 2/10 0.04 2.12 1.08 1.47 2/10 0.05 0.83 0.44 0.56
pup-double 3/ 3 0.17 239.75 80.23 138.15 8/ 8 0.05 276.60 37.29 96.82
pup-doublev 3/ 3 0.98 61.77 33.00 30.53 10/10 0.06 189.52 29.19 58.85 USC
pup-triple 2/ 2 0.03 1.67 0.85 1.15 2/ 2 0.04 2.76 1.40 1.92

Table 2: Runtime results for CLINGO on: (i) an advanced PUP encoding (Dodaro et al. 2016) incorporating hand-crafted static
symmetry breaking; and (ii) the baseline encoding augmented with learned constraints. The parameters reported are the same
as in Table 1.

spectively. Moreover, min , max , and avg runtimes along
with stdev over instances finished with a proven optimal so-
lution give an impression of the search efforts of CLINGO.

The upper part of Table 1 contains the results obtained by
CLINGO with model-guided optimization (i.e., branch and
bound), while the lower part reflects CLINGO with core-
guided optimization (i.e., unsatisfiable core). For the com-
binatorial problems in the first five rows, the baseline encod-
ings prohibit CLINGO to prove optimal solutions for most
of the instances, although some optimal solution is found
for many of them when using model-guided optimization.
By adding the learned constraints, CLINGO succeeds to find
and prove optimal solutions for all instances, where the re-
quired search efforts vary between the problems. We fur-
ther notice that, on the pigeon-hole and fastfood problems,
core-guided optimization struggles to find optimal solutions,
while model-guided optimization applied to the augmented
encoding does not exhibit any such issues.

The rows starting with pup- in Table 1 and Table 2 sum-
marize results obtained with the most efficient first-order
constraints from some of the 120 learning runs per instance
family double, doublev, and triple of PUP. While the base-
line encoding with model-guided optimization leads to op-
timal solutions for all instances, CLINGO manages to prove
the optimality for a single triple instance only. A more ad-
vanced PUP encoding (Dodaro et al. 2016) that, independent
of the particular instance family, incorporates static symme-
try breaking on the integer labels of units brings about a no-
ticeable increase of runs finished with a proven optimal so-
lution. However, as specifically learned constraints also take
the structure of instances into account, they prune the search
space even better and aid CLINGO to prove optimality for all
instances of the double and doublev families. In contrast, the
instances of the triple family remain hard, and the limited
success of proving optimality for just two of them reminds
that symmetries are one, but not the only complexity factor.

Conclusion
This paper extends the framework of Tarzariol, Gebser, and
Schekotihin (2021) to support the learning of effective first-
order constraints for optimization problems. The introduced
auxiliary rules are crucial for SBASS to identify symmetries
applicable to ASP programs with weak constraints. We have
proven the correctness of this approach and devised suitable
methods to generate ILP tasks for optimization problems.
Experiments with the new framework show that the learned

constraints can help to significantly speed up the computa-
tion of (representative) optimal solutions. In future work, we
plan to investigate alternative instance-specific approaches
for the construction of ground SBCs and their lifting to first-
order constraints. For instance, we will evaluate BREAKID
system (Devriendt and Bogaerts 2016), which extends the
graph representation of a problem instance used by SBASS
to handle weight rules and minimize statements. This is an
alternative approach to the one suggested in this paper that
might detect more symmetries in comparison to SBASS. By
using BREAKID we hope that our approach will get an ad-
ditional performance boost while solving instances of opti-
mization problems.
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