
Multi-Aspect Explainable Inductive Relation Prediction by Sentence Transformer
Zhixiang Su1,2,3, Di Wang3,4*, Chunyan Miao1,2,3,4, Lizhen Cui2,5

1School of Computer Science and Engineering, Nanyang Technological University (NTU), Singapore
2SDU-NTU Centre for Artiticial Intelligence Research (C-FAIR), Shandong University (SDU), China

3Joint NTU-WeBank Research Centre on Fintech, NTU, Singapore
4Joint NTU-UBC Research Centre of Excellence in Active Living for the Elderly (LILY), NTU, Singapore

5School of Software, SDU, China
{zhixiang002, wangdi, ascymiao}@ntu.edu.sg, clz@sdu.edu.cn

Abstract

Recent studies on knowledge graphs (KGs) show that path-
based methods empowered by pre-trained language models
perform well in the provision of inductive and explainable re-
lation predictions. In this paper, we introduce the concepts
of relation path coverage and relation path confidence to fil-
ter out unreliable paths prior to model training to elevate the
model performance. Moreover, we propose Knowledge Rea-
soning Sentence Transformer (KRST) to predict inductive re-
lations in KGs. KRST is designed to encode the extracted
reliable paths in KGs, allowing us to properly cluster paths
and provide multi-aspect explanations. We conduct extensive
experiments on three real-world datasets. The experimental
results show that compared to SOTA models, KRST achieves
the best performance in most transductive and inductive test
cases (4 of 6), and in 11 of 12 few-shot test cases.

Introduction
As an important tool for providing side information for ques-
tion answering and recommendation systems (Ji et al. 2021),
knowledge graph (KG) has been widely studied. A KG is
typically expressed in terms of triplets G = {(hi, ri, ti)|i =
1, 2, 3, ..,m}, which contains entities hi, ti ∈ EG and re-
lations ri ∈ RG. Because of the incompleteness of KGs in
practice, knowledge graph completion (KGC) is needed to
improve the quality of KGs. One of the most important KGC
tasks is relation prediction. Given the target triplet (h, r, t),
a relation prediction query is usually set by masking the en-
tity h or t in the given triplet and letting the model predict
the masked entity based on the other entity and the relation
type.

Embedding-based methods are probably the most com-
monly applied SOTA models. With a fixed set of entities and
relations, embedding-based methods perform fairly well in
KGC tasks. However, most existing embedding-based meth-
ods are not explainable and cannot deal with inductive sit-
uations, making them not suitable for modeling real-world
dynamic KGs, wherein new entities and relations may be
added all the time. Inductive relation prediction requires the
model to handle unseen entities unavailable in the training
graph.
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Figure 1: An example of KG.

GNN-based methods take advantage of the KG’s graph
connectivity, thus, are capable of predicting new entities
with a sufficient number of known neighboring entities. Re-
cent GNN-based method GRAIL (Teru, Denis, and Hamil-
ton 2020) is shown to be capable of conducting inductive re-
lation predictions. Nonetheless, extracting explainable rules
is left for further exploration in GRAIL. So far, no evidence
shows that GRAIL is explainable.

Different from GNN-based methods, path-based methods
take advantage of the graph connectivity by analyzing paths
between the head and tail entities. When we focus only on
the relations in one path, they can be formulated as a Horn
rule (Horn 1951) for knowledge reasoning. Therefore, in
path-based methods, new entities can be easily modeled by
applying the summarized rules. For example, w.r.t Figure 1,
for triplet (Small Soldiers,Film Language,English) and the
corresponding path

Small Soldiers
Perform-1
−−−−−→ Sarah

Person Language
−−−−−−−−−−→ English, (1)

we can summarize that

(y, Perform, x) ∧ (y, PersonLanguage, z) → (x, FilmLanguage, z). (2)

Such rule-based operations make path-based methods in-
ductive and highly explainable. BERTRL (Zha, Chen, and
Yan 2022), which employs the pre-trained language model
BERT for scoring, is one typical model of such type. Using
contextual descriptions of entities and relations, BERTRL
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can deal with inductive cases and provide single-path expla-
nations, achieving the best SOTA results in the literature.

To further improve the relation prediction performance
and strive for better explainability, in this paper, we propose
Knowledge Reasoning Sentence Transformer (KRST),
which is a novel path-based model built upon the sentence
transformer. The key innovations of KRST are as follows:
Path extraction. Although paths between head and tail enti-
ties can be easily extracted, most of the extracted paths may
be unreliable. Moreover, unreliable short paths with words
also appearing in the target triplets are usually preferred by
the pre-trained language model. To assess the reliability of
paths and only use reliable ones for model training, we pro-
pose the concepts of relation path coverage and relation path
confidence (see Definitions 4 and 5, respectively).
Pre-trained language model. Compared with the com-
monly applied BERT for sequence classification model, the
sentence transformer adopting cosine similarity achieves
a higher performance in multiple tasks (Reimers and
Gurevych 2019). Therefore, we adopt sentence transformer
in KRST to encode triplets and paths into embeddings,
which allows us to explicitly compare between embeddings
and cluster paths w.r.t various aspects.
Loss function. In KRST, we compare the similarity between
paths and triplets using the cosine similarity score. In the
case of negative triplets, negative scores are not necessarily
close to −1. Nevertheless, commonly applied binary classi-
fication loss functions (e.g., cross-entropy) often make the
model over-confident by requiring the prediction result to be
close to either 1 or −1. Therefore, we use cosine embedding
loss instead, aiming to better elevate the model performance.

Our key contributions in this paper are as follows:
(i) We propose two novel path extraction metrics named

relation path coverage and relation path confidence, and a
novel path-based model named KRST. To the best of our
knowledge, KRST is the first sentence transformer model
for knowledge graph path encoding.

(ii) We develop a comprehensive approach for relation
prediction explanation, which enables the provision of ex-
planations from multiple paths and multiple perspectives.

(iii) We assess the performance of KRST on three trans-
ductive and inductive datasets: WN18RR, FB15k-237, and
NELL-995. KRST obtains significantly better results than
SOTA models in majority cases (15 of 18).

Related Work
Embedding-based methods: Such methods (e.g., Com-
plEx (Trouillon et al. 2017), ConvE (Dettmers et al. 2018),
and TuckER (Balaevi, Allen, and Hospedales 2019)) gener-
ate embeddings for entities and relations in the latent space.
Score functions are proposed for training and evaluating
within triplets. The most representative embedding-based
methods are the translation methods (e.g., TransE (Bordes
et al. 2013), TransH (Wang et al. 2014), TransR (Lin et al.
2015), and TransD (Ji et al. 2015)). The key idea behind
the translation models is to treat the process of finding valid
triplets as the translation operation of entities through rela-
tionships, define the corresponding score function, and then

minimize the loss function to learn the representation of en-
tities and relationships (Chen et al. 2020).

GNN-based methods: Such methods (e.g.,
CompGCN (Vashishth et al. 2019) and R-
GCN (Schlichtkrull et al. 2018)) pass messages between a
node and its neighbors. These approaches take advantage
of the graph connectivity. They are able to deal with
a particular inductive situation where the new entity is
surrounded by entities already known. GRAIL (Teru,
Denis, and Hamilton 2020) is proposed to handle KGs with
entirely new entities. However, GRAIL is not explainable
as the author stated in (Teru, Denis, and Hamilton 2020).
Challenged by the number of reachable entities that grows
exponentially with the search depth, when given a dense
KG, GNN-based methods may not well capture the correct
long path information and hence may not perform well in
relation prediction tasks.

Path-based methods: Such methods aim to find one (or
multiple) logical reasoning path(s) between the query head
and tail entities. PRA (Lao, Mitchell, and Cohen 2011) and
AMIE (Galárraga et al. 2013) generate Horn rules (Horn
1951), which have a broader definition than paths. However,
due to noises in real-world KGs, their performance is limited
because they are only applicable for exact matches. Deep-
Path (Xiong, Hoang, and Wang 2017) and MINERVA (Das
et al. 2017) learn to generate paths by reinforcement learn-
ing, whereby positive rewards are given when having suc-
cessful target arrivals. These approaches can be applied to
new entities and are naturally explainable. Nevertheless,
they are also challenged by the exponentially growing reach-
able entities, which leads to sparse rewards.

Methods with pre-trained language model: With the great
success achieved in various NLP tasks, pre-trained language
models (PLMs) (e.g., BERT (Devlin et al. 2018), GPT (Rad-
ford et al. 2018) and XLNet (Yang et al. 2019)) show
great potential in dealing with contextual descriptions. KG-
BERT (Yao, Mao, and Luo 2019) extends embedding-based
methods by fine-tuning BERT. Using contextual descrip-
tions for entities and relations, BERT model is able to under-
stand a triplet and output a classification label. KG-BERT
works well in inductive settings but is not explainable be-
cause of the incomprehensible embeddings. Different from
KG-BERT, BERTRL (Zha, Chen, and Yan 2022) incorpo-
rates path-based methods with BERT. Specifically, BERTRL
converts triplets and the corresponding paths into sentences,
and fine-tunes the pre-trained BERT for sequence classifi-
cation. Because BERTRL uses all paths (shorter than L) as
inputs without filtering, its performance may be limited. Re-
cently, sentence transformer models is shown to outperform
BERT on common STS and transfer learning tasks (Reimers
and Gurevych 2019). In addition, BERT for sequence clas-
sification requires two sentences to input together and make
an implicit comparison, while sentence transformer encodes
sentences separately, allowing more flexible comparisons
among sentences. In this paper, we adopt sentence trans-
former to provide a multi-aspect explanation.
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Preliminary
We start this section by introducing the commonly applied
logical reasoning path. Then we introduce the definition and
common settings for inductive relation prediction.

Definition 1 (Logical Reasoning Path). Given a KG G =
{(hi, ri, ti)|i = 1, 2, 3, ..,m}, hi, ti ∈ EG and ri ∈ RG,
one possible logical reasoning path p(h, r, t) and the corre-
sponding relation path Rp(h, r, t) are defined as follows:

p(h, r, t) = h
r1−→ e1

r2−→ e2
r3−→ ...

rn−1−−−→ en−1
rn−→ t, (3)

Rp(h, r, t) = (r1, r2, ..., rn−1, rn), (4)

where (h, r1, e1), ..., (en−1, rn, t) ∈ G− {(h, r, t)}.

From the perspective of knowledge graph reasoning, the
relation prediction task can be viewed as a logical induc-
tion problem to identify the inductive and explainable log-
ical reasoning paths. Because logical reasoning paths are
sequential in nature, we can easily convert them into sen-
tences. However, a large proportion of paths are either illog-
ical or entity-dependent in real-world KGs, which cannot be
applied to inductive relation prediction (see Definition 2). To
address this problem, we define relation path coverage and
relation path confidence to filter out unreliable or meaning-
less paths (see Definitions 4 and 5, respectively).

Definition 2 (Inductive Relation Prediction). Given a
training graph Gtrain(EGtrain , RGtrain), a testing graph
Gtest(EGtest , RGtest) and a query triplet (hq, rq, tq), a relation
prediction is inductive if:

• EGtrain ∩ EGtest = ∅,
• RGtest ⊆ RGtrain , rq ∈ RGtrain .

With the emergence of real-world ever-evolving KGs,
dealing with new relations and entities is a necessity. We fo-
cus on the inductive setting introduced by GRAIL (Teru, De-
nis, and Hamilton 2020), which contains a training graph, a
testing graph, and a series of query triplets. Only the training
graph is visible during training. Because both GNN-based
methods and path-based methods make use of the graph con-
nectivity, the test graph is only applied to extract neighbors
or paths w.r.t query triplets during testing, respectively.

Methodology
Our proposed architecture comprises three steps for relation
prediction, with the intuition that a triplet and its correspond-
ing reliable paths should have similar semantics when con-
verted to sentences. Specifically, KRST 1) filters unreliable
logical reasoning paths extracted for model training, 2) con-
verts paths and triplets into sentences by sentence formation,
and 3) measures semantic similarity scores and makes rela-
tion predictions based on them.

Path Extraction with Filtering
Following the idea of knowledge reasoning, a logical rea-
soning path is determined by its support evidence w.r.t the
target triplet. To train the model with both positive and
negative samples, we extract logical reasoning paths from
KGs for both positive and negative target triplets. However,

many extracted paths are unreliable. For example, for pos-
itive triplet (Sarah,Profession,Actor) and negative triplet
(Sarah,Profession,Director), we can both extract paths
with the same relation path (Gender,Gender-1,Profession)
as follows:

Sarah Gender−−−−→ Female Gender-1
−−−−−→ Kathryn

Profession
−−−−−−→ Actor, (5)

Sarah Gender−−−−→ Female Gender-1
−−−−−→ Alyson

Profession
−−−−−−→ Director. (6)

Paths (5) and (6) are similar and contribute little to dis-
tinguish the profession. Therefore, we consider paths with
relation path (Gender,Gender-1,Profession) to be unreli-
able. Although the unreliable paths should be excluded from
model training, because they are similar to the target triplet,
they may be given a high similarity score and hence mistak-
enly considered as reliable. For example, another path for
triplet (Sarah,Profession,Actor) is as follows:

Sarah
Perform−−−−→ SmallSoldiers

Company-1
−−−−−→ DreamWorks

Company−−−−→ TheIsland
Perform-1
−−−−−→ Sean

Profession−−−−−→ Actor.

(7)

This path is relatively more reliable than Path (5) because
it involves the person in the same company for prediction.
However, after being converted to sentences, Path (5) is as-
sumed to be more similar by PLMs (shorter and contains
words in target triplet). Because (Sarah,Profession,Actor)
is a positive triplet, model training reinforces this bias, lead-
ing to an even higher score for Path (5) after using it for
training. These unreliable paths significantly limit the model
performance. To exclude unreliable extracted paths from
training, we perform path filtering. How we identify unre-
liable logical reasoning paths are introduced as follows.
Definition 3 (Relation Path Support). Given a triplet
(h, r, t) and a relation path Rp′ = (r

′

1, r
′

2, ..., r
′

m−1, r
′

m),
the support of Rp′ is defined as follows:

suppR
p
′ (h, r, t) = #p(h, r, t), Rp(h, r, t) = Rp

′ , (8)

where #p(h, r, t) denotes the number of logical reasoning
paths on G w.r.t (h, r, t).

Relation path support suppR
p
′ (h, r, t) measures the num-

ber of paths containing the same relations with Rp′ between
h and t. With a larger support score, Rp′ is more common
among paths between h and t. However, relation path sup-
port represents an unbounded value. Entity pairs with better
connectivity usually have a larger support number. To fur-
ther assess the ratio of the support, we define relation path
coverage and relation path confidence, respectively.
Definition 4 (Relation Path Coverage). Given a triplet
(h, r, t) and a relation path Rp′ , the head and tail relation
path coverage of Rp′ is defined as follows:

coverhR
p
′ (h, r, t) =

suppR
p
′ (h, r, t)

#p(h, r, t′), |p(h, r, t′)| = |Rp
′ |
, (9)

covertR
p
′ (h, r, t) =

suppR
p
′ (h, r, t)

#p(h′ , r, t), |p(h′ , r, t)| = |Rp
′ |
, (10)

where | · | denotes the length of the path.
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In (9) and (10), the number of paths starting from h or
ending at t with length |Rp′ | is adopted as the denominator,
respectively.

Definition 5 (Relation Path Confidence). Given a triplet
(h, r, t), the head and tail relation path confidence of a rela-
tion path Rp′ is defined as follows:

confhR
p
′ (h, r, t) =

suppR
p
′ (h, r, t)∑

t′∈EG−{h} suppR
p
′ (h, r, t

′)
, (11)

conftR
p
′ (h, r, t) =

suppR
p
′ (h, r, t)∑

h′∈EG−{t} suppR
p
′ (h

′, r, t)
. (12)

In (11) and (12), the total number of all reachable enti-
ties starting from h or ending at t w.r.t relation path Rp′ is
adopted as the denominator, respectively.

Relation path coverage measures the ratio over all paths
with the same source (or destination) and length, while re-
lation path confidence measures the ratio over all entities
that satisfy the target relation paths. To show the effective-
ness of relation path confidence, we refer back to Paths (5)
and (7). The relation path confidence score for Path (7) is
much larger than Path (5). Because in the relation path of
(Gender,Gender-1,Profession), Gender-1 can lead to mul-
tiple people with various professions. Therefore, the num-
ber of paths satisfying the relation path of Path (5) is sig-
nificantly more than that of Path (7), leading to a relatively
smaller relation path confidence score for Path (5).

For path extraction, we adopt the breadth-first search, with
the maximum search depth L and the maximum number of
paths per triplet M . These parameters are set to avoid the
generation of an unnecessarily large number of paths. Also,
paths with excessive length are highly likely illogical. In
addition, to ensure a sufficient number of paths per triplet
are generated for effective model training, we synchronously
perform path filtering and path extraction (see Algorithm 1).

Sentence Formation
To leverage the pre-trained parameters of the sentence trans-
former, KRST converts paths and triplets into sentences. Our
key considerations are as follows:
Entity description selection. Both long (more than 20
words on average) and short entity descriptions in text
are available in various datasets. Long descriptions usually
make the sentence description imbalance between entities
and relations when being modeled by PLMs, hence, they
are less effective under inductive situations. In addition, sen-
tences converted using long descriptions usually exceed the
maximum sequence length of the PLM, which need to be
truncated as incomplete. Therefore, only short descriptions
are applied to KRST.
Inverse relation. To provide KRST with sequential order
for positional encoding, entities’ and relations’ order in the
paths should be preserved after being converted into sen-
tences. A straightforward way is to place the descriptions
following the entities’ and relations’ order in paths. How-
ever, inverse relations (e.g., Gender-1 in Path (5)) occur in

Algorithm 1: Path Extraction
Input: KG G, query triplet (h, r, t), filter threshold α, filter
function f(), max search depth L, max number of paths M
Output: List of extracted paths P

1: // Initialize search queue and state list
2: q = Queue(); visited = List(); prev = List()
3: q.push((h, 0))
4: visited[h] = True
5: // Breadth-first search
6: while q is not empty do
7: u, l = q.pop()
8: // Check whether search depth exceeds L
9: if l >= L then

10: continue
11: // Give priority to less frequent relations
12: for v in G[u] sorted by frequency G[u][v][‘relation’]

do
13: if v == t then
14: if u == h&&G[u][v][‘relation’] == r then
15: continue
16: p =generatePath(prev, h, t)
17: if f(p) ≥ α then
18: P .add(p)
19: else if visited[v] == 0 then
20: q.push((v, l + 1)); visited(v) = 1; prev(v) = u

// Early break when generated path is enough
21: if |P | > M then
22: break
23: if |P | > M then
24: break
25: return P

the paths and their descriptions are not available. Empiri-
cally, a systematic description in KG usually starts with de-
scriptions related to the head entity and ends with descrip-
tions related to the tail entity. Thus, we choose to use the
inverse order of words in the sequential relation for inverse
relations. Moreover, by doing so, we preserve the similar-
ity between relations and inverse ones, making it easier for
the model to understand symmetric relations (e.g., friend,
spouse, and teammate).
Description concatenation. To obtain a complete sentence,
we need to concatenate descriptions of entities and rela-
tions in the path. A natural language pattern makes the sen-
tence closer to human expressions. An example w.r.t triplet
(Sarah,Profession,Actor) is shown as follows:

Question:

Sarah Michelle Gellar is the person profession of what?

Is the correct answer Actor?

However, our preliminary results show that formulating
complete sentences does not yield better performance than
simply combining entities and relations together using semi-
colons as follows:

Sarah Michelle Gellar; person profession; Actor

This is because the latter approach better preserves the se-
quential order and relative positions in the paths in PLMs.
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Figure 2: Overall architecture of relation prediction in KRST.

Therefore, we choose to use semicolons for description
concatenation. For example, the corresponding sentence of
Path (5) is formulated as follows:

Sarah Michelle Gellar; person gender; Female;

gender person; Alyson Hannigan; person profession; Actor

KRST Prediction
After sentence formation, KRST is able to generate em-
beddings and make relation predictions. Figure 2 shows the
overall model architecture.

For each positive query triplet, multiple reliable logi-
cal reasoning paths are extracted correspondingly. After be-
ing formatted into sentences, triplets and the corresponding
paths have similar semantics, which are measured by the co-
sine similarity:

cos(s1, s2) =
s1 · s2

||s1||2 · ||s2||2
, (13)

where s1 and s2 are the corresponding sentence embeddings.
KRST extracts at most |M | paths per triplet and converts

paths and triplets into embeddings. The similarity score be-
tween each path and the corresponding triplet is computed
and the path with the highest score is deemed as most rea-
sonable for relation prediction. Therefore, we use the highest
score among all paths as the score for each triplet:

score(h, r, t) = max
p∈P

{cos(s((h, r, t)), s(p))}, (14)

where P denotes the corresponding path set w.r.t triplet
(h, r, t), and s(·) denotes the embedding function (i.e.,
KRST) for triplets and paths.

During training, negative triplets are processed with the
label of -1. As aforementioned, commonly applied binary
loss functions (e.g., cross-entropy and hinge) require the
negative scores to be close to -1 (or 0). This is not appro-
priate in our scenario because the unmatched pair of triplet
and path are not necessarily perpendicular to each other. To
relax the penalty for loss, we use the cosine embedding loss
function:

L (s1, s2, y) =

{
1− cos(s1, s2), y = 1,

max(0, cos(s1, s2)− margin), y = −1,
(15)

where margin ∈ (−1, 1) and y ∈ {1,−1} denotes the label.
Equation 15 makes the positive score to be close to 1, max-
imizing similar semantics. On the other hand, the negative
score is only constrained to be smaller than margin.

Experiments
We evaluate the performance of KRST in three different
settings: transductive, inductive, and few-shot. Then, we
demonstrate multi-aspect comprehensive explanations by
clustering the embeddings of paths generated by KRST. We
implement KRST1 with a SOTA sentence transformer (all-
mpnet-base-v22) on a Tesla V100 GPU with 16GB RAM.

Following the evaluation tasks conducted in (Teru, Denis,
and Hamilton 2020) and (Zha, Chen, and Yan 2022), in this
paper, we measure the rank and hit rate of one positive triplet
among 49 negative triplets. We only randomly generate neg-
ative triplets and use them for training and validation. For
a fair comparison, we use the negative triplets provided by
(Zha, Chen, and Yan 2022) for testing.

Datasets
To evaluate the transductive and inductive performance of
KRST, we use all three datasets adopted in (Zha, Chen,
and Yan 2022), which were introduced by (Teru, Denis,
and Hamilton 2020)3. These datasets are commonly adopted
by various inductive approaches and they are the respective
subsets of WN18RR, FB15k-237, and NELL-995. In the in-
ductive setting, training entities have no overlap with testing
entities.

For few-shot evaluation, we use the corresponding few-
shot transductive and few-shot inductive datasets given in
(Zha, Chen, and Yan 2022).

Transductive and Inductive Relation Prediction
In transductive cases, we extract paths in the training graph
for all training, validation, and testing triplets. However, in
inductive cases, paths for testing triplets are not available
from the training graph, because entities used for testing
do not appear in the training graph (see Definition 2). In-
stead, we use the inductive graphs given in (Teru, Denis, and
Hamilton 2020) for path extraction.

We benchmark the performance of KRST against SOTA
inductive methods, SOTA embedding-based methods, and
SOTA reinforcement learning methods. Table 1 shows the
results of transductive and inductive relation prediction.
Compared with SOTA methods, KRST methods achieve the

1github.com/ZhixiangSu/KRST
2huggingface.co/sentence-transformers/all-mpnet-base-v2
3github.com/kkteru/grail
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Transductive Inductive
WN18RR FB15k-237 NELL-995 WN18RR FB15k-237 NELL-995

MRR RuleN 0.669 0.674 0.736 0.780 0.462 0.710
GRAIL 0.676 0.597 0.727 0.799 0.469 0.675
MINERVA 0.656 0.572 0.592 - - -
TuckER 0.646 0.682 0.800 - - -
KG-BERT - - - 0.547 0.500 0.419
BERTRL 0.683 0.695 0.781 0.792 0.605 0.808
KRST (No filter) 0.881 0.671 0.730 0.883 0.713 0.753
KRST (Coverage) 0.897 0.709 0.803 0.902 0.704 0.696
KRST (Confidence) 0.899 0.720 0.800 0.890 0.716 0.769

Hit@1 RuleN 0.646 0.603 0.636 0.745 0.415 0.638
GRAIL 0.644 0.494 0.615 0.769 0.390 0.554
MINERVA 0.632 0.534 0.553 - - -
TuckER 0.600 0.615 0.729 - - -
KG-BERT - - - 0.436 0.341 0.244
BERTRL 0.655 0.620 0.686 0.755 0.541 0.715
KRST (No filter) 0.807 0.576 0.618 0.803 0.602 0.633
KRST (Coverage) 0.831 0.624 0.692 0.835 0.573 0.554
KRST (Confidence) 0.835 0.639 0.694 0.809 0.600 0.649

Table 1: Transductive and inductive relation prediction results

Transductive Inductive
WN18RR FB15k-237 NELL-995 WN18RR FB15k-237 NELL-995

1000 2000 1000 2000 1000 2000 1000 2000 1000 2000 1000 2000

MRR RuleN 0.567 0.625 0.434 0.577 0.453 0.609 0.681 0.773 0.236 0.383 0.334 0.495
GRAIL 0.588 0.673 0.375 0.453 0.292 0.436 0.652 0.799 0.380 0.432 0.458 0.462
MINERVA 0.125 0.268 0.198 0.364 0.182 0.322 - - - - - -
TuckER 0.258 0.448 0.457 0.601 0.436 0.577 - - - - - -
KG-BERT - - - - - - 0.471 0.525 0.431 0.460 0.406 0.406
BERTRL 0.662 0.673 0.618 0.667 0.648 0.693 0.765 0.777 0.526 0.565 0.736 0.744
KRST (Confidence) 0.871 0.882 0.696 0.701 0.743 0.781 0.886 0.878 0.679 0.680 0.745 0.738

Hit@1 RuleN 0.548 0.605 0.374 0.508 0.365 0.501 0.649 0.737 0.207 0.344 0.282 0.418
GRAIL 0.489 0.633 0.267 0.352 0.198 0.342 0.516 0.769 0.273 0.351 0.295 0.298
MINERVA 0.106 0.248 0.170 0.324 0.152 0.284 - - - - - -
TuckER 0.230 0.415 0.407 0.529 0.392 0.520 - - - - - -
KG-BERT - - - - - - 0.364 0.404 0.288 0.317 0.236 0.236
BERTRL 0.621 0.637 0.517 0.583 0.526 0.582 0.713 0.731 0.441 0.493 0.622 0.628
KRST (Confidence) 0.790 0.810 0.611 0.602 0.628 0.678 0.811 0.793 0.537 0.524 0.637 0.629

Table 2: Few-shot transductive and inductive relation prediction results

best performance under MRR (5 of 6) and Hit@1 (4 of 6)
metrics. Specifically, KRST methods achieve significant im-
provement in the transductive case of WN18RR (+0.216 for
MRR and +18.0% for Hit@1), inductive case of WN18RR
(+0.103 for MRR and +6.6% for Hit@1) and inductive case
of FB15k-237 (+0.111 for MRR and +5.9% for Hit@1).

Among KRST methods, the majority of the best results
are achieved by KRST with relation path confidence (8 of
12). Only in 1 of 12 cases, KRST with no filter performs the
best. So we empirically show that filtering (especially re-
lation path confidence) elevates model performance. As for
the relatively inferior performance of relation path coverage,
this is because long paths usually lead to exponentially in-
creasing numbers of reachable entities, making the relation
path coverage prefer shorter paths. However, short paths are
not necessarily reliable. Therefore, the performance is lim-
ited by unreliable paths unfiltered by relation path coverage.

Few-shot Relation Prediction

In the few-shot settings, wherein only subsets of the en-
tire datasets are given for training, we conduct similar path
extractions as done for the entire datasets. Specifically, for
transductive cases, training, validation, and testing paths are
all extracted from the entire training graph. For inductive
cases, paths for inductive training are extracted from the en-
tire training graph, while paths for inductive validation and
inductive testing are both extracted from the inductive graph.

Because KRST with relation path confidence achieves the
best performance on the entire datasets, we apply it for all
few-shot settings. As shown in Table 2, KRST with rela-
tion path confidence outperforms SOTA methods in 11 of 12
cases. The average transductive and inductive improvement
for MRR and Hit@1 is 0.119 and 0.082 (+3.1% and +5.0%),
respectively. In addition, the performance gap between few-
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(a) Clusters for triplet (Atlantic
City, Film Genre, Drama).

(b) Clusters for triplet (California,
Location Contain, Carlsbad).

(c) Clusters for triplet (Kelsey,
Person Language, English).

Figure 3: Clustering result for a multi-aspect explanation.

  































 






 




 





  
























Figure 4: Paths clustered by similarity scores for a multi-aspect explanation of triplet (Atlantic City, Film Genre, Drama).

shot-1000 and few-shot-2000 samples is small (smaller than
0.015 for MRR in 5 of 6 cases). These results illustrate the
strong generalization capability of KRST, which requires a
lesser amount of samples to achieve on-par performance.

Multi-Aspect Explanation
As afore-introduced, KRST is able to provide a multi-aspect
explanation of the relation prediction results. This is because
KRST generates an embedding for each path, allowing us
to quantifiably analyze the relations among paths. Although
paths are supposed to be similar to the given query triplet,
they are not necessarily similar to each other. By grouping
them into different clusters, we could provide a multi-aspect
comprehensive explanation.

Figure 3 visualizes the clustering results on the reduced
dimensions after applying Linear Discriminant Analysis
(LDA) for three different triplets. Clusters are generated
using the K-Means algorithm. As shown in Figures 3(a)
and 4, KRST successfully provides a multi-aspect explana-
tion for triplet (AtlanticCity,FilmGenre,Drama) based on
the similarity score (pre-processed after min-max scaling).
The paths grouped into each cluster are shown in Figure 4
and presented using the same color in Figure 3(a). As shown,
the only path in Cluster 3 illustrates the explanation provided
by the external knowledge from Netflix that AtlanticCity is a
Drama available on Netflix. This explanation is straightfor-

ward and convincing, and is considered to be the most reli-
able (score of 1.0). For paths in Clusters 2, explanations are
provided using similar films with the same attributes (e.g.,
language and country), which is similar to the human ana-
logical reasoning. Cluster 0 explains the target triplet us-
ing the knowledge of awards won or nominated regarding
AtlanticCity in three paths, which is a distinctive piece of
side information. KRST considers Clusters 2 and 0 as rel-
atively less convincing and assigns relatively lower scores
(0.837 and 0.593 on average, respectively). We also input
an empty path for comparison, which individually consti-
tutes Cluster 1. KRST correctly gives it the lowest similarity
score. In summary, based on Figure 4, we can easily per-
ceive different explanations in the corresponding aspects of
Netflix platform, similar films, and awards.

Conclusion
In this paper, we propose a novel architecture named KRST
which outperforms SOTA models in most transductive and
inductive relation prediction tasks (15 of 18). In addition, we
perform clustering on KRST generated embeddings and pro-
vide a comprehensive multi-aspect explanation. Nonethe-
less, KRST is a model based on BERT, which requires rela-
tively large memory usage and computational resources. Go-
ing forward, we plan to solve this computational intensive
issue by proposing a more parameter-efficient model.
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