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Abstract

This paper is about editing Boolean classifiers, i.e., determin-
ing how a Boolean classifier should be modified when new
pieces of evidence must be incorporated. Our main goal is
to delineate what are the rational ways of making such edits.
This goes through a number of rationality postulates inspired
from those considered so far for belief revision. We give a
representation theorem and present some families of edit op-
erators satisfying the postulates.

Introduction
Alice, a bank employee, receives Bob, a customer who
wants to obtain a loan. Bob has a low income, but no debts.
His record shows that he had already requested a loan in the
past, and had fully reimbursed it. The bank management has
recently provided Alice with an AI algorithm (a pre-trained
predictor) to help her decide which issue to give to any loan
application. Alice is asked to use this algorithm which rec-
ommends against granting Bob the requested loan due to the
fact that he is not the owner of his principal residence. How-
ever, Alice is experienced and remembers of two customers
Cindy and Dan with a profile similar to Bob’s, who both had
previously been granted a loan without any issue. Hence,
Alice’s expertise led her not to follow the recommendation
of the AI algorithm and to grant Bob the loan requested.
But Alice would like to do more to avoid that the problem
encountered arises again with future clients having similar
profiles. She wonders what could be done to this end.

The research question tackled in this paper is relevant to
Alice’s concern. We focus on Boolean classifiers ϕ: given an
instance represented as a world, i.e., a truth assignment of all
the variables of interest, ϕ classifies the instance as positive
when it is a model of ϕ, and as negative when it is a counter-
model of ϕ. The concept associated with ϕ is the set of all
positive instances. Our very purpose is to determine how a
Boolean classifier ϕ that has already been learned should be
modified when new pieces of positive evidence / negative ev-
idence µ (that may conflict with predictions of the classifier)
are considered. We call such change operations on Boolean
classifiers positive edit / negative edits (respectively), and
we note them �+ and �−.

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

We assume that both inputs ϕ and µ are represented as
propositional formulae. Doing so, ϕ identifies both the clas-
sifier under consideration and, through its set of models, the
associated concept. On the other hand, µ’s models represent
new positive (resp. negative) pieces of evidence in the case
of a positive (resp. negative) edit. This representation choice
allows one to deal with a number of existing ML classi-
fiers: in an eXplainable AI perspective, many works have
shown recently how ML classifiers C of various types can
be associated with Boolean circuits ϕC , exhibiting the same
input-output behaviours (i.e., the predictions made using C
are precisely the same ones as those made using ϕC). The
ML models that are concerned include not only decision
trees (Izza, Ignatiev, and Marques-Silva 2020; Audemard
et al. 2021) and decision lists (Ignatiev and Silva 2021), but
also a number of ML models that are usually considered as
less interpretable, like random forests (Audemard, Koriche,
and Marquis 2020; Izza and Marques-Silva 2021), gradi-
ent boosted trees (Ignatiev 2020), some Bayes nets (Shih,
Choi, and Darwiche 2018, 2019), and binary neural net-
works (Narodytska et al. 2018; Shi et al. 2020). Accordingly,
classifiers C from those families can be taken into account
in our framework, using ϕC as a representation of C since
the two are prediction-equivalent.

Edit operations are connected to incremental concept
learners, like Mitchell’s Candidate Elimination Algorithm
(Mitchell 1977), Schlimmer and Granger’s STAGGER
(Schlimmer and Fisher 1986), Fisher’s COBWEB (Fisher
1987), and Gallant’s Pocket Algorithm (Gallant 1988). Such
systems, also referred to as on-line learning systems, are
suited to learning scenarios when a whole training set is not
available a priori but examples arrive over time. Borrowing
the criteria used in (Maloof and Michalski 2000) to draw a
typology of such systems, edit operations characterize on-
line learning systems with (full) concept memory (the role
played by the classifier ϕ), temporal batch (the set of mod-
els of µ is a new set of examples in the case of a positive
edit, and a new set of counter-examples in the case of a
negative edit), and no instance memory (the examples and
counter-examples used to induce ϕ are not stored). However,
previous work about incremental concept learners was typi-
cally centered on aspects that are not considered in this pa-
per. These included the design of a number of on-line learn-
ers (based on specific concept representations, e.g., decision
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trees or decision rules), the evaluation of their empirical ac-
curacy but also of their run-time efficiency (this can be a
critical aspect since items in a data stream can be received at
a so high rate that real-time guarantees are required to han-
dle all of them (Domingos and Hulten 2000)), and finally the
choice of examples that must be kept at each learning step
(Maloof and Michalski 2004).

Contrastingly, in our work, the focus is on an axiomatic
approach. We do not consider any specific concept represen-
tation, and do not make any assumption about how the batch
of new examples or counter-examples are represented. We
nevertheless suppose that the new piece of evidence µ that
triggers the edit operation of ϕ is certain, i.e., not pervaded
by any noise. Thus, stepping back to the loan scenario, Alice
is sure that Bob should be granted the loan. Here, our main
goal is to delineate the rational ways of making such edits.
This goes through a number of rationality postulates.

To determine such postulates, we look back at the core
principles of belief revision which aims to incorporate, in a
rational way, a new piece of information into the belief set of
an agent (Alchourrón, Gärdenfors, and Makinson 1985; Al-
chourrón and Makinson 1985; Gärdenfors 1988). The AGM
postulates (for Alchourrón, Gärdenfors and Makinson 1985)
aim to formalize a set of rationality conditions based on
three main principles: primacy of update (the new informa-
tion must be believed after the change), consistency (the re-
sulting belief set must be kept consistent when the new infor-
mation is consistent), and minimal change (if simply adding
the new information to the belief set raises no conflict, then
nothing else should be added or removed).

Adapting the postulates of belief revision into edit is not
a trivial task: provided that the beliefs of an agent ϕ and
the new information µ are represented by propositional for-
mulae, when the conjunction of ϕ and µ is consistent, the
revision of ϕ by µ corresponds to that conjunction (Katsuno
and Mendelzon 1991). However, by representing a Boolean
classifier ϕ and a set of incoming examples µ by two propo-
sitional formulae, one cannot reasonably require the edited
classifier to be the conjunction of ϕ and µ whenever con-
sistent: this process would unconditionally remove positive
instances not explicitly questioned by µ, while also not in-
corporating the examples from µ previously classified nega-
tively by ϕ.

Edit differs from belief revision in that the objects under
consideration (all of which being represented by proposi-
tional formulae) are nevertheless of different nature. Thus,
an agent’s beliefs (represented by ϕ) correspond to a set of
possible worlds to whom the one actual “true” world is be-
lieved to belong, while in edit, it makes perfect sense for
several instances to be both members of the concept repre-
sented by a Boolean classifier. Likewise, every Boolean clas-
sifier ϕ is essentially “consistent”: when ϕ has no model, it
simply represents the empty concept. This explains also why
the consistency principle is irrelevant to an edit operation.

Nevertheless, the primacy of update and minimality of
change principles can be adapted to the edit context. For this
purpose, after some formal preliminaries, we introduce the
edit postulates in the context of positive edit first (incorpo-
rating a batch of positive instances into a Boolean classifier).

We also give a representation theorem and present some ex-
amples of positive edit operators. Then, we show how these
postulates can be adapted to the case of a negative edit (i.e.,
when the arriving batch is interpreted as a set of negative
instances) and make precise how a correspondence between
the two operations can be formalized through a duality re-
sult. We then consider the case of a full edit, where both pos-
itive and negative instances can be considered in the same
batch. Lastly, related work is discussed just before the con-
clusion. The proofs of propositions are available online.1

Formal Preliminaries
We consider a propositional languageLPS built from a finite
set PS of variables and the standard connectives. A world
is a truth assignment of all variables from PS. The set of all
worlds is denoted by Ω, and the set of models of a proposi-
tional formula ϕ ∈ LPS (i.e., the set of worlds that make ϕ
true) is denoted by [ϕ]. Given two formulae α, β, we write
α |= β whenever [α] ⊆ [β] and α ≡ β when [α] = [β].

Belief revision aims to incorporate into the beliefs of an
agent (a formula ϕ) a new piece of information (a formula
µ). Thus a revision operator ◦ associates formulae ϕ, µ with
a revised formula ϕ ◦ µ, and is expected to satisfy a set of
rationality postulates:2

Definition 1 (KM revision operator). A revision operator ◦
is said to be a KM revision operator if it satisfies the follow-
ing postulates:

(R1) ϕ ◦ µ |= µ
(R2) If [ϕ ∧ µ] 6= ∅, then ϕ ◦ µ ≡ ϕ ∧ µ
(R3) If [µ] 6= ∅, then [ϕ ◦ µ] 6= ∅
(R4) If ϕ ≡ ϕ′ and µ ≡ µ′, then ϕ ◦ µ ≡ ϕ′ ◦ µ′
(R5) (ϕ ◦ µ) ∧ µ′ |= ϕ ◦ (µ ∧ µ′)
(R6) If [(ϕ◦µ)∧µ′] 6= ∅, then ϕ◦ (µ∧µ′) |= (ϕ◦µ)∧µ′

(R1) is the success postulate, it relates to the primacy of
update principle: the new information must be believed af-
ter revision. (R3) is the consistency postulate. (R4) is the
syntax-irrelevance postulate. And (R2), (R5) and (R6) ex-
press the minimality of change conditions. We refer the
reader to (Alchourrón, Gärdenfors, and Makinson 1985;
Katsuno and Mendelzon 1991) for a deeper discussion about
the rationale of these postulates.

Positive Edit
We now intend to define a change operation �+ that consists
in editing an (already learned) Boolean classifier ϕ accord-
ing to a new information µ. We assume that ϕ is represented
by a propositional formula. In this context, each world repre-
sents an instance, and a world ω is a model of ϕ if and only if
it is a positive instance of the concept represented by ϕ (so
each instance is either classified as positive or negative by
ϕ). The new information µ is called a positive dataset and is

1https://nicolas-schwind.github.io/SIM-AAAI23-proofs.pdf
2We give here the KM postulates (Katsuno and Mendelzon

1991), which are the translation of the AGM postulates in finite
propositional logic.
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also represented by a propositional formula. The set of mod-
els of µ represents a batch of arriving positive instances, also
called positive examples (i.e., when referring to the models
of µ). We do not make any further assumption on the way ϕ
and µ are represented (e.g., ϕ could be a decision tree and µ
a DNF formula, but it does not have to be the case).
Example 1. Let us formalize the scenario provided in the in-
troduction. We set PS = {p, q, r, s} where p means that the
applicant “has a high income”, q stands for “owns her prin-
cipal residence”, r means “has no debts”, and smeans “has
reimbursed a previous loan”. We assume that ϕ = p∧ q∧ r,
i.e., the predictor recommends granting a loan precisely to
those residence owners having a high income and no debts.
Then, let Bob have the profile ω1 = 0011, i.e., he is not
owning his residence, has a low income, but has no debts
and has reimbursed a previous loan; and let Cindy and Dan
be identified with the same profile ω2 = 0101. The positive
dataset µ is then defined as any propositional formula such
that [µ] = {ω1, ω2}, e.g., µ = ¬p ∧ s ∧ (q ↔ ¬r).

An edit operator �+ associates every Boolean classifier ϕ
and every positive dataset µ with an edited Boolean classi-
fier ϕ �+ µ. Our key assumption is that the new piece of
evidence µ that triggers the edit operation of ϕ is provided
by a domain expert: it is therefore certain, i.e., not pervaded
by any noise. This can be ensured in a number of scenarios
(thus, stepping back to the example given in the introduc-
tion, Alice is sure that applicants with the same profiles as
Bob, Cindy and Dan should be granted the loan).

We are ready to introduce our postulates for positive edit:
Definition 2 (Positive Edit operator). An operator �+ is said
to be a positive edit operator (PE operator for short) if it
satisfies the following postulates:

(P1) µ |= ϕ �+ µ
(P2) If µ |= ϕ, then ϕ �+ µ ≡ ϕ
(P3) If ϕ1 ≡ ϕ2 and µ1 ≡ µ2, then ϕ1 �+ µ1 ≡ ϕ2 �+ µ2

(P4) If ψ |= ϕ �+ µ, then ϕ �+ µ ≡ ϕ �+ (µ ∨ ψ)

(P1) relates to the primacy of update principle. Since the
incoming positive dataset µ is assumed to be certain, (P1)
requires the edited classifier to “comply” with µ, i.e., to cor-
rectly classify all examples from µ as positive instances.
This can be viewed as the counterpart of (R1) in belief revi-
sion. (P2) is a minimality of change postulate: if the initial
classifier already complies with µ, then there is no need to
change it. It is reminiscent to (R2) in belief revision, but (P2)
and (R2) differ in their premise. Indeed, (P2) does not say
anything when µ 6|= ϕ and [ϕ∧µ] 6= ∅: if ϕ does not comply
with µ (i.e., some positive examples from µ were previously
classified as negative instances by ϕ), then it makes perfect
sense to question the concept membership of any instance
ω /∈ [µ]. Note that when µ |= ϕ, the conclusion of (P2)
can equivalently be stated as ϕ �+ µ ≡ ϕ ∨ µ, from which
the similarity with (R2) is clearer: µ is simply “added” to
ϕ, which results in not changing ϕ at all. (P3) is the syntax-
independence postulate, which is the direct counterpart of
(R4). (P4) is another minimality of change postulate. Its
counterparts in belief revision are (R5) and (R6), which to-
gether express that if ϕ revised by a first piece of informa-
tion µ1 is consistent with another piece of information µ2,

then revising ϕ by both pieces of information taken together
(i.e., by µ1 ∧ µ2) boils down to “adding” µ2 to the revi-
sion of ϕ by µ1. Likewise, in our setting, (P4) says that if
the edit of a classifier ϕ by a first positive dataset µ com-
plies with another positive dataset ψ, then its edit by the
two batches taken together (i.e., by µ ∨ ψ) boils down to
“adding” ψ to the edit of ϕ by µ: indeed, if ψ |= ϕ �+ µ,
then ϕ �+ µ ≡ (ϕ �+ µ)∨ψ and thus the conclusion of (P4)
can equivalently be written as (ϕ �+ µ)∨ψ ≡ ϕ �+ (µ∨ψ).
Please note that (R3), the consistency postulate in belief re-
vision, is the only postulate with no counterpart in our set-
ting, since every Boolean classifier is essentially “consis-
tent”: if [ϕ] = ∅, then ϕ characterizes an empty concept.

Notably, the edit postulates (P1-P4) are also reminiscent
to properties that can be sought for incremental concept
learners in the absence of noise. Thus, (P1) states that once
the edit operation has been performed, the resulting concept
ϕ �+ µ must be consistent (in the sense of (Mitchell 1982))
with the new examples given by µ, which precisely means
that those examples must be positive instances of ϕ �+ µ.
(P2) requires not to change the concept ϕ when it clas-
sifies correctly the new examples given by µ. This condi-
tion is achieved, for instance, by the perceptron update rule
(Rosenblatt 1958). (P3) requires syntax not to play any role
in the on-line learning process, which makes sense if the
specific representation ϕ of the concept at hand is irrele-
vant (this is one of our starting assumptions). Finally, pro-
vided that (P2) holds, (P4) can be viewed as a relaxation
of an order-independence condition that is satisfied by some
on-line learners. This last property roughly states that while
the new examples arrives over time, once the whole input
sequence has been processed, the classifier has been trans-
formed in the same way as if all pieces of evidence were
available as a whole. Such an order-independence condition
is ensured by ID5 (Utgoff 1989), that has been shown to
compute the same decision tree as the one that would be
generated by ID3 (Quinlan 1986), provided that the whole
set of examples would be available at start. Formally, in our
setting, the order-independence condition can be stated as
(ϕ�+µ)�+ψ ≡ ϕ�+(µ∨ψ). Note that this condition is quite
demanding and not satisfied by every on-line learner (e.g.,
the perceptron update rule may easily question the way an
instance µ has been classified when editing further the linear
classifier by taking a new instance ψ into account). Accord-
ingly, we focused on a weaker condition (it is easy to show
that (P4) is a logical consequence of the order-independence
condition when (P2) holds).

At this point, one can already identify a few simple oper-
ators from the class:

Definition 3 (Some PE operators). The trivial, basic, and
drastic operators, respectively noted �+T , �+B , and �+D, are
defined for each classifier ϕ and each positive dataset µ as:

• ϕ �+T µ = ϕ if µ |= ϕ, otherwise ϕ �+T µ = >
• ϕ �+B µ = ϕ ∨ µ
• ϕ �+D µ = ϕ if µ |= ϕ, otherwise ϕ �+D µ = µ

The trivial operator �+T just requires a classifier to clas-
sify all worlds as positive instances as soon as it does not
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initially comply with the input positive dataset. The basic
operator �+B is simply defined as disjunction: it adds as posi-
tive instances all the examples provided by µwhich were not
already classified as positive. The drastic operator �+D leaves
the classifier ϕ unchanged if already compliant with µ. Oth-
erwise, similarly to the trivial operator, it “forgets” every-
thing, but classifies as positive instances precisely the ones
explicitly provided as examples by µ. This can be viewed
as the PE counterpart of the drastic revision operator ◦D de-
fined as ϕ◦Dµ = ϕ∧µ if [ϕ∧µ] 6= ∅, otherwise ϕ◦Dµ = µ.

It is quite easy to check that these operators satisfy (P1-
P4) (the proof is direct):

Proposition 1. �+T , �+B and �+D are PE operators.

A Representation Theorem. Let us now show how PE
operators can be characterized in terms of so-called positive
assignments:

Definition 4 (Positive assignment). A positive assignment
is a mapping associating every classifier ϕ with a mapping
fϕ : P(Ω) 7→ P(Ω), such that for all classifiers ϕ, ϕ′ and
all subsets of worlds W,W ′ ∈ P(Ω), the following proper-
ties are satisfied:

1. W ⊆ fϕ(W )
2. If W ⊆ [ϕ], then fϕ(W ) = [ϕ]
3. If ϕ ≡ ϕ′, then fϕ = fϕ′
4. If W ⊆W ′ and W ′ ⊆ fϕ(W ), then fϕ(W ) = fϕ(W ′)

Proposition 2. An operator �+ is a PE operator if and only
if there is a positive assignment ϕ 7→ fϕ such that for each
classifier ϕ and each positive dataset µ, [ϕ � µ] = fϕ([µ]).

This is a “strong” representation result, in the sense that
different positive assignments define different PE operators.

Interestingly, every mapping fϕ satisfies the property of
idempotence:

Proposition 3. For each positive assignment ϕ 7→ fϕ and
each W ⊆ Ω, we have that fϕ(fϕ(W )) = fϕ(W ).

Accordingly, a consequence of the PE postulates is that
(ϕ�+ µ)�+ µ ≡ ϕ�+ µ. This idempotence property reflects
a very simple form of minimal change and is standard in
belief change: it is satisfied by belief revision operators but
also by other forms of change operations, e.g., contraction
(Caridroit, Konieczny, and Marquis 2017).

Noteworthy, condition 4 corresponds to the condition of
Irrelevance of Rejected Contracts (IRC) in matching the-
ory (Hatfield and Milgrom 2005). In that context, this prop-
erty requires the removal of rejected contracts not to affect
a choice set, and is a necessary condition to guarantee the
existence of stable allocations (Aygün and Sönmez 2013),
without implying rationalizability3(Yang 2020).

Distance-based PE operators. We now introduce two
classes of operators, called dilation operators and min-
generalization operators. These operators are parameterized
by a distance between worlds, i.e., a mapping d : Ω×Ω 7→ N

3A choice function σ : P(E) 7→ P(E), i.e., a mapping such
that σ(S) ⊆ S, is rationalizable if it can be characterized in terms
of preference relation over elements from E.

such that d(ω, ω′) = 0 if and only if ω = ω′, and that
satisfies the triangular inequality property, i.e., d(ω, ω′′) ≤
d(ω, ω′) + d(ω′, ω′′), for all worlds ω, ω′, ω′′.

Let us start with dilation operators, whose definition is
inspired from the notion of formula dilation from (Bloch and
Lang 2002; Dalal 1988). Given a classifier ϕ such that [ϕ] 6=
∅, and an integer k, the k-dilation of ϕ w.r.t. d, denoted by
Dd

ϕ(k), is defined by Dd
ϕ(k) = {ω ∈ Ω | d(ω, ϕ) ≤ k},

where d(ω, ϕ) = min{d(ω, ω′) | ω′ |= ϕ}.
Definition 5 (Dilation operator). The dilation operator �+dil,d
induced by d is defined for each classifier ϕ and each pos-
itive dataset µ by [ϕ �+dil,d µ] = [µ] if [ϕ] = ∅, otherwise
[ϕ �+dil,d µ] = arg mink({Dd

ϕ(k) | [µ] ⊆ Dd
ϕ(k)}).

A number of dilation operators can be defined depending
on the choice of d. For instance, consider the Hamming dis-
tance between worlds, denoted by dH , defined for all worlds
ω, ω′ ∈ Ω as dH(ω, ω′) = {x ∈ PS | ω(x) 6= ω′(x)}
(Dalal 1988). Then the Hamming-based dilation operator
�+dil,dH

consists in k-dilating ϕ w.r.t. dH where k is the least
integer for which the resulting set of models includes every
model of µ (see Example 1 below).

Let us now introduce the class of min-generalization op-
erators. Given a distance d and a world ω, let ≤d

ω is the to-
tal preorder over worlds induced by ω and d and defined
by ω′ ≤d

ω ω′′ iff d(ω′, ω) ≤d
ω d(ω′′, ω). Given a classifier

ϕ such that [ϕ] 6= ∅, the set min([ϕ],≤d
ω) denotes the set

of models of ϕ that have a distance to ω which is minimal
among all models of ϕ, i.e., min([ϕ],≤d

ω) = {ω′ ∈ [ϕ] |
∀ω′′ ∈ [ϕ], d(ω′, ω) ≤ d(ω′′, ω)}.
Definition 6 (Min-generalization operator). The min-
generalization operator �+gen,d induced by d is defined for
each classifierϕ and each positive dataset µ by [ϕ�+gen,dµ] =

[µ] if [ϕ] = ∅, otherwise [ϕ �+gen,d µ] = {ω ∈ Ω | ∃ω′, ω′′ ∈
Ω, ω′ |= µ, ω′′ ∈ min([ϕ],≤d

ω′), d(ω, ω′) + d(ω, ω′′) ≤
d(ω′, ω′′)}.

The min-generalization operator consists in consider-
ing as positive instances for ϕ �+gen,d µ every world ω

that is “in-between” (w.r.t. d) a model ω′ of µ and a
model ω′′ of ϕ that is among the closest ones (w.r.t. d)
to ω′. When d = dH , the min-generalization operator
can be characterized using the most specific generalization
(msg) of the worlds involved.4 Let msg(ω, ω′) be the term∧

x∈PS|ω(x)=ω′(x)=1 x∧
∧

x∈PS|ω(x)=ω′(x)=0 ¬x. Then one
can check that ϕ �+gen,dH

µ ≡
∨
{msg(ω, ω′) | ω ∈ [µ], ω′ ∈

min([ϕ],≤d
ω)}.

All the operators from these classes satisfy (P1-P4):
Proposition 4. For every distance d, the operators �+dil,d and
�+gen,d are PE operators.

Example 1 (continued). Let us go back to our loan sce-
nario, and recall that PS = {p, q, r, s}, ϕ = p ∧ q ∧ r,
and µ = ¬p ∧ s ∧ (q ↔ ¬r). Figure 1 depicts through

4Most specific generalization is a key concept in machine learn-
ing, see e.g., (Plotkin 1970; Mitchell 1977).
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(f) [ϕ �+gen,dH µ]

Figure 1: An example of Hamming-based dilation (Fig. 1c) and min-generalization (Fig. 1f) positive edits.

Karnaugh maps the models of ϕ and µ (Fig. 1a), the 1-
dilation of ϕ (Fig. 1b), the Hamming-based dilation edit of
ϕ by µ, which corresponds to the 2-dilation of ϕ (Fig. 1c),
and the Hamming-based min-generalization edit of ϕ by µ
(Fig. 1f), which corresponds to the disjunction of the two
msgs given in Fig. 1d and 1e. Accordingly, we get that
ϕ �+dil,dH

µ ≡ p ∨ q ∨ r and ϕ �+gen,dH
µ ≡ s ∧ (q ∨ r).

As it can be verified on the example, dilation and min-
generalization PE operators can easily add to ϕ models that
are neither models of ϕ nor models of µ, thus questioning
negative instances (the counter-models of ϕ). Such a gen-
eralization power (required by incremental learning) is not
forbidden but not mandatory for PE operators (e.g., consider
the basic and the drastic PE operators in Definition 3). Min-
generalization PE operators may also question positive in-
stances (again, this is expected when used for learning).

Negative Edit
Let us now consider the incorporation of negative instances
into a Boolean classifier, alias negative edits. This time, the
models of the change formula µ represent counter-examples
of the target concept (a negative dataset).
Definition 7 (Negative Edit operator). An operator �− is
said to be a negative edit operator (NE operator for short) if
it satisfies the following postulates:
(N1) µ |= ¬(ϕ �− µ)
(N2) If µ |= ¬ϕ, then ϕ �− µ ≡ ϕ
(N3) If ϕ1 ≡ ϕ2 and µ1 ≡ µ2, then ϕ1 �− µ1 ≡ ϕ2 �− µ2

(N4) If ψ |= ¬(ϕ �− µ), then ϕ �− µ ≡ ϕ �− (µ ∨ ψ)

Similarly to Harper and Levi’s identities which show how
a revision operator can be defined from a contraction op-
erator and vice-versa (see e.g., (Caridroit, Konieczny, and
Marquis 2017)), one can identify a correspondence between
PE and NE operators. With an operator �∗ : L×L 7→ L, let
us associate an operator σ(�∗) : L × L 7→ L defined as:

ϕ σ(�∗) µ = ¬(¬ϕ �∗ µ),

for every classifier ϕ and every formula µ. Then:
Proposition 5. σ is an involution, that is, for each operator
�∗ : L×L 7→ L, σ(σ(�∗)) = �∗. Moreover, σ(�∗) is an NE
operator if and only if �∗ is a PE operator.

We say that the operator σ(�∗) is the dual of �∗. For in-
stance, consider again the trivial, basic and drastic PE op-
erators introduced in Definition 3. Then it is easy to see

that the dual of these operators, i.e., the trivial, basic, and
drastic NE operators, respectively denoted by �−T = σ(�+T ),
�−B = σ(�+B), and �−D = σ(�+D), are defined for each classi-
fier ϕ and each negative dataset µ by:
• ϕ �−T µ = ϕ if µ |= ¬ϕ, otherwise ϕ �−T µ = ⊥
• ϕ �−B µ = ϕ ∧ ¬µ
• ϕ �−D µ = ϕ if µ |= ¬ϕ, otherwise ϕ �−D µ = ¬µ

Dual operators of dilation operators and min-
generalization operators can also be easily defined.
Interestingly, the operators dual to dilation operators involve
an operation of formula erosion (Bloch and Lang 2002),
which is an operation on formulae dual to the one of dila-
tion. For instance, the Hamming-based erosion operator,
denoted by �−ero,dH

, is defined for each classifier ϕ and each
negative dataset µ as ϕ �−ero,dH

µ = ¬(¬ϕ �+dil,dH
µ).

Full Edit
Let us finally consider the more general case when the new
piece of evidence consists of both positive and negative in-
stances that must be incorporated into the classifier. We call
such a piece of evidence a dataset, i.e., a pair (µ+, µ−) such
that µ+ is a positive dataset (a set of examples), µ− is a
negative dataset (a set of counter-examples), and such that
[µ+ ∧ µ−] = ∅. The set D denotes the set of all datasets.
Definition 8 (Full Edit operator). An operator � : L×D 7→
L is said to be a full edit operator (FE operator for short) if
for each a classifier ϕ and each dataset (µ+, µ−), it satisfies
the following postulates:
(F1) µ+ |= ϕ � (µ+, µ−)
(F2) µ− |= ¬(ϕ � (µ+, µ−))
(F3) If µ+ |= ϕ and µ− |= ¬ϕ, then ϕ � (µ+, µ−) ≡ ϕ
(F4) If ϕ1 ≡ ϕ2, µ+

1 ≡ µ
+
2 and µ−1 ≡ µ

−
2 ,

then ϕ1 � (µ+
1 , µ

−
1 ) ≡ ϕ2 � (µ+

2 , µ
−
2 )

(F5) If ψ |= ϕ � (µ+, µ−) and α |= ¬(ϕ � (µ+, µ−)),
then ϕ � (µ+, µ−) ≡ ϕ � (µ+ ∨ ψ, µ− ∨ α)

The postulate (F1) (resp. (F2)) corresponds to (P1)
(resp. (N1)), while (F3) (resp. (F4), (F5)) is a (weak) com-
bination of (P2) and (N2) (resp. (P3) and (N3), (P4) and
(N4)).

A number of FE operators can be defined by means of
a PE operator or an NE operator. Given an operator �+ :
L×L 7→ L, let us define the operator ��+ : L×D 7→ L for
each classifier ϕ and each dataset (µ+, µ−) as:

ϕ ��+ (µ+, µ−) = (ϕ �+ µ+) ∧ ¬µ−.
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We say that ��+ is positively induced by �+. Then:
Proposition 6. ��+ is an FE operator if and only if �+ is a
PE operator.

Proposition 6 gives us a constructive way to define an FE
operator from a PE operator. Consider for instance the dila-
tion operator �+dil,d, where d is any distance between worlds
(cf. Definition 5). Then the operator ��+dil,d consists in first
“dilating” an input classifier ϕ so as to include all positive
examples from µ+, and then removing all instances intro-
duced in the dilation step according to µ−. As a consequence
of Proposition 6, this operator satisfies (F1-F5).

Likewise, each NE operator also defines an FE operator.
Given an operator �− : L×L 7→ L, � is said to be negatively
induced by �−, denoted by � = ��− , if it is defined for each
classifier ϕ and each dataset (µ+, µ−) by ϕ��− (µ+, µ−) =
(ϕ �− µ−) ∨ µ+. Echoing Proposition 6, we get that:
Proposition 7. ��− is an FE operator if and only if �− is an
NE operator.

Remark that inducing an operator � by a PE operator and
an NE operator, e.g., as ϕ � (µ+, µ−) = (ϕ �+ µ+) �− µ−,
does not always define an FE operator, even when �+ and �−
are dual. To give an example when this kind of construction
does not work, let us consider our loan scenario again:
Example 1 (continued). Assume now that Alice receives an
additional applicant, Emir, with profile ω3 = 0100. Since
Emir has a low income, debts, and has not yet reimbursed his
previous loan, Alice is certain that Emir is not eligible for a
new loan. We are then given both a dataset µ = (µ+, µ−),
where µ+ = ¬p∧ s∧ (q ↔ ¬r) with [µ+] = {ω1, ω2} (Bob
/ Cindy and Dan are positive examples), and µ− = ¬p∧ q∧
¬r ∧ ¬s, i.e., [µ−] = {ω3} (Emir is a negative example).
Let us consider the operator � defined by ϕ � µ = (ϕ �+dil,dH

µ+) �−ero,dH
µ−, i.e., the classifier is first edited according

to µ+ using the Hamming-based dilation edit �+dil,dH
, and

is then edited again according to µ− using the Hamming-
based erosion edit �−ero,dH

, that is, the negative edit operator
dual to �+dil,dH

. Recall first that ϕ′ = ϕ�+dil,dH
µ+ = p∨q∨r

(cf. Fig. 1c). Then we get that ϕ′′ = ϕ�µ = ϕ′ �−ero,dH
µ− ≡

(p ∨ q) ∧ (r ∨ (p ∧ q)), with [ϕ′′] = DdH
ϕ (1) (cf. Fig. 1b).

Yet {ω1, ω2} ∩ [ϕ′′] = ∅, i.e., Bob / Cindy and Dan are not
classified as positive instances by the edited classifier ϕ′′.
Hence, � does not satisfy (F1), i.e., � is not an FE operator.

At that stage, a natural question is whether one can find
an FE operator that is not induced by a PE operator or an NE
operator. We provide below a positive answer to this ques-
tion. In fact, we intend to introduce an operator which is not
“decomposable” in any way by means of a combination of a
PE operator and an NE operator. Formally, given an FE oper-
ator �, a PE operator �+ and an NE operator �−, we say that
the pair (�+, �−) is faithful to � if for each classifier ϕ and
each dataset (µ+, µ−), ϕ � (µ+, µ−) ≡ (ϕ �+ µ+) �− µ−
or ϕ � (µ+, µ−) ≡ (ϕ �− µ−) �+ µ+. An FE operator �
is then said to be decomposable if � admits a faithful pair
(�+, �−). In particular, positively induced FE operators ��+
are decomposable: it can be easily verified that for each PE

operator �+, the FE operator ��+ admits the faithful pair
(�+, �−B), where �−B is the basic NE operator (recall that
ϕ �−B µ = ϕ ∧ ¬µ, for each classifier ϕ and each negative
dataset µ). And similarly, negatively induced FE operators
��− are decomposable as well since they admit the faithful
pair (�+B , �−).

Now, let us consider the operator �∗ defined for each clas-
sifier ϕ and each dataset (µ+, µ−) as:

ϕ �∗ (µ+, µ−)

 ϕ, if µ+ |= ϕ and µ− |= ¬ϕ,
>, if µ+ 6|= ϕ and [µ−] = ∅,
µ+, otherwise.

This operator simply leaves unchanged the edited clas-
sifier in the case when it already complies with the input
dataset (as required by (F3)). In the remaining cases, it be-
haves like the PE trivial operator �+T if the negative batch is
empty, otherwise it behaves like the PE drastic operator �+D
(cf. Definition 3). We can show that:
Proposition 8. �∗ is an FE operator that is not decompos-
able.

This leaves us the interesting open question of whether a
characterization result for FE operators can be found. This
is a perspective for further research.

Related Work
Theory revision is a change operation studied by ML re-
searchers in the nineties that is connected to the edit one.
Theory revision is an important component for concept for-
mation, and as such it has been investigated and imple-
mented as part of knowledge acquisition and machine learn-
ing systems (see e.g., MOBAL (Morik et al. 1994) and EI-
THER (Ourston and Mooney 1994)). Typically, in theory re-
vision, a theory Σ is a logical representation (most of the
time, a FOL formula) linking together atoms, denoting fea-
tures used for describing instances and targeted concepts.
An instance x is classified by Σ as an element of a con-
cept y (represented by an atom) whenever y can be deduced
from Σ and x. When an instance together with its right con-
cept (given by the change formula) is not classified by Σ
as expected, a theory revision operator can be exploited to
modify Σ so as to ensure that the instance is not classi-
fied incorrectly any longer in the revised theory. AGM con-
traction operators (Alchourrón, Gärdenfors, and Makinson
1985) can be used to this end (Wrobel 1993). Note that it
can be the case that an instance x is not classified by Σ as an
element of any concept. Accordingly, the representation to
be changed Σ does not necessarily represent a “full” classi-
fier as in the edit case. Furthermore, the basic operations that
are used to derive the revised theory are usually not syntax-
independent. This is typically the case, e.g., in the learning
from interpretations setting (De Raedt 1997; De Raedt and
Dehaspe 1997) where both the set of examples and the re-
vised theory (called hypothesis) are full clausal theories, and
other various formalizations of concept learning in logical
settings, including inductive logic programming (Muggle-
ton and De Raedt 1994; Flach 1997). This also makes them
distinct from edit operations. Finally, works on theory revi-
sion are typically focused on defining specific approaches to

6521



achieve a revision of the input theory (possibly using few ba-
sic operations (Goldsmith et al. 2004; Goldsmith and Sloan
2005)), but they do not adopt an axiomatic perspective for
delineating all the rational theory revision operators.

More recently, Zhou (2019) emphasized again the impor-
tance of integrating learning and reasoning in modern learn-
ing systems. The idea is to improve the decisions made by
an underlying ML system C (the classifier), taking advan-
tage of a reasoning moduleM . Roughly speaking, whenever
a prediction P is made by the classifier C, it is transmitted
to a reasoning module that checks whether the prediction is
correct or not. If it is correct, nothing should be changed;
otherwise, the corrected prediction P ′ found by M is trans-
mitted back to C that is trained again using P ′. Our edit
framework is similar in essence, where a classifier ϕ plays
the role ofC and the positive / negative dataset µ is provided
by an underlying expert module M . One of the strengths of
Zhou’s approach is that it is model-agnostic: the ML system
can be any black box function. This is reminiscent to our
edit framework where no further assumption is made on the
representation of the input classifier ϕ and batch µ, besides
being propositional formulae. However, in (Zhou 2019), the
correction step is achieved by learning, which means that
there is no guarantee that the repair is effective in the general
case. In comparison, our framework, by its principled nature,
guarantees the classifier to become fully compliant with the
input batch after edit (cf. (P1), (N1), (F1) and (F2)).

Modifying a predictor so as to better take account for
instances that are misclassified, as done with edit opera-
tions, is also at the core of boosting, a key principle in ML.
In adaptative boosting for binary classification (Freund and
Schapire 1997), the predictor has the form of an ensem-
ble of weak learners, often decision trees reduced to deci-
sion stumps. The output of those weak learners is combined
into a weighted sum that represents the final output of the
boosted classifier. AdaBoost is an iterative learning algo-
rithm: at each iteration, the algorithm samples the training
set, taking account for the distribution given by the weights
associated with the instances (at start the uniform distribu-
tion is considered), then it looks for a weak classifier which
minimizes the total weighted error, uses this to calculate the
error rate and the weight of the weak classifier that has been
generated, and finally update the weights of the instances so
as to favor at the next step the selection of instances that have
been misclassified by the generated weak learner. After a
preset number of iterations, the algorithm stops. It turns out
that the boosted classifier generated after an iteration may
still misclassify the instances that were already misclassified
by the boosted classifier before the iteration. Accordingly,
the update operation at work in AdaBoost for improving the
current boosted tree at each iteration is not a positive edit
operator: (P1) is not satisfied.

Lastly, closely related to our work is a recent paper about
classifier rectification (Coste-Marquis and Marquis 2021).
Unlike the present paper, more than two classes can be con-
sidered in (Coste-Marquis and Marquis 2021) (classes are
explicitly represented). Thus, two subsets X and Y of PS
are used to encode, on the one hand, instances (positive ones
and negative ones) and on the other hand, classes. When

only two classes are targeted (the class of positive instances,
a subset of ΩX , the worlds over X , and its complemen-
tary set in ΩX containing the negative instances), a single-
ton Y = {y} is enough. Coste-Marquis and Marquis [2021]
point out rules to be obeyed by any rational change operation
? on Boolean classifiers Σ, when new pieces of evidence T
must be taken into account. Boolean classifiers Σ are formu-
lae from L satisfying the so-called XY -classification prop-
erty. When Y = {y}, this precisely means that Σ is equiv-
alent to ϕX ⇔ y where ϕX is a formula over X . Thus,
Σ classifies a given instance x ∈ ΩX as positive (resp.
negative) whenever x |= ϕX (resp. x |= ¬ϕX ). Accord-
ingly, every PE operation (resp. NE operation) of ϕX by a
change formula µX corresponds to a rectification operation
of Σ = ϕX ⇔ y by T = µX ⇒ y (resp. T = µX ⇒ ¬y).
Postulates for the rectification operation have been provided
in (Coste-Marquis and Marquis 2021). Though some con-
nections between rectification postulates and PE / NE pos-
tulates exist, it is not the case that every PE (or NE) opera-
tor induces a rectification operator. Indeed, the rectification
postulate (RE2) (see (Coste-Marquis and Marquis 2021) for
details) makes formal a very demanding view of minimal
change: when a change concerning an example (positive in-
stance) µX is triggered, the classifications achieved by the
rectified classifier coincide with those achieved by the clas-
sifier Σ at start, except possibly for µX (accordingly, rec-
tification operators do not allow any generalization to take
place and thus are not convenient for incremental learning).

Conclusion
The paper was focused on the question of editing Boolean
classifiers, i.e., determining how a Boolean classifier should
be modified when new pieces of evidence must be incorpo-
rated, an issue at the crossroads of ML and KR. Though the
performance of ML models in terms of accuracy is impres-
sive most of the time (especially when classifiers are learned
from a sufficient amount of data), the error risk cannot be to-
tally removed (this is intrinsic to inductive generalization).
Thus, it is important to design and study approaches to deter-
mine how a classifier should be modified whenever it does
not label an instance in the right way. The reported work
is a step in this direction, centered on the identification of
first principles (postulates) for characterizing what a ratio-
nal change could be when dealing with Boolean classifiers.

One of our key assumptions in this paper is that the in-
put dataset is fully reliable, which is reflected by the suc-
cess postulate (P1) (in the case of positive edit). However,
a number of standard learning algorithms take noisy exam-
ples into account, e.g., the k-NN algorithm, the perceptron
algorithm, and algorithms for generating decision trees with
pruning; and those algorithms do not satisfy (P1). To extend
the edit setting to noisy data, we plan to investigate how (P1)
could be relaxed, so that an example is incorporated only
if the corresponding piece of evidence is considered “suffi-
ciently often” by the learning algorithm. For capturing such
a behavior, improvement appears as a promising candidate
(Konieczny, Medina Grespan, and Pino Pérez 2010), and de-
termining the extent to which edit and improvement could be
combined looks as a valuable perspective for further work.
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