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Abstract

We propose a new criterion for measuring dependence be-
tween two real variables, namely, Multi-level Wavelet Map-
ping Correlation (MWMC). MWMC can capture the nonlin-
ear dependencies between variables by measuring their cor-
relation under different levels of wavelet mappings. We show
that the empirical estimate of MWMC converges exponen-
tially to its population quantity. To support independence test
better with MWMC, we further design a permutation test
based on MWMC and prove that our test can not only control
the type I error rate (the rate of false positives) well but also
ensure that the type II error rate (the rate of false negatives)
is upper bounded by O(1/n) (n is the sample size) with fi-
nite permutations. By extensive experiments on (conditional)
independence tests and causal discovery, we show that our
method outperforms existing independence test methods.

Introduction
Detecting dependence between two variables is a funda-
mental problem in the field of statistics, with applications
in a variety of areas such as statistical inference (Casella
and Berger 2021), independent principal component anal-
ysis (Comon 1994), and feature selection (Fukumizu, Bach,
and Jordan 2004). When two random variables are categori-
cal, a class of non-parametric methods such as Pearson’s chi-
square test (Plackett 1983), are used to determine whether
they are independent. However, when the density functions
of two random variables are both continuous, determining
the independence between them is considered to be a chal-
lenging task (Hoeffding 1948).

Pearson’s correlation coefficient (Benesty et al. 2009) is
widely used as a criterion for testing the independence of
continuous variables. However, since it can only measure
linear correlations between variables, there is no guaran-
tee that all dependencies can be measured when the dis-
tributions of variables are non-Gaussian. In order to de-
tect more complex nonlinear dependencies among random
variables, a class of kernel-based (Muller et al. 2001) in-
dependence criteria were proposed based on the frame-
work established by Rényi (Rényi 1959). These criteria
are mainly derived from the cross-covariance operators in
the reproducing kernel Hilbert space (RKHS) (Berlinet and
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Thomas-Agnan 2011). The first proposed RKHS measure
is the kernel canonical correlation (KCC) (Bach and Jor-
dan 2002), which mainly uses the maximum singular value
to measure dependency. Later, the constrained covariance
(COCO) (Gretton et al. 2005b) criterion without regular-
ization was proposed. Some other empirical kernel quan-
tities such as kernel mutual information (KMI) (Gretton,
Herbrich, and Smola 2003) and kernel generalized variance
(KGV) (Bach and Jordan 2002) use Parson’s window to es-
timate mutual information to measure dependence. One of
the most widely used kernel-based dependence measures,
the Hilbert Schmidt Independence Criterion (HSIC) (Gret-
ton et al. 2005a), uses the squared Hilbert-Schmidt norm
to detect dependence. The HSIC-based independence test
outperforms other RKHS measures in experimental perfor-
mance with adequate feature mapping. However, this kernel-
based method has at least quadratic computational complex-
ity and has to choose the kernel bandwidth. Some pointwise
distance based methods (Székely and Rizzo 2009; Heller,
Heller, and Gorfine 2013; Lyons 2013) and copula based
methods (Schweizer and Wolff 1981; Zhang 2019) are also
widely used. A representative copula based method, the ran-
domized dependence coefficient (Lopez-Paz, Hennig, and
Schölkopf 2013) (RDC), uses nonlinear random projections
to maximize the canonical correlation of the copula trans-
formations corresponding to the random variables. Recently,
Chatterjee (Chatterjee 2021) proposed a correlation coeffi-
cient capable of measuring the strength of the nonlinear cor-
relation between two variables.

On the other hand, deep neural networks have also been
recently proposed to test independence. He et al. (He et al.
2021) developed a neural network-based independence test
method, which was used in their proposed continuous opti-
mization algorithm DARING. For simplicity, we treat DAR-
ING and the proposed independence test method equally in
the following. DARING optimizes the parameterized func-
tion f (x) (x is a random variable) to maximize the correla-
tion coefficient between f (x) and the random variable y by
using deep neural network. However, zero correlation be-
tween f (x) and y is theoretically insufficient to support inde-
pendence according to the previous work (Daudin 1980). In
contrast to kernel-based independence tests, DARING is not
stable/robust, and is not easy to be applied to new scenarios,
due to a bunch of hyperparameters.
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In this work, we propose a novel computational de-
pendency criterion called Multi-level Wavelet Mapping
Correlation (MWMC). By decomposing the L2 space into
mutually orthogonal wavelet spaces, we convert nonlin-
ear dependencies into correlations under wavelet mappings.
Thanks to the sufficient scaling and translation properties of
wavelet, we circumvent the problem of bandwidth selection.
Concretely, our contributions are summarized as follows:

• We propose a new dependency criterion MWMC that can
capture the nonlinear dependency between two real vari-
ables by measuring their correlation under different lev-
els of wavelet mappings.
• We show that the empirical estimate of MWMC con-

verges to its population quantity at a rate of O(n−1/2)
where n is the sample size, thus ensuring that MWMC
is a practical criterion for independence test.
• We design a permutation test based on MWMC for test-

ing independence, and prove that its type I error rate can
be well controlled meanwhile the type II error rate is up-
per bounded by O(n−1) with finite permutations.
• We conduct extensive experiments, and the results show

that our method outperforms the state of the art methods.
In particular, our method can handle better the situation
where two variables are uncorrelated but not indepen-
dent, and the signal-to-noise ratio is small. This is one
of the “hardest” cases in independence test, where most
existing methods are prone to type II errors.

The rest of this paper is organized as follows: we first in-
troduce the basic concepts of hypothesis testing and wavelet
analysis in the preliminaries. Then we define MWMC and
give its corresponding estimator, and establish the conver-
gence relation between them. After that, we propose the
permutation test using MWMC and present our main the-
oretical results (including the bound on type II error). The
experiments on synthetic and real data are given in the per-
formance evaluation section. Finally, we conclude the paper.

Preliminaries
Hypothesis Testing
We consider two random variables x and y in a one-
dimensional probability space (R,B(R), λ)1 and assume that
the observed data consist of n i.i.d. pairs (xi, yi). The prob-
lem of testing independence between x and y can be written
in the form of a hypothesis testing:

H0 : x ⊥⊥ y versus H1 : x ⊥̸⊥ y. (1)

Independence hypothesis testing generally consists of the
following steps. First, state the relevant statistic T and cal-
culate the observed value of T from the observational data.
Then, give a user-selected significance level α (typically
taken as 0.05), which indicates the lowest limit of the prob-
ability threshold for rejecting H0. After that, obtain the p-
value, which is the probability that the sampling of T under
H0 is at least as extreme as the observed value. Finally, the

1As in the literature, here B(R) stands for the Borel σ-algebra
on R and λ stands for the Lebegue probability measure.

null hypothesis H0 is rejected if the p-value is not greater
than α. There are two types of errors may occur during hy-
pothesis testing. Type I error means the rejection ofH0 when
it is true, and Type II error indicates when H0 is wrong but
not rejected. A well-performed independence test requires
that Type I error rate is upper bounded by αmeanwhile Type
II error is minimized (Zhang et al. 2011).

Wavelet Analysis
Wavelet transform (Pavlov et al. 2012) has a wide range of
applications in signal processing. One of its most exciting
properties is the ability to decompose arbitrary square inte-
grable (equivalent to finite energy) functions into wavelet
combinations of different levels, which are generated by
scaling and shifting of the mother wavelet function (Tor-
rence and Compo 1998). In this paper, we mainly consider a
class of compactly supported scaling functions, for instance,
B-spline as a mother wavelet.

Take the linear B-spline wavelet ϕ as an example, it is
defined as follows2:

ϕ(x) =
{

1 − |x| for −1 ≤ x ≤ 1
0 for elsewhere . (2)

Then, we define the scaling space V0 :=
{∑

k∈Z akϕ(x−k)
∣∣∣ ak

∈ R
}

and the wavelet space at level j, W j :=
{∑

k∈Z bkψ(2 jx−
k)
∣∣∣ bk ∈ R, j ≥ 0

}
, where ψ(x) = ϕ(2x + 1) − ϕ(2x − 1) indi-

cates the orthogonal complement of ϕ(x). For simplicity, we
denote ϕ(x−m) as ψ0(x−m) and ψ(2 jx−m) as ψ j+1(x−m) in
the rest of the paper. And for convenience of understanding,
we restate one of the key properties of wavelets in Theo-
rem 1 by following (Daubechies 1992, Chap. 5):
Theorem 1. (Wavelet Decomposition) Let L2(R) be the
space of square integrable functions, V0 be the scaling
space, W j be the wavelet space at level j, then L2(R) =
V0 ⊕W0 ⊕W1 ⊕ · · · .

Multi-level Wavelet Mapping Correlation
In this section, we first introduce MWMC as a new de-
pendence measure. Then, we give an estimator for MWMC
with finite samples and show that this estimate converges to
MWMC quickly.

MWMC Criterion
Definition 1. (Wavelet Mapping Covariance (WMCov)).
Let x, y be two continuous random variables (RVs) with joint
probability density function Px,y. Then, for any levels i, j ∈ N
and shiftings m, k ∈ Z, we define the covariance between the
wavelet mappings ψi(x − m) and ψ j(y − k) as

Covψi j,mk(x, y) :=Ex,y[ψi(x − m)ψ j(y − k)]

− Ex[ψi(x − m)]Ey[ψ j(y − k)].
(3)

As stated in Theorem 2 with a proof given in Appendix,
the dependence between random variables can be captured

2Compared to the general convention, we make slight changes
to facilitate the rest of the derivation in this paper. And, we also
refer to this wavelet ϕ as a scaling function.
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by covariances of wavelet mappings of different scales and
shiftings.
Theorem 2. (Independence). The RVs x and y are indepen-
dent if and only if Covψi j,mk(x, y) = 0 for all levels i, j ∈ N
and shiftings m, k ∈ Z.

Due to the large difference in the norm of wavelet func-
tions of different levels, we need a normalized coefficient.
For levels i, j ∈ N, we define Wavelet Mapping Correlation
coefficient (WMCor) ρψi j as

ρ
ψ
i j = sup

m,k∈Z
ρ
ψ
i j,mk = sup

m,k∈Z

∣∣∣∣ Covψi j,mk(x, y)√
Varψi,m(x) + κ

√
Varψj,k(y) + κ

∣∣∣∣,
(4)

where Varψi,m(x) := Ex[ψ2
i (x − m)] − Ex[ψi(x − m)]2 and κ is

a small positive constant to prevent the denominator of ρψi j
from being 0 (which may occur due to the compact support
property of the wavelet). WMCor inherits the independence
characterization property of WMCov.

By defining ρψ := supi, j∈N ρ
ψ
i j, then we have that the

random variables x and y are independent if and only if
ρψ = 0. However, it is impossible to calculate ρψ by travers-
ing wavelet functions of a countable number levels in prac-
tice. We take the first l levels of ρψ as its approximation and
obtain Multi-level Wavelet Mapping Correlation coefficient
(MWMC) ρψl := sup0≤i≤l,0≤ j≤l ρ

ψ
i j.

We will prove that as the level l increases, MWMC ρ
ψ
l

approximates ρψ under the assumption of smoothness of the
probability density function.

Follow the notion of lipschitz density introduced in (Qi
2020), we have the following definition:
Definition 2 (L-lipschitz RV Pair). Let x, y be the contin-
uous random variables (RVs) with joint probability density
function Px,y. Then, (x, y) is defined as a L-lipschitz RV Pair
if there exists a finite constant L, such that Px,y satisfies
|Px,y(x1, y1)− Px,y(x2, y2)| ≤ L∥(x1, y1)− (x2, y2)∥2 for almost
every points (x1, y1), (x2, y2) ∈ R × R.

The L-lipschitz condition in Def. 2 limits the smoothness
of the distribution. And since in practice we usually normal-
ize the distribution in preprocessing, we assume that the ran-
dom variables discussed in the rest of the paper take values
in the interval [−1, 1]. This assumption has no significant im-
pact in practice, see Appendix for more detailed explanation.
Then, the difference between ρψ and ρψl is determined by l,
as presented in Lemma 1 with a proof given in Appendix.
Lemma 1. Let (x, y) be a L-lipschitz RV pair and each
variable takes values in the interval [−1, 1]. Then, for all
ϵ > 0, exist l∗ =

⌈
log2( 1+12L

ϵκ
)
⌉
+1, such that for all l ≥ l∗,

|ρ
ψ
l − ρ

ψ| ≤ ϵ.
Roughly speaking, when ϵ is small, the required level l is

asymptotically O(log (1/ϵ)).

Estimator of MWMC
Here, we establish the relationship between MWMC and its
estimator.

Definition 3. (Empirical estimate of MWMC, or Empirical
MWMC in short). Let

{
(x1, y1), (x2, y2) , ..., (xn, yn)

}
be the

set of n i.i.d. pairs (xi, yi) drawn from the joint probability
density function Px,y. Then, for finite level l ∈ N, an estima-
tor of MWMC is given by

ρ̂
ψ
l = sup

0≤i, j≤l
ρ̂
ψ
i j = sup

0≤i, j≤l
sup

m,k∈Z
ρ̂
ψ
i j,mk

= sup
0≤i, j≤l

sup
m,k∈Z

∣∣∣∣ Ĉov
ψ

i j,mk(x, y)√
V̂ar

ψ

i,m(x) + κ
√

V̂ar
ψ

j,k(y) + κ

∣∣∣∣, (5)

where Ĉov
ψ

i j,mk(x, y) := 1
n
∑

p[ψi(xp − m)ψ j(yp − k)] − 1
n(n−1)∑

p,q[ψi(xp − m)ψ j(yq − k)] is an unbiased estimate of

Covψi j,mk(x, y) and V̂ar
ψ

i,m(x) := 1
2n(n−1)

∑
p,q[ψi(xp − m) −

ψi(xq − m)]2 is the corresponding unbiased estimate of
Varψi,m(x). We have the following theorem to establish the
connection between ρ̂

ψ
l and ρ

ψ
l , with a proof given in Ap-

pendix.

Theorem 3. (Bound on Empirical MWMC). Assume κ <
0.1, then for n > 1, finite level l ∈ N and all δ > 0, with
probability at least 1 − δ, the following bound holds

|̂ρ
ψ
l − ρ

ψ
l | ≤

√
log(4/δ) + 2l + 3

κ4

12
√

n
. (6)

Theorem 3 indicates that the difference between the Em-
pirical MWMC and its population value is very small under
the condition of sufficient samples. Combining the results in
Lemma 1 and Theorem 3, it is easy to derive the following
corollary:

Corollary 1. Let (x, y) be a L-lipschitz RV pair and each
variable takes values in the interval [−1, 1]. Assume κ < 0.1,
then for all ϵ > 0, there exist l∗ =

⌈
log2( 1+12L

ϵκ
)
⌉
+1, n∗ =⌈ 144[log(4/δ)+2l∗+3]

ϵ2κ4

⌉
, such that for all l ≥ l∗, n ≥ n∗, |̂ρψl − ρ

ψ| ≤

2ϵ with probability at least 1 − δ.

Therefore, when the sample size n and the level l are large
enough, the difference between Empirical MWMC ρ̂

ψ
l that

we use in practice and the ground truth value ρψ can be con-
trolled within an acceptable accuracy range with high prob-
ability.

In order to use ρ̂ψl for independence test, we need to esti-
mate p-value. A common resampling method is to perform
a permutation test, which we discuss in the next section.

Permutation Tests for MWMC
In this section, we give the procedure for performing per-
mutation tests based on MWMC, and analyze its validity
(mainly the type II error). As a start, we introduce some no-
tations and definitions.

Notations and Definitions
Let Sn be the group of permutations on n elements, we de-
fine the permutation operator σ ∈ Sn such that σ(x1, x2,
..., xn) 7→ (xσ(1), xσ(2), ..., xσ(n)), where {x1, x2, ..., xn} is n
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i.i.d. samples of random variable x. For example, when
n = 2, σ(1) = 2, σ(2) = 1, then σ(x1, x2) = (x2, x1). In this
case σ represents the swap operation of two samples. Now,
we define the statistic after permutation σ, which is easy to
do by simply replacing the original sample (x, y) with the
permuted sample (σ(x), y). Along with the procedure in the
last section, we have the following definitions.
Definition 4. (Permutation Empirical WMCov). Let

{
(x1, y1

), (x2, y2), ..., (xn, yn)
}

be the set of n i.i.d. pairs drawn from
the joint probability density function Px,y and σ be the per-
mutation performed on the samples of x. Then, for levels i, j
and shiftings m, k, the Permutation Empirical Wavelet Map-
ping Covariance is given by

Ĉov
ψ

i j,mk(σx, y) =
1
n

∑
p

[ψi(xσ(p) − m)ψ j(yp − k)]

−
1

n(n − 1)

∑
p,q

[ψi(xσ(p) − m)ψ j(yq − k)].

(7)

Definition 5. (Permutation Empirical MWMC). Let
{
(x1, y1

), (x2, y2), ..., (xn, yn)
}

be the set of n i.i.d. pairs drawn from
the joint probability density function Px,y and σ be the per-
mutation performed on the samples of x. Then, for finite pos-
itive integer l, the Permutation Empirical MWMC is defined
as

ρ̂
ψ
l (σx, y) := sup

0≤i, j≤l
sup

m,k∈Z

∣∣∣∣ Ĉov
ψ

i j,mk(σx, y)√
V̂ar

ψ

i,m(σx) + κ
√

V̂ar
ψ

j,k(y) + κ

∣∣∣∣,
(8)

where V̂ar
ψ

i,m(σx) := 1
2n(n−1)

∑
p,q[ψi(xσ(p) − m) − ψi(xσ(q) −

m)]2.
Procedure: Now we describe the procedure of permu-

tation tests using ρ̂
ψ
l (σx, y). First, we perform B permu-

tation operations to obtain the sequence Θ := [̂ρψl (x, y),
ρ̂
ψ
l (σ1x, y), · · · , ρ̂ψl (σBx, y)], which contains B + 1 elements

(including the statistic of observed data ρ̂
ψ
l (x, y)). Then,

we calculate the one-side p-value =
∑B

i=0 1
{̂
ρ
ψ
l (σix, y) ≥

ρ̂
ψ
l (x, y)

}
/(B + 1), where we agree ρ̂ψl (σ0x, y) = ρ̂

ψ
l (x, y). If

p-value ≤ α, we reject the null hypothesis H0 : x ⊥⊥ y.
More details are given in Algorithm 1.

Type I error: Under the null hypothesis H0, the se-
quence Θ is exchangeable, i.e., the joint probability distri-
bution does not change when the positions of the elements
in the sequence are altered. Intuitively, the observed data are
equivalently obtained from the samples in the sequence. The
exchangeability of sequence under H0 guarantees that the
probability of type I error occurrence is no greater than the
given significance level α. In the next, we discuss the bound
on type II error.

Bound on Type II Error
In order to derive the bound on type II error, we need to
obtain the distribution of the statistic ρ̂ψl (σx, y) under the al-
ternate hypothesis H1. We first estimate the range of Per-

mutation Empirical MWMC by the following Lemma 2 and
Lemma 3, whose proofs are given in Appendix.
Lemma 2. (Expectation of Permutation Empirical WM-
Cov) Assume each permutation of n elements has the same
probability, then for fixed constants i, j,m, k,

E[Ĉov
ψ

i j,mk(σx, y)] = 0. (9)

Lemma 3. (Variance of Permutation Empirical WMCov)
(Variance of Permutation Empirical WMCov) Assume each
permutation has the same probability, then for fixed con-
stants i, j,m, k, when n ≥ 4,

Var[Ĉov
ψ

i j,mk(σx, y)] ≤
3
n
. (10)

Roughly speaking, Permutation Empirical WMCov is
concentrated around 0 when the sample size is large enough.
ρ̂
ψ
l (σx, y) inherits similar properties. We have the following

Theorem 4:
Theorem 4. (Bound on Permutation Empirical MWMC).
Let κ be a positive constant and n be the sample size, then
for n ≥ 4, with probability at least 1 − δ,

ρ̂
ψ
l (σx, y) ≤

√
128/δ
κ2

2l

√
n
. (11)

Proof. The proof is given in Appendix.
Put all above together, we obtain the main theoretical re-

sult presented in Theorem 5:
Theorem 5. (Bound on Type II Error). Let (x, y) be a L-
lipschitz RV pair and each variable takes values in the inter-
val [−1, 1]. Under the alternate hypothesis H1 : x ⊥̸⊥ y, i.e.,
ρψ > 0, let ρψl = ρl, α ∈ (0, 1) be the significant level and
finite positive constant B be the number of permutations, if
κ < 0.1, n ≥ 4, B ≥ 1

α
− 1 and l ≥

⌈
log2( 2(1+12L)

ρψκ
)
⌉
+1, then

P(Type II error) ≤
22l+9B
nκ2ρ2

l

+ 4e−nκ4ρ2
l /242+2l+3. (12)

Proof. The proof is given in Appendix.
Therefore, when the sample size n is large enough, the

type II error rate is asymptotically O(n−1).

Algorithm
Here, we give the algorithmic details of permutation test
using MWMC. For simplicity, our algorithm is called
Wavelet Independence Test (WIT), the process of WIT
is outlined in Alg. 1. We first obtain the sequence Θ
:= [̂ρψl (x, y), ρ̂ψl (σ1x, y), · · · , ρ̂ψl (σBx, y)] by B permutations
(Lines 1-18). The process of calculating ρ̂ψl (σt x, y) inΘ is di-
vided into two main steps: first we generate the wavelet map-
pings of the data (Lines 5-9), and then calculate ρ̂ψl (σt x, y)
(Lines 10-23) according to Eq. (8). After that, we calculate
the p-value (Lines 26-30) to determine the independence.

Computational Complexity: In the typical setup (with a
very large n, a large B≪ n and a small l ≪ B), the computa-
tional complexity of WIT is dominated by the process of cal-
culating MWMC coefficient. Hence, the total time complex-
ity is O(B · 4ln) ≈ O(n), and the space cost is O(2ln) ≈ O(n).

6502



Parallelizable implementation: In practice, we can par-
allelize the permutation step (Line 3-4). For the key step in
the algorithm (Line 17-23), we can perform matrix operation
optimization using GPU. Some results of empirical running
time are given in the performance evaluation section.

Choice of Wavelet: Though our theoretical derivation ap-
plies to all compactly supported mother wavelets ϕ that can
make Theorem 1 hold, the choice of ϕ is unavoidable. As we
do not impose any assumption on the distribution, we can-
not provide a concrete selection strategy. In our experiments,
we choose linear B-spline as the mother wavelet due to its
simple form and easy implementation.

Parameter Selection: In practice, we avoid the choice
of κ by judging whether the variance exceeds a threshold
to avoid a denominator of 0 (which is consistent with the
purpose of adding κ). Since we observe that larger levels do
not lead to significant improvement, we set level l = 2.

Algorithm 1: Wavelet Independence Test (WIT)
Input: observed data xn×1, yn×1, significance level α,

permutation number B, wavelet level l.
Output: X ⊥⊥ Y or X ⊥̸⊥ Y .

1: Initial permutation σn×(B+1) = [σ0, σ1, σ2, ..., σB],
2: ρ̂

ψ
l = O1×(B+1)

3: ◁ Parallel permutation step.
4: for ∀σt ∈ σn×(B+1) do
5: ◁ Generate multi-level wavelet mapping of data.
6: Ψ(σt x)← [ψ0(σt x − 1), ψ0(σt x), ψ0(σt x + 1), ...
7: , ψl(σt x − 2l), ..., ψl(σt x + 2l)]n×(2l+2−1)

8: Ψ(y)← [ψ0(y − 1), ψ0(y), ψ0(y + 1), ..., ψl(y − 2l),
9: ..., ψl(y + 2l)]n×(2l+2−1)

10: ◁ Calculate MWMC coefficient.
11: Center every column of matrix to mean zero.
12: Ψ(σt x)← Ψ(σt x) −mean(Ψ(σt x)),
13: Ψ(y)← Ψ(y) −mean(Ψ(y))
14: Calculate the sample variance.
15: V̂ar

ψ
(σt x)← sum

(
Ψ(σt x) ⊙ Ψ(σt x)

)
/(n − 1),

16: V̂ar
ψ
(y)← sum

(
Ψ(y) ⊙ Ψ(y)

)
/(n − 1)

17: for i = 1 : 2l+2 − 1 do
18: ψi ← the ith column of Ψ(σt x) ,
19: Ψrepeat ← [ψi, ψi, ..., ψi]n×(2l+2−1)

20: V̂ar
ψ
[:, i]← the ith column of V̂ar

ψ
(σt x)

21: Ĉov
ψ
(σt)← abs

(
sum
(
Ψrepeat ⊙ Ψ(y)

)
/n(n − 1)

)
22: ρ̂

ψ
l (σt x, y)← max

{
Ĉov

ψ
(σt)/

(
V̂ar

ψ
[:, i] + κ

) 1
2

23: /(V̂ar
ψ
(y) + κ

) 1
2 , ρ̂

ψ
l (σt x, y)

}
24: end for
25: end for
26: Calculate p-value
27: p-value =

∑B
i=0 1{̂ρψl (σix, y) ≥ ρ̂ψl (σ0x, y)}/(B + 1).

28: if p-value ≤ α then
return X ⊥̸⊥ Y .

29: else
return X ⊥⊥ Y .

30: end if

Performance Evaluation
In this section, we demonstrate the effectiveness of our
method WIT through extensive experiments 3 and compar-
ison with existing methods, including DARING (He et al.
2021), KCIT (Zhang et al. 2011), HSIC (Gretton et al.
2005a), FRCIT (Zhang et al. 2021), SCIT (Zhang et al.
2022) and RDC (Lopez-Paz, Hennig, and Schölkopf 2013).
For comparing with RDC, we follow (Bellot and van der
Schaar 2019) to implement RDC with permutation test, and
we call it RDCPT hereafter. We first evaluate these meth-
ods on the independence test and conditional independence
test by diverse synthetic data. We then conduct the experi-
ment on a real dataset to infer causality. Finally, we analyze
the consistency, efficiency, and sensitivity of the proposed
method. Details of the implementation of our method and
the existing methods are described in Appendix.

Independence
Setup: Here, we generate synthetic data according to the ad-
ditive noise model as in (Ramsey 2014; Zhang et al. 2011).
Define (x, y) under null hypothesisH0 and alternate hypoth-
esisH1 as follows:

H0 : x = f (ϵ1 + ϵ2) + ϵ3 + ϵ4
y = g(ϵ5 − ϵ6) + ϵ7

H1 : x = f (ϵ1 + ϵ2) + ϵ3 + ϵ4
y = g(ϵ1 − ϵ2) + ϵ7

, (13)

where ϵ1, ϵ2, ..., ϵ7 have jointly independent distributions
and f , g denote smooth functions. We choose ϵi with
uniform distribution U(−1/2, 1/2), chi-square distribution
χ2(1), beta distribution Be(0.2, 0.4), Laplace distribution
Lap(0, 1), exponential distribution Exp(1/2), and choose f , g
from

{
(·), sin(·), exp(−∥·∥), log(·)2, (·)2}. In order to reflect the

performance of nonlinear dependence of the methods, we
design the synthetic data to make their correlation as close
to zero as possible. At the same time, we want the signal-
to-noise ratio to be close to 1 to reflect the noise resistance
of the methods. Furthermore, we use the heteroskedasticity
setting to further increase the diversity. More details of the
experimental setup are described in Appendix.

Results: We investigate the performance of the indepen-
dence test for sample sizes of {1000, 2000}, and the exper-
imental results are obtained by averaging 100 replicate ex-
periments. Due to space limit, more experimental results are
presented in Appendix. The experimental results with 1000
samples are presented in Table 1, where the first five tables
(a-e) show the type II error rates of each method under dif-
ferent distribution settings, and the last table (f) presents the
corresponding type I error rates (averaging the experimen-
tal results over the five distribution settings). Note that we
do not show the standard deviations because they are very
small. It can be seen that the type I error rates of all meth-
ods are controlled around 0.05, and our method outperforms
the other methods in terms of average type II error rate. An
interesting finding is that not any method can beat all the

3The experimental source code and datasets are given in the
repository https://github.com/renyixin666/WIT-Code.
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Algorithm linear sin exp log square Average

DARING 1.00 1.00 0.96 0.00 0.14 0.62
KCIT 0.53 0.70 0.75 0.00 0.73 0.54
HSIC 0.43 0.66 0.68 0.00 0.53 0.46

FRCIT 0.04 0.28 0.90 0.57 0.92 0.66
RDCPT 0.30 0.52 0.51 0.00 0.26 0.32

SCIT 0.74 0.72 0.62 0.00 0.44 0.50

WIT 0.22 0.40 0.46 0.00 0.19 0.25

(a) Type II error rate on uniform distribution

Algorithm linear sin exp log square Average

DARING 0.41 0.46 1.00 0.99 0.03 0.58
KCIT 0.00 0.00 0.00 0.00 0.35 0.07
HSIC 0.00 0.00 0.00 0.00 0.38 0.08

FRCIT 0.01 0.04 0.97 0.95 0.50 0.49
RDCPT 0.00 0.00 0.00 0.00 0.21 0.04

SCIT 0.29 0.32 0.02 0.97 0.05 0.33

WIT 0.00 0.00 0.00 0.01 0.02 0.01

(b) Type II error rate on Chi-square distribution
Algorithm linear sin exp log square Average

DARING 0.99 0.99 0.63 0.00 0.04 0.53
KCIT 0.00 0.00 0.16 0.00 0.16 0.06
HSIC 0.00 0.00 0.27 0.00 0.10 0.07

FRCIT 0.09 0.34 0.89 0.64 0.75 0.54
RDCPT 0.00 0.00 0.05 0.00 0.01 0.01

SCIT 0.53 0.73 0.70 0.00 0.28 0.45

WIT 0.00 0.00 0.25 0.00 0.08 0.07

(c) Type II error rate on Beta distribution

Algorithm linear sin exp log square Average

DARING 0.57 0.60 1.00 0.00 0.86 0.61
KCIT 0.25 0.27 0.20 0.00 0.94 0.33
HSIC 0.18 0.21 0.09 0.00 0.93 0.28

FRCIT 0.20 0.24 0.91 0.50 0.93 0.55
RDCPT 0.11 0.10 0.09 0.00 0.80 0.22

SCIT 0.11 0.10 0.09 0.00 0.87 0.23

WIT 0.06 0.04 0.07 0.00 0.78 0.19

(d) Type II error rate on Laplace distribution
Algorithm linear sin exp log square Average

DARING 0.51 0.46 1.00 1.00 0.23 0.64
KCIT 0.00 0.00 0.22 0.13 0.13 0.10
HSIC 0.00 0.00 0.14 0.00 0.71 0.17

FRCIT 0.04 0.12 0.94 0.99 0.67 0.55
RDCPT 0.00 0.00 0.01 0.00 0.43 0.09

SCIT 0.46 0.44 0.35 0.94 0.21 0.48

WIT 0.00 0.00 0.01 0.13 0.13 0.06

(e) Type II error rate on exponential distribution

Algorithm linear sin exp log square Average

DARING 0.04 0.03 0.02 0.03 0.02 0.03
KCIT 0.06 0.06 0.05 0.06 0.03 0.05
HSIC 0.06 0.06 0.07 0.08 0.03 0.06

FRCIT 0.05 0.06 0.04 0.03 0.06 0.05
RDCPT 0.04 0.05 0.05 0.06 0.04 0.05

SCIT 0.04 0.05 0.03 0.04 0.03 0.04

WIT 0.04 0.03 0.04 0.04 0.04 0.04

(f) Average type I error rate on five distributions

Table 1: Experimental results of independence tests with 1000 samples

others in all cases, indicating that each method has its per-
formance bias when the sample size is limited. In the case of
Laplace-square, all methods perform poorly due to the fact
that the square function (·)2 deteriorates the smoothness of
the distribution and increases more noise than the Laplace-
linear case. As for the log case, most of the methods perform
better because the log(·)2 function increases the proportion
of the signal (e.g. function log(·)2 map [0.01, 1] to [−9.2, 0]).

Conditional Independence
Setup: Here we compare the performance of the methods
on residual-based conditional independence test (Ramsey
2014). In the case of additive noise model (x = f (z)+ ϵ1, y =
g(z) + ϵ2), conditional independence is tested by converting
x ⊥⊥ y|z equivalently to x − E[x|z] ⊥⊥ y − E[y|z]. We define
(x, y) as x = c(

∑r
i=1 zi/5) + ϵ1, y = c(

∑r
i=1 zi/5) + ϵ2, where

z1, z2, ..., z5 ∼ U(−1/2, 1/2) have joint independent distribu-
tions, ϵ1, ϵ2 are mutually independent standard Gaussian ran-
dom variables and the constant c = {7.0, 6.0, 5.0, 4.0, 3.0} is
used to adjust the signal-to-noise ratio. We randomly choose
a certain number (from 0 to 5) of zi as the multiple regres-
sion variable R and then test whether x ⊥⊥ y|R. Here we use
least squares regression for the calculation of the residual
term. Details of the residual term calculation and experimen-
tal setup are described in Appendix.

Results: For visualization, we take the top-5 methods
from the last experiment for comparison, and each data point

is the average result of 500 experiments. The results of type
II error rate with sample size n = 250 are shown in Fig. 1,
while complete results are presented in Appendix. The type I
error is controlled around 0.05 for all methods. It can be seen
that WIT achieves the lowest type II error rate in the case of
regression variables 0-3 with c = {7.0, 6.0, 5.0}. These re-
sults indicate that WIT is generally more robust to noise. As
the signal-to-noise ratio continues to decrease, all methods
become unreliable given 4 regression variables, at this time
their type II error rates are all close to 1.

Causal Discovery from Real Data
Here we evaluate all methods on causal skeleton learning,
as the resulting skeletons are completely determined by in-
dependence test. We use the well-known Saches (Sachs et al.
2005) dataset for experiment, which is a real causal protein
signaling network that measures protein expression levels
and is widely used in causal discovery tasks (Ng, Ghassami,
and Zhang 2020; He et al. 2021). The dataset contains a to-
tal of 853 samples and a corresponding causal graph 4 (11
nodes and 18 arcs) that is usually considered as the ground
truth. The results in Table 2, from which we can see that our
method outperforms the other methods as a whole in terms
of average performance F1-score.

4The causal graph of Saches is given in https://www.bnlearn.
com/bnrepository/.
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Figure 1: Experimental results of two types of errors in conditional independence tests, with sample size n = 250. Lower is
better. The left column shows the relationship between the type I error and the coefficient c for each method. Each column on
the right shows the relationship between the type II error rate and the number of regression variables for different values of
coefficient c. The error bars are not shown in the figures to make all the curves discernable.

Algorithm Recall Precision F1-score

DARING 0.4706 1.0000 0.6400
KCIT 0.5294 0.8182 0.6429
HSIC 0.5294 0.7193 0.6096

FRCIT 0.1824 0.7757 0.2927
RDCPT 0.5294 0.7500 0.6207

SCIT 0.2006 0.5890 0.2960

WIT 0.5294 0.9228 0.6719

Table 2: Results on the Sachs dataset.

Efficiency, Consistency and Sensitivity
Efficiency: We compare the efficiency of the methods. We
repeat the experiment 50 times with sample size of 100, 500,
1000, 5000, 10,000, 100,000 and 1,000,000. The experimen-
tal results are averaged over 50 replicate experiments. All
experiments are conducted on a PC with a NVIDIA RTX
2080Ti GPU, eight 3.00 GHz CPU cores and 32GB RAM.

Here, we focus on four methods KCIT, HSIC, RDCPT
and WIT as they outperform the other methods in most
cases. The results are presented in Appendix, from which
we can see that WIT works much more efficiently than RD-
CPT, especially for the sample sizes from 100 to 1000. And
compared to the kernel-based methods, WIT is more effi-
cient when sample size is greater than 5,000. When sample
size is larger than 1,00,000, the running time of WIT grad-
ually shows a linear growth trend, which is consistent with
the time complexity of the algorithm.

Consistency: We explore the consistency (the type II
error rate tends to zero as the sample size increases) of
our method. We keep the same experimental setup as
in the independence test experiment and test the type
II error rate for each case with the sample size n =
{500, 1000, 1500, 2000, 2500}. For the Laplace-square case,

the type II error rate remains high at the sample size of
2500, so we further stepwisely increase the sample size to
50, 000. The complete experimental results are presented in
Appendix. We can see that as the sample size increases, the
type II error rate gradually decreases and finally approaches
0, which validates the consistency of our method, as stated
by Theorem 5.

Sensitivity: We check the sensitivity of our method to
the number of permutations B. We take the uniform-linear
case for experiment, and the setting remains the same as
before. The experimental results for different permutations
B = {100, 200, 300, 400, 500} are shown in Appendix. It can
be seen that the variation of B between 100 and 500 has no
significant effect on the two types of error rates, indicating
the robustness of our method with respect to B.

Conclusion
In this work, we present a novel criterion for measuring non-
linear dependence between two real variables by estimating
their correlation under different levels of wavelet mappings.
We also design a permutation test based on this criterion for
independence test. We provide theoretical guarantees for this
test, ensuring that the type II error rate decreases rapidly as
the sample size increases, while keeping the type I error rate
controllable. Experiments on various data show that com-
pared to the existing methods, our method i) is more effec-
tive for different distributions of data, ii) is generally more
robust to noise and thus can handle better the data of smaller
signal-to-noise ratio, iii) can be applied to causal discov-
ery and achieve better performance. Future works include
constructing independence testing algorithms based on other
mother wavelets according to our proposed procedure, opti-
mizing the computation time of the criterion, and studying
the sensitivity of the number of permutations to different dis-
tribution settings.
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