
Distributed Spectrum-Based Fault Localization

Avraham Natan, Roni Stern, Meir Kalech
Ben-Gurion University of the Negev, Israel

avinat123@gmail.com, roni.stern@gmail.com, kalech@bgu.ac.il

Abstract

Spectrum-Based Fault Localization (SFL) is a popular ap-
proach for diagnosing faulty systems. SFL algorithms are in-
herently centralized, where observations are collected and an-
alyzed by a single diagnoser. Applying SFL to diagnose dis-
tributed systems is challenging, especially when communi-
cation is costly and there are privacy concerns. We propose
two SFL-based algorithms that are designed for distributed
systems: one for diagnosing a single faulty component and
one for diagnosing multiple faults. We analyze these algo-
rithms theoretically and empirically. Our analysis shows that
the distributed SFL algorithms we developed output identical
diagnoses to centralized SFL while preserving privacy.

1 Introduction
Spectrum-Based Fault Localization (SFL) is a popular ap-
proach for diagnosing faulty systems. Primarily used in soft-
ware diagnosis (Abreu, Zoeteweij, and Van Gemund 2009),
SFL aims to identify faults in programs. To achieve this, SFL
models the program as a set of components, and runs tests,
each of which executes some components. This activity is
recorded into activity matrix (spectrum), and the tests out-
comes are recorded in an error vector. Some SFL algorithms
diagnose single faults, while others diagnose multiple faults.

SFL algorithms are centralized. However, different sys-
tems are inherently distributed such as software systems,
multi-agent systems, communication networks etc. Apply-
ing centralized SFL techniques to diagnose such distributed
systems is challenging, especially when communication is
costly and the privacy should be considered: First, informa-
tion on activity of a component may be hard to get or re-
stricted. Second, privacy restrictions or communication load
might challenge the performance of a centralized algorithm.

The contribution of this paper is: (1) We define the
problem of Distributed SFL (DSFL). (2) We propose two
SFL-based diagnosis algorithms for distributed systems: one
for single faults (DSFLA-SINGLE) and one for multiple
faults (DSFLA-MULTI). (3) We provide empirical and the-
oretical analysis of soundness, completeness, privacy, com-
munication load and runtime. We show that the distributed
algorithms output identical diagnoses to the centralized

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

while preserving privacy. We also evaluate three variations
of DSFLA-MULTI, and show that with a small reduction in
diagnosis quality, DSFLA-MULTI performs better in terms
of privacy, communication load and runtime.

2 Background and Related Work
Our work builds on prior work on SFL. Thus, we provide
here a brief background on SFL. For a more comprehensive
background see Abreu, Zoeteweij, and Van Gemund 2009.
Definition 1 (SFL Problem). An SFL problem is defined by
a tuple ⟨C,R, S,E⟩ where C is a set of components, each
of which may be faulty; R is a set of runs executed on the
system; S is a binary |R| × |C| matrix where Si,j = 1 de-
notes that component cj participated in run ri; and E is a
vector of length |R| where Ei = 1 denotes that ri failed, and
Ei = 0 otherwise. An SFL problem arises when ∃i : Ei = 1.

The matrix S is called spectrum and the vector E is called
error vector. Table 1a shows the spectrum and error vector
for a system with 3 components (c1, c2, c3) that is executed 4
(r1, r2, r3, r4) times. Consider the second row, for example,
components c2 and c3 were involved, and the run failed.

A solution to an SFL problem is a set of diagnoses and a
ranking function to rank them. A diagnosis is a set of compo-
nents that explain all the failed runs. Diagnosis ∆ explains a
failed run if at least one of the components in ∆ participated
in the failed run according to the spectrum S. Formally:
Definition 2 (SFL Diagnosis). A set of components ∆ ⊆
{1, .., |C|} is diagnosis for an SFL problem ⟨C,R, S,E⟩ if
∀i : Ei = 1→ ∃j : j ∈ ∆ ∧ Si,j = 1.

Some SFL algorithms diagnose single faults, while others
diagnose multiple faults.

Single fault SFL: In this case, a component j is a diagno-
sis if it participated in at least one failed run. Diagnosis rank-
ing uses Similarly Coefficients (Hofer et al. 2015), which
are evaluated using four Similarity Counters npq(j), p, q ∈
{0, 1} defined as: ∀cj , npq(j) = |{i|Sij = p ∧ Ei = q}|.

Table 1b shows these counters with respect to Table 1a.
For example, n11(2)=2 since the number of runs where
Si,2=1∧Ei=1 is 2. Using Ochiai (Abreu, Zoeteweij, and
Van Gemund 2007) similarity coefficient with those values
yields the probabilities: P (c1)=0.67, P (c2)=0.82, P (c3) =
0.41. The diagnosis set ranked by their probabilities in that
case is: D = {⟨{c2}, 0.82⟩, ⟨{c1}, 0.67⟩, ⟨{c3}, 0.41⟩}.

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

6491

c1 c2 c3 E
r1 1 1 0 1
r2 0 1 1 1
r3 1 0 0 1
r4 1 0 1 0

(a)

c1 c2 c3
n11(j) 2 2 1
n10(j) 1 0 1
n01(j) 1 1 2
n00(j) 0 1 0

(b)

Table 1: (a) Spectrum and Error Vector for system of 3 com-
ponents that is run 4 times, and (b) their similarity counters.

SFL for multiple faults: Barinel (Abreu, Zoeteweij, and
Van Gemund 2009) is an SFL-based algorithm that ad-
dresses this case by combining SFL with model-based diag-
nosis (MBD). Barinel defines a set of components that par-
ticipated in a failed run as a a conflict. Then it outputs diag-
noses by computing a Minimal Hitting Set (MHS) of the set
of conflicts. This approach is known in MBD as the conflict-
directed approach (De Kleer and Williams 1987; Williams
and Ragno 2007; De Kleer 2011).

Diagnosis ranking uses a Bayesian approach, by comput-
ing P (∆|E)=P (E|∆)·P (∆)

P (E) , where P (∆) is the prior of ∆
and P (E) is a normalization factor. To compute the Likeli-
hood Function P (E|∆), hj is defined as the likelihood of
faulty component to behave normally, formally:
Definition 3 (Likelihood Function). Given a diagnosis ∆,
spectrum S and error vector E, the Likelihood Function L
is defined as: L = P (E|∆) =

∏
Ei∈E Li. With each term

Li defined for a row in the spectrum as the probability of all
involved components to behave normally:

Li = P (Ei|∆) =

{∏
j∈∆∧Sij=1 hj if Ei = 0

1−
∏

j∈∆∧Sij=1 hj if Ei = 1
(1)

Since hj is not known, a maximization algorithm such as
gradient descent is applied to maximize L.
Example 1. In Table 1a the conflicts for runs r1, r2, r3
are {c1, c2}, {c2, c3}, {c1} respectively. The minimal hitting
sets ∆1 = {c1, c2} and ∆2 = {c1, c3} are the diagnoses. As
an example, for ∆2 = {1, 3} the terms corresponding to the
rows are:

L1 = P (E1|∆2) = (1− h1)

L2 = P (E2|∆2) = (1− h3)

L3 = P (E3|∆2) = (1− h1)

L4 = P (E4|∆2) = (h1 · h3)

And their product is:

L = (1− h1) · (1− h3) · (1− h1) · (h1 · h3) (2)

Maximizing L with gradient descent yields L = 0.161.

2.1 Related Work
SFL has been studied in recent years. Different works im-
prove and demonstrate its usefulness. One work addresses
scalability challenges that rise due to the computational
overhead when computing the spectrum (Perez, Abreu, and

Riboira 2014). They propose dynamic code coverage (DCC)
which dynamically increases the granularity of the compo-
nents. Results show the usefulness of this approach.

A different improvement to SFL incorporates software
fault prediction model (Elmishali, Stern, and Kalech 2016)
to improve diagnosis ranking. Results show significant im-
prove in diagnosis accuracy and troubleshooting efficiency.

Another work (Elmishali, Stern, and Kalech 2018) shows
how SFL can be used in a novel Learn, Diagnose and Plan
(LDP) paradigm as the diagnosis part. Results show how this
improves SFL when it is part of LDP.

Later study shows SFL usage in diagnosing system ex-
ploits (Elmishali, Stern, and Kalech 2020). The components
are blocks of code and a trace of tests using them is recorded.
They use fuzz testing tool and under-tracing technique to
enhance this method, and improve diagnosis accuracy. The
method’s validity is shown on different software projects.

Another work demonstrates SFL for Multi-Agent Sys-
tems (Passos, Abreu, and Rossetti 2015). The authors ex-
tend SFL to address agent specific features such as agent
autonomy. They show prominent results of roughly 96.96%
diagnosis accuracy.

Some work addresses distributed diagnosis with differ-
ent approaches such as inter-level communication (Pérez-
Zuñiga et al. 2018), fuzzy fault isolation (Syfert, Bartyś, and
Kościelny 2018) and structural analysis (Perez-Zuniga et al.
2022). Distributed approach to SFL was not proposed previ-
ously.

3 Methodology
In this section we address the problem of Distributed
Spectrum-Based Fault Localization (DSFL).

3.1 Problem Definition
The presented approaches rely on a central solver to generate
and rank the diagnoses. Applying them on distributed sys-
tems raises challenges such as single point of failure, com-
munication load, and privacy. To address the latter two, we
assume no central solver. Instead, every component has vi-
sion of the execution runs in which it participates, denoted
as Local Spectrum and Local Error Vector. Formally:

Definition 4 (Local Spectrum and Local Error Vector).
Given spectrum S, Error Vector E and component cj , the
Local Spectrum Sj of cj is: Sj = {Si,∗|Si,j = 1}, and the
Local Error Vector Ej of cj is: Ej = {Ei|Si,j = 1}.

c1 c2 c3 E
r1 1 1 0 1
r2 - - - -
r3 1 0 0 1
r4 1 0 1 0

(a)

c1 c2 c3 E
r1 1 1 0 1
r2 0 1 1 1
r3 - - - -
r4 - - - -

(b)

c1 c2 c3 E
r1 - - - -
r2 0 1 1 1
r3 - - - -
r4 1 0 1 0

(c)

Table 2: Local spectra S1, S2, S3 and error vectors
E1, E2, E3 corresponding to components c1, c2, c3.

6492

Tables 2a, 2b, 2c show the local spectra and error vec-
tors of components c1, c2, c3. Solving the SFL problem us-
ing one spectrum may output wrong diagnoses. To that end
we define the Distributed SFL (DSFL) problem:
Definition 5 (DSFL problem). A DSFL problem is defined
as ⟨C,R, {Sj}|C|

j=1, {Ej}|C|
j=1⟩, where C is a set of compo-

nents, R is a set of runs, and Sj and Ej are the local spec-
trum and error vector of component cj . A DSFL problem
arises when ∃j, i : Ej

i = 1.
A solution to DSFL is a diagnosis for the joint SFL prob-

lem defined by the union of the local spectras and local error
vectors. A naive solution collects the information from the
components to a single solver. Such approach may have high
communication costs, and neglects privacy. We discuss the
topic of privacy loss in distributed SFL in Section 4.

In the following sections we describe distributed versions
of the SFL algorithms that address privacy for single fault
and for multiple faults. They share information in order
to reach similar output to the centralized algorithms, while
minimizing the private information revealed.

Algorithm 1: DSFLA-SINGLE

Input: cj - the current component
Result: P - probability of diagnosis ∆ = {cj}

1 n11(j), n10(j), n01(j), n00(j)← 0, 0, 0, 0

2 for i ∈ Sj do
3 q ← Ej

i , n1q(j)← n1q(j) + 1
4 for j′ ∈ [1, ..., |C|] s.t. j′ ̸= j do
5 nn01, nn00 ← request missing(cj , cj′)
6 n01(j), n00(j)← n01(j) + nn01, n00(j) + nn00

7 P ← similarity(n11(j), n10(j), n01(j), n00(j))
8 return P

3.2 Distributed SFL for Single Fault Problems
Here we present our distributed algorithm for diagnos-
ing single faults (DSFLA-SINGLE). Since the algorithm
handles single faults, each component is a potential di-
agnosis and we only need to present the ranking. Each
component cj should calculate its similarity counters
n11(j), n10(j), n01(j), n00(j) and use them with a sim-
ilarity coefficient. The challenge is that a component knows
only the outcomes of runs it participates in, as shown in Ta-
ble 2, making it able to calculate only n11(j), n10(j). To ad-
dress this challenge, each component cj requests from other
components information about n01(j) and n00(j) as indi-
cated by their spectrum. This information is summed up by
cj to the true values of n01(j) and n00(j).

Algorithm 1 presents the process of ranking component
cj . The component initializes npq(j) (line 1), and calcu-
lates n1q(j) using the rows in its local spectrum (Lines 2-3).
Then, the component requests information from other com-
ponents (Lines 4-6), by calling the request missing proce-
dure (The details of this procedure are listed in Algorithm 2).
Note that these request messages are sent to other compo-
nents by order of their appearance in the spectrum. To allow

this, we assume the components to have a predefined order.
This allows a component to avoid sending data it knows was
already sent by previous components. Finally, a similarity
coefficient is used to calculate the rank. Algorithm 2 de-

Algorithm 2: request missing
Input: cj - the component requesting the data
Input: cj′ - the component returning the data
Result: nn01, nn00 - counter data

1 nn01, nn00 ← 0, 0

2 for i ∈ Sj′ do
3 if (∄j′′ < j′ s.t. Sj′

i,j′′ = 1)
∧
Sj′

i,j = 0 then
4 q ← Ej′

i , nn0q(j)← nn0q(j) + 1
5 return nn01, nn00

scribes the request missing method. Component cj′ provides
the data requested by cj . For every row in its local spectrum,
cj′ checks if cj has already received the information about
this row from a previous component, or cj has this row in its
local spectrum (Line 3). If this is not the case, cj′ updates
either nn01 or nn00 according to the error vector (Line 4).
The reason for component cj′ handling only rows for which
it is the first component that observes the row, is to avoid
duplicate reports by different components on the same rows.
Example 2. We demonstrate how component c2 calculates
its similarity counters using its local spectrum presented in
Table 2b. After executing lines 2-3 of Algorithm 1, c2 has
n11(2)=2 and n10(2)=0. Next, it requests information from
c1 and c3 in that order. c1 considers runs r1, r3, r4 of S1 (Ta-
ble 2a). Since S1

1,2=1, run r1 is skipped, since it means that
c2 has the same run in S2. Runs r3, r4 show that c2 does not
have them, so c1 uses them to calculate nn01=1, nn00=1.
The same request is sent to c3. c3 considers its local spectra
and finds out that for each of its runs, either c2 has them,
or c1 has already addressed them, and returns nothing. At
the end of the process, c2 has the same counter values as
shown in Table 1b. c2 uses them to calculate the likelihood
of it being faulty by similarity coefficient algorithm.

3.3 Distributed SFL for Multiple Faults Problems
Here we present our algorithm for diagnosing a distributed
system with multiple faults (DSFLA-MULTI). It first gener-
ates diagnoses and then ranks them.

Diagnosis Generation
The components generate diagnoses in two stages. First,
each component calculates local diagnoses by applying a
Minimal Hitting Set (MHS) algorithm (De Kleer 2011;
Rodler 2022) using its local spectra. This is done in paral-
lel by all components. Then, c1 sends the set of local diag-
noses it computed to c2. Subsequently, c2 refines its set of
local diagnoses based on the diagnoses it received from c1.
This continues sequentially, with the last component having
a complete set of diagnoses. This set is identical to the one
generated by the centralized version of the algorithm.

Algorithm 3 lists the pseudo-code for the algorithm de-
scribed above from the perspective of component cj . First,

6493

cj computes the local diagnoses set LD by executing MHS
algorithm on its local spectrum (Lines 1-2). Then, it re-
ceives a set of previously calculated diagnoses PD from cj−1

(line 3). Note that if j=1 then PD=∅. Next, cj adds PD and
LD as elements of a set and computes its hitting set to get a
combined global diagnosis set GD (Line 4). GD is then re-
fined by removal of duplicate diagnoses and super-sets (Line
5). The generated diagnoses are sent to the next component,
or output in case of the last component (Lines 6-8).

Before continuing with the running example, we demon-
strate how lines 4-5 in Algorithm 3 work. Line 4 applies
MHS on a two-element set, in which the elements are sets
LD and PD to receive a set of sets of sets, and line 5 re-
fines the resulting set by unifying the elements of the sets
of sets, and later filtering out subsets. We demonstrate this
with a short example. Suppose for example, that LD =
{{2}, {1, 3}} and PD = {{1}}. MHS({LD,PD}) returns
the set: GD = {{{2}, {1}}, {{1, 3}, {1}}}. After unifying
and duplicate removing we receive: GD = {{1, 2}, {1, 3}}.

Algorithm 3: Diagnose
Input: cj - the current component
Result: GD - a set of global diagnoses

1 LC← local conflicts(Sj)
2 LD← MHS(LC)
3 PD← recieve diagnoses(cj−1)
4 GD← MHS({PD, LD})
5 GD← refine(GD)
6 if j = |C| then
7 return GD
8 diagnose(cj+1, GD)

LD PD GD
1 {{1}} ∅ {{1}}
2 {{2}, {1, 3}} {{1}} {{1, 2}, {1, 3}}
3 {{2}, {3}} {{1, 2}, {1, 3}} {{1, 2}, {1, 3}}

Table 3: Example of one diagnosis generation process.

Example 3. Table 3 demonstrates the iterative process for
generating diagnoses described in Algorithm 3. Each of the
three rows is executed by the component with the corre-
sponding number, shown in column 1. Column 2 shows the
local diagnoses (LD) and is executed in parallel. Columns
3-4 present the sequential process of receiving previous di-
agnoses (PD) and refining them (GD) at each component.
The example is run on 3 components, each of which has
one of the spectra shown in Table 2. First, considering its
local spectrum, each component calculates its local diag-
noses LDj (column 2). Then c1 starts with a previous di-
agnosis set PD1 = ∅. This leads to GD1 = LD1. Next, c1
sends GD1 to c2 as PD2. c2 then executes MHS on the set
{PD2, LD2} to get GD2 = {{1, 2}, {1, 3}}, and sends it to
c3 as PD3. c3 then executes MHS on the set {PD3, LD3}
to get GD3 = {{1, 2}, {1, 3}}. Here the diagnosis process
stops, the diagnoses are ∆1 = {c1, c2} and ∆2 = {c1, c3}.

Ranking Diagnoses
Ranking is also challenging since the components do not
possess the entire likelihood function L (Def. 3), so none
of them can maximize it by itself. To address this, we define
the Local Likelihood Function for component cj :

Definition 6 (Local Likelihood Function). Given a diag-
nosis ∆, component cj , local spectrum Sj and local error
vector Ej , the Local Likelihood Function Lj is: Lj =
P (Ej |∆) =

∏
Ej

i∈Ej L
j
i . With Lj

i defined similarly as Li

in Def. 3, but with relation to Sj and Ej .

Consider, for instance, ∆2 = {c1, c3} (Ex.3), and the
spectra and error vectors in Table 2. The local likelihood
functions of c1, c2, c3, are presented in Table 4 column 3.
This raises a challenge in performing gradient descent as
done in Barinel, since for each component cj , some terms
are missing (Lj

missing). As a result, a component can not
maximize L by itself. On the other hand, reconstructing Lj

to a complete L by exchanging the missing terms will al-
low components to reconstruct the complete spectrum, and
reveal private information, since there is a bijective relation
between Li and row ri. To that end we propose a distributed
version of gradient descent, where the components share two
values: (1) the value of L, and (2) the values of hj ∈ H . This
ensures that the complete function L will not be known to
the components. It is worth noting that L, Lj and Lj

missing
are functions. Throughout the demonstration of our algo-
rithms, we denote the numerical values of these functions
as l, lj and ljmissing , respectively.

Given a diagnosis to be ranked, each component cj ini-
tializes the group H={hj=1/2}|C|

j=1, and its local likelihood
function Lj . Next a sequential process starts with c1 and
ends with cM during which the value l is computed, with
each component cj updating it in turn. Next, c|C| broadcasts
the final value l to the other components, and then a parallel
process occurs, where each component calculates its partial
gradient ∇j and updates hj accordingly. The updated value
of hj is broadcast to all components, to ensure the values in
H are the same for all components.

Algorithm 4 details the ranking algorithm from the per-
spective of component cj . cj receives as input a global
diagnosis ∆. First cj initiates the array of health values
H = {hj = 1/2}|C|

j=1, its local likelihood function Lj and a
threshold for the process termination ϵ (Line 1). At the be-
ginning, component c1 sets the initial values of l and lprev
(Lines 2-3). Then, a gradient descent loop follows (Lines 4-
16), which halts when l has converged (Line 4). In each iter-
ation, cj waits to receive the updated value l from the previ-
ous component (Line 7). cj then extends it by multiplying it
with all the terms Lj

k of its local estimation function Lj that
were not observed by previous components and then eval-
uates the resulting function (Lines 8-9). Then cj sends l to
cj+1, and waits to receive the final l from c|C| (Line 13). In
case that j = |C|, cj broadcasts the updated l to all the com-
ponents (Lines 10-11). This concludes the sequential stage
of calculating the value l. cj uses l to calculate its own hj

(Lines 14-15). It does so by dividing l by lj to obtain the

6494

j H Lj lj derivativej l l3 ljmissing gradientj next H
1 1/2, 1/2, 1/2 (1− h1) · (1− h1) · (h1 · h3) 1/16 -1/8 1/16 1/32 1/2 -1/16 7/16, 1/2, 1/2
2 1/2, 1/2, 1/2 (1− h1) · (1− h3) 1/4 0 1/32 1/32 1/8 0 1/2, 1/2, 1/2
3 1/2, 1/2, 1/2 (1− h3) · (h1 · h3) 1/8 0 1/32 1/32 1/4 0 1/2, 1/2, 1/2

Table 4: Example showing a single iteration of Algorithm 4 for ranking the diagnosis ∆2 = {c1, c3}. Each row shows different
values that each component possesses. In the beginning the components have columns 2-5. Column 6 is calculated sequentially,
and once it is done, each component uses column 6 to compute the values in columns 6-10 in parallel.

Algorithm 4: Rank
Input: cj - the current component
Input: ∆ - a global diagnosis
Result: p - the probability of ∆

1 H, Lj ← init(∆, |C|), ϵ← 0.005
2 if j = 1 then
3 l← 0, lprev ← −1
4 while |l − lprev| > ϵ do
5 lprev ← l
6 if j ̸= 1 then
7 l← receive prev(cj−1)

8 Lj
extended ← l ·

∏
k:∄j′<j s.t. Sj

k,j′=1 L
j
k

9 l← Lj
extended(H)

10 if j = |C| then
11 broadcast(l)
12 else
13 send(cj+1, l), l← receive final(c|C|)

14 ljmissing ← l
lj

15 ∇j ← ljmissing ·
∂hj

∂Lj (H)

16 hj ← hj +∇j , broadcast(hj)
17 return p

value ljmissing (Line 14). Then cj calculates the gradient by
multiplying ljmissing with the result of the partial derivative
of Lj with respect to hj (Line 15). As a final step of this
iteration, cj updates hj and broadcasts it.

Example 4. We now demonstrate the process of ranking
the diagnoses by showing one iteration of ranking ∆2 =
{c1, c3}. Table 4 shows the values held by each compo-
nent during the iteration. The process of ranking works al-
ternatively in parallel and in sequence, with the results in
columns 2-5 being calculated in parallel, of column 6 in se-
quence, and of columns 7-10 in parallel again. Throughout
this example, when we refer to a column or a row, unless
specifically said otherwise, we refer to this table. The algo-
rithm starts simultaneously, where every component initial-
izes H = {h1, h2, h3} = {1/2, 1/2, 1/2} (column 2), and
ϵ is set to 0.005. The local likelihood functions Lj are as
shown by column 3, and their values lj are shown in col-
umn 4, with the values of their partial derivative functions
with respect to hj shown in column 5. c1 initializes l and
lprev to 0 and -1. Next, the gradient descent loop is executed
(column 6 top to bottom). c1, as the first component, extends
the function L1 vacuously to get L1

extended = L1. Then, af-
ter plugging in H , it gets l = 1/16 (Column 6 row 1). l
is sent to the next component, c2, and c1 starts waiting for

the final value of l. c2, receives l = 1/16, and generates
L2
extended = 1/16 · L2

2 = 1/16 · (1 − h3). (As can be seen
in Table 2b, term L2

2 is the only term that constitutes L2 for
which the condition in Line 7 of the algorithm holds). Next
c2 plugs in H to get p = 1/16 · (1 − 1/2) = 1/32 (column
6 row 2). This value is then sent to c3. c3 does not contribute
any part of L3, since looking at S3

2 and S3
4 shows that L3

3
and L3

4 were already evaluated by c1 and c2. So c3, as the
last component, broadcasts l = 1/32 (column 7). Follow-
ing is the evaluation of the gradient steps which are done in
parallel, and their values are shown in columns 8-10. Every
component cj first saves l as lprev for the sake of l conver-
gence, and then calculates ljmissing (column 8). Next, these
values are multiplied by the values of the the partial deriva-
tives of Lj with respect to hj (column 5), yielding the gradi-
ent values of ∇ = {−1/16, 0, 0} (column 9). Those values
are used to update H (column 10).

4 Theoretical Analysis
4.1 Soundness and Completeness
Here we present theorems of soundness and completeness
for DSFLA-MULTI and that DSFLA-SINGLE and DS-
FLA-MULTI return similar ranking to the centralized ver-
sions. For lack of space, we omit the proofs.
Theorem 1. DSFLA-MULTI is sound and complete.

Theorem 2. DSFLA-SINGLE returns the same ranking as
centralized coefficient based algorithms.

Theorem 3. DSFLA-MULTI returns the same ranking as
the centralized Barinel.

4.2 Privacy
The proposed algorithms address privacy, as it is one of the
motivations of our work. We first introduce the aspect of
privacy by formally defining Hidden Information and Re-
vealed Hidden Information Fraction.
Definition 7 (Hidden Information). Given a component cj
with corresponding local spectrum Sj and local error vector
Ej , Hidden Information (HI) for component cj is defined
as HIj = {Sj

i,∗| ri /∈ Sj ∧ ∃Sj′ : ri ∈ Sj′}.
Simply put, hidden information are the cells of runs that

are not in the local spectrum of cj but are in the local spec-
trum of at least one other component. We denote by Re-
vealed Hidden Information (RHIj) the amount of HI that
is revealed by cj . We define a metric for the amount of re-
vealed private information as the percent of hidden informa-
tion that is revealed out of the entire spectrum, formally:

6495

Definition 8 (Revealed HI Fraction). Given a component
cj with corresponding local spectrum Sj and local error
vector Ej , and with HIj , Revealed HI Fraction (RHIF) for
component cj is defined as RHIFj = |RHIj |

|R|∗(|C|+1) .

Simply put, we measure the fraction of cells hidden for cj
that became revealed out of all the spectrum cells.

For example, Table 2b shows S2 for which there are
|HI2| = 8 cells that are hidden for c2. At the end of the diag-
nosis, RHIF2 = 4/16 = 0.25. We now review the proposed
algorithms with respect to hidden information.

DSFLA-SINGLE:
Consider Algorithm 1. By getting information about n01(j)

or n00(j) from cj′ , cj can deduce that cj′ has a run ri ∈ Sj′

that includes the cells: Sj′

i,j′ = 1, Sj′

i,j = 0 and Ej′

i = 0 (in

case of n00(j)), or Ej′

i = 1 (in case of n01(j)). This means
that for every nn0q = k returned by cj′ , cj reveals 3 ·k cells.

Example 5. Returning to Example 2, c2 has |HI2| = 8. The
values of the counters nn01 = 1 and nn00 = 1, sent by c1
to c2, reveal to c2 that there is one row ri1 in which S1

i1,1
=

1, S1
i1,2

= 0 and E1
i1

= 1, and another row ri2 in which
S1
i2,1

= 1, S1
i2,2

= 0 and E1
i2

= 0. Those rows are summed
up to 6 cells that are shown in red in Table 5b. Tables 5a,5c
show the same for c1, c3 with 3 and 6 cells. It follows that
RHIF1 = 3/16, RHIF2 = 6/16 and RHIF3 = 6/16.

c1 c2 c3 E
r1 1 1 0 1
r2 0 1 - 1
r3 1 0 0 1
r4 1 0 1 0

(a)

c1 c2 c3 E
r1 1 1 0 1
r2 0 1 1 1
r3 1 0 - 1
r4 1 0 - 0

(b)

c1 c2 c3 E
r1 1 - 0 1
r2 0 1 1 1
r3 1 - 0 1
r4 1 0 1 0

(c)

Table 5: Information revealed by each component, denoted
as the bold values in it’s spectrum for DSFLA-SINGLE.

DSFLA-MULTI:
By applying Algorithm 3, a component can reveal some in-
formation from the passed diagnoses PD. Stern et al. 2012
show that MHS of diagnoses produces a set of minimal con-
flicts. Armed with this finding, cj can apply MHS on PD
received from cj−1, and reveal rows representing the set of
minimal conflicts that led to PD. This does not mean that cj
can deduce the entire S, since runs that are corresponding
to superset of conflicts will not be revealed. Also, successful
runs are not conflicts, therefore will not be revealed.

Example 6. Returning to Example 3, we show how c3 can
reveal hidden information using PD3 sent to it from c2. Re-
call that PD3 = {{1, 2}, {1, 3}}, by running MHS on this
set, the resulting minimal hitting sets are: {{1}, {2, 3}}.
These sets indicate the following rows ri1 = [1, 0, 0| 1]
and ri2 = [0, 1, 1| 1]. Since ri2 ∈ S3, it is not hidden
information to c3 (ri2 /∈ HI3). However, ri1 /∈ S3, there-
fore ri2 ∈ HI3. HI3 is shown in Table 6c, and Tables 6a

and 6b show the same for c1 and c2. Here, it follows that
RHIF1 = 0/16, RHIF2 = 4/16 and RHIF3 = 4/16.

c1 c2 c3 E
r1 1 1 0 1
r2 - - - -
r3 1 0 0 1
r4 1 0 1 0

(a)

c1 c2 c3 E
r1 1 1 0 1
r2 0 1 1 1
r3 1 0 0 1
r4 - - - -

(b)

c1 c2 c3 E
r1 - - - -
r2 0 1 1 1
r3 0 0 0 1
r4 1 0 1 0

(c)

Table 6: Information revealed by each component, denoted
as the bold values in it’s spectrum for DSFLA-MULTI.

5 Evaluation
We experimented on samples inspired by the domain of In-
ternet Delay Diagnosis (Stern and Kalech 2014). In this do-
main a network of routers forwards packages from sources
to destinations. In terms of diagnosis, the routers are com-
ponents, where a faulty router has a delay in forwarding
packages, causing the destination to experience this delay.
In terms of SFL, the spectra includes information about the
routers each package passed through from the source to the
destination, where the columns are the routers and the rows
are the traces of the packages. The error vector indicates for
each package, whether the destination experienced a delay.

5.1 Experimental Setting
The generation of DSFL problems consists of these steps:
1. Create synthetic networks with x routers (components).
2. Set probability of p to delay a packet for f components.
3. Generate random paths for y packets to traverse the net-
work (system runs). We generate local spectra by these runs.
4. A packet has (1 − p)f chance to reach the destination on
time. The local error vectors are filled accordingly.
We generated problems with varying number of components
x ∈ {6, ..., 12, 13}, faulty components f ∈ {1, 2, 3, 4, 5},
fault probability values p ∈ {0.1, 0.2, ..., 0.9} and number
of runs y ∈ {10, 20, ..., 50}. We conducted 30 examples for
each combination. In total we run 54, 000 experiments.

Metrics: We measure the performance of the algorithms
with respect to the quality of the diagnosis set they return by
computing the average Wasted Effort, Weighted Precision,
and Weighted Recall (Elmishali, Stern, and Kalech 2020).
To understand wasted effort, assume that we repair the com-
ponents in the diagnoses in a decreasing order of the diag-
noses’ score. Wasted effort is the number of healthy com-
ponents examined until all faulty components are repaired.
For weighted precision and recall, note that a diagnosis is an
assumption about which components are faulty. Thus, using
the knowledge about the ground truth faulty components,
we can compute the precision and recall of each single di-
agnosis. To compute the precision and recall of a set of di-
agnoses, we compute the weighted averages, where the pre-
cision/recall for every diagnosis is weighted by its score as
returned by the diagnosis algorithm.

6496

Single Centr. Single Baseline Multi BARINEL Multi Baseline Multi MC Multi SMC
Wasted Effort 2.82 2.82 2.43 2.43 1.48 1.28
Weighted Precision 0.36 0.36 0.64 0.64 0.62 0.45
Weighted Recall 0.13 0.13 0.50 0.50 0.46 0.37
Runtime (seconds) 3.8e-4 1.06e-3 2.57 10.44 1.05 0.39
RHIF - 0.06 - 0.05 3.35e-4 1.01e-4
#Messages per agent - 25.5 - 65.51 13.92 4.60

Table 7: Wasted effort percent, weighted precision/recall, runtime, hidden information revealed, and communication load.

Additionally, we measure the average Revealed Hidden
Information Fraction RHIF and the average #Messages. As
for #Messages, we define it as the information units passed
between the components during the diagnosis process. In
that context, we regard a spectrum cell, a component of a
diagnosis, a number, and an information request to be with
the size of 1 unit. For example, when c2 passes the diagnoses
{{1, 2}, {1, 3}} to c3, then #Messages=4.

Compared Algorithms: We compare DSFLA-MULTI to
two unsound and incomplete variations. Instead of each
component sending ALL local diagnoses to the next one
(Line 8 in Algorithm 3), in (1) Multi-MC it sends only all
minimal cardinality diagnoses, and in (2) Multi-SMC it
sends only a single minimal cardinality diagnosis. From
now on, we refer to the baseline variation of DSFLA-
MULTI as (3) Multi-Baseline and to the DSFLA-SINGLE
as (4) Single-Baseline. In addition, we compare these algo-
rithms to a centralized version, where all components send
their matrices to the diagnoser. We denote these algorithms
(5) Centr. Single and (6) Centr. Barinel.

5.2 Results
Table 7 shows the results. The first three rows present the
performance in terms of wasted effort, weighted precision
and weighted recall. Here, lower value of wasted effort is
better and higher values for weighted precision and recall
are better. The last two rows present the results of the aver-
age RHIF and the average number of messages. Here lower
numbers are better. The best values are shown in bold. The
first two columns show the results of algorithms dealing
with single faults - the centralized and distributed Single.
The next 4 columns present the results for the algorithms
for multiple faults - the centralized Barinel, Multi-Baseline,
Multi-MC and Multi-SMC.

The results show that the baseline distributed algorithms
output the same diagnoses as the centralized algorithms.
This is reflected in the identical results between the central-
ized and the baseline distributed algorithms, both for single
faults and multi faults, in terms of wasted effort, weighted
precision and weighted recall.

The results also show that the precision and recall de-
crease for the unsound and incomplete variations of the dis-
tributed algorithm (Multi-MC and Multi-SMC). The wasted
effort decreases as well although these variations are un-
sound and incomplete. This can be explained by the fact that
the two variations return less diagnoses by definition - which
means less healthy components to examine.

In terms of privacy and communication load, the results
show that the RHIF and the number of messages decrease
for the unsound and incomplete variations of the distributed
algorithms. This is expected since less sets of diagnoses are
sent by the components. This causes the components to dis-
cover less conflicts and by that less hidden cells in their re-
spective spectra (https://github.com/avi-natan/DDIFMAS).

6 Discussion
Throughout the paper, we drew some assumptions to sim-
plify the problem.

One such assumption is of perfect communication. Since
the components are distributed, our algorithms require the
components to be able to communicate information. Here,
perfect communication is assumed, i.e., challenges such as
disconnection of a component, delays in communication and
alternation of communication (accidental or deliberate) were
not assumed.

The second assumption is related to the collaboration of
the components. We assume a system which is privacy aware
yet collaborative. In it, prior agreement related to number of
components, component sequencing and spectrum and error
vector filling takes place between the components.

Finally, we assume specific vision the components have.
For every run they participate in, they also know about ev-
ery other participating component. This directly influences
our definition of the local spectrum. Additionally, we as-
sume that every component that participates in a run, can
see its outcome, which means that every component can see
the error vector for runs it participates in. Different assump-
tions about what information is available to each component
might influence the methods by which the components share
the information they have.

7 Conclusions
In this paper we pointed out the challenges SFL faces when
diagnosing distributed systems and formalized the problem
of Distributed SFL (DSFL). To solve this problem we pre-
sented distributed versions of the mentioned algorithms:
DSFLA-SINGLE and DSFLA-MULTI. We evaluated our
algorithms theoretically and empirically. Evaluation shows
that the algorithms achieve similar output to the centralized
algorithms whilst addressing privacy, and that variations of
DSFLA-MULTI can preserve more privacy with little cost
in diagnosis quality.

6497

Acknowledgments
This research was funded by ISF grant No. 1716/17, by the
ministry of science grant No. 3-6078, and (partially) by the
The Israeli Smart Transportation Research Center (ISTRC).

References
Abreu, R.; Zoeteweij, P.; and Van Gemund, A. J. 2007.
On the accuracy of spectrum-based fault localization. In
Testing: Academic and industrial conference practice and
research techniques-MUTATION (TAICPART-MUTATION
2007), 89–98. IEEE.
Abreu, R.; Zoeteweij, P.; and Van Gemund, A. J. 2009.
Spectrum-based multiple fault localization. In 2009
IEEE/ACM International Conference on Automated Soft-
ware Engineering, 88–99. IEEE.
De Kleer, J. 2011. Hitting set algorithms for model-based
diagnosis. In International Workshop on Principles of Diag-
nosis (DX-11).
De Kleer, J.; and Williams, B. C. 1987. Diagnosing multiple
faults. Artificial intelligence, 32(1): 97–130.
Elmishali, A.; Stern, R.; and Kalech, M. 2016. Data-
augmented software diagnosis. In Twenty-Eighth IAAI Con-
ference.
Elmishali, A.; Stern, R.; and Kalech, M. 2018. An ar-
tificial intelligence paradigm for troubleshooting software
bugs. Engineering Applications of Artificial Intelligence, 69:
147–156.
Elmishali, A.; Stern, R.; and Kalech, M. 2020. Diagnosing
Software System Exploits. IEEE Intelligent Systems, 35(6):
7–15.
Hofer, B.; Perez, A.; Abreu, R.; and Wotawa, F. 2015. On
the empirical evaluation of similarity coefficients for spread-
sheets fault localization. Automated Software Engineering,
22(1): 47–74.
Passos, L. S.; Abreu, R.; and Rossetti, R. J. 2015. Spectrum-
based fault localisation for multi-agent systems. In Twenty-
Fourth International Joint Conference on Artificial Intelli-
gence.
Perez, A.; Abreu, R.; and Riboira, A. 2014. A dynamic code
coverage approach to maximize fault localization efficiency.
Journal of Systems and Software, 90: 18–28.
Pérez-Zuñiga, C.; Chanthery, E.; Travé-Massuyès, L.; So-
tomayor, J.; and Artigues, C. 2018. Decentralized diagno-
sis via structural analysis and integer programming. IFAC-
PapersOnLine, 51(24): 168–175.
Perez-Zuniga, G.; Chanthery, E.; Travé-Massuyès, L.; and
Sotomayor, J. 2022. Near-Optimal Decentralized Diagno-
sis via Structural Analysis. IEEE Transactions on Systems,
Man, and Cybernetics: Systems.
Rodler, P. 2022. Memory-limited model-based diagnosis.
Artificial Intelligence, 305.
Stern, R.; and Kalech, M. 2014. Model-based diagnosis
techniques for Internet delay diagnosis with dynamic rout-
ing. Applied intelligence, 41(1): 167–183.

Stern, R. T.; Kalech, M.; Feldman, A.; and Provan, G. 2012.
Exploring the duality in conflict-directed model-based diag-
nosis. In Twenty-Sixth AAAI Conference on Artificial Intel-
ligence.
Syfert, M.; Bartyś, M.; and Kościelny, J. 2018. Refine-
ment of fuzzy diagnosis in decentralized two-level diagnos-
tic structure. IFAC-PapersOnLine, 51(24): 160–167.
Williams, B. C.; and Ragno, R. J. 2007. Conflict-directed
A* and its role in model-based embedded systems. Discrete
Applied Mathematics, 155(12): 1562–1595.

6498

