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Abstract

Abstraction has long been an effective mechanism to help
find a solution in classical planning. Agent abstraction,
based on the situation calculus, is a promising explainable
framework for agent planning, yet its automation is still far
from being tackled. In this paper, we focus on a propositional
version of agent abstraction designed for finite-state systems.
We investigate the automated verification of the existence
of propositional agent abstraction, given a finite-state
system and a mapping indicating an abstraction for it. By
formalizing sound, complete and deterministic properties
of abstractions in a general framework, we show that the
verification task can be reduced to the task of model checking
against CTLK specifications. We implemented a prototype
system, and validated the viability of our approach through
experimentation on several domains from classical planning.

Introduction
Abstraction has long been an effective mechanism to help
find a solution in classical planning. One trend is abstraction
refinement [Sacerdoti 1974; Knoblock 1994; Seipp and
Helmert 2018], whose idea is to first resort to an abstract
problem and obtain an abstract solution, and then refine it
to a concrete solution to the original problem.

Recently, an explainable abstraction framework called
agent abstraction was proposed by Banihashemi, Giacomo,
and Lespérance [2017]. It is a first-order framework based
on the situation calculus action theories [McCarthy and
Hayes 1969; Reiter 2001] and the ConGolog programming
language [Giacomo, Lespérance, and Levesque 2000]. The
key component is a refinement mapping, which associates
an abstract fluent to a concrete formula, and maps an
abstract action to a concrete ConGolog program. Thus one
can take an abstract view of an agent’s possible concrete
behaviour, suppressing the details and explaining the
meanings at a high level.

While agent abstraction is a promising framework for
the explainability of abstractions for classical planning,
its automation is still far from being tackled. Luo et al.
[2020] showed that agent abstraction can be characterized
theoretically via forgetting [Lin and Reiter 1994]. However,
an automated process is unknown, even in the propositional
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case. A key problem towards full automation is the exis-
tence problem of agent abstraction, i.e., whether there exists
an abstract action theory being the desired abstraction,
when given a concrete action theory and a refinement
mapping which indicates an abstraction. Take the blocks
world for example, where an agent is re-assembling blocks
stacked on a table. We could specify a refinement mapping,
where an abstract action move to table means a concrete
program moving a block onto the table, and an abstract
fluent all ontable denotes a property that all the blocks
are on the table. We might want to know whether this
refinement mapping is correct, i.e., whether there exists
an abstract action theory (describing the precondition of
move to table and its effect on all ontable) such that if
performing move to table make all ontable hold, then
at the concrete level, there exists a sequence of actions
resulting in a scenario where all the blocks are on the table.

The existence problem of agent abstraction is natural,
as specifying a refinement mapping is easier than speci-
fying an abstract action theory, without caring about the
preconditions and effects of abstract actions. In classical
planning, providing refinement mappings is relevant to
exploiting domain control knowledge [Baier, Fritz, and
McIlraith 2007] and hierarchical task networks [Nau et al.
2003]. Agent abstraction has its peculiarity, mainly in that
with a strong theoretical guarantee, a refinement mapping
can be reused clearly for any other planning problems if the
refinement mapping is verified to be correct for them.

In this paper, we focus on a propositional version of agent
abstraction, designed for finite-state systems and suitable for
domains in classical planning. We investigate the automated
verification of the existence of propositional agent abstrac-
tion, given a finite-state system and a refinement mapping.

We first formalize sound, complete and deterministic
properties of abstractions in a general framework for finite-
state systems. It can be viewed as model-level abstractions
(compared to theory-level abstractions in agent abstraction).
Roughly speaking, sound abstraction says that if there
is a solution at the abstract level, then this solution can
be refined to a solution at the concrete level. Complete
abstraction says that if there is a solution at the concrete
level, and it is abstractable via the refinement mapping,
then this solution can be abstracted to a solution at the
abstract level. Deterministic abstraction means that at the
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abstract level, the effects of actions are deterministic. We
show that propositional agent abstraction is a strong version
of sound, complete and non-deterministic abstraction.

We then show that verifying the existence of proposi-
tional agent abstraction can be reduced to the task of model
checking a logic of knowledge and branching time, CTLK
[Fagin et al. 1995; Lomuscio and Raimondi 2006]. The
key observation for verification is that for any state needed
to be abstracted, if there is a sequence of transitions, then
any indistinguishable state should have an indistinguishable
sequence of transitions. With a finite-state system S and a
refinement mapping, we enrich S with an indistinguishable
relation to perform CTLK model checking. We implemented
a prototype system, making use of the state-of-the-art tool
for CTLK model checking, and validated the viability of
our approach through experimentation on several domains
from classical planning.

Preliminaries
Labelled Transition Systems
In this paper, we focus on finite-state systems, which are
represented by labelled transition systems (LTSs) as follows.
Definition 1. A labelled transition system T is a tuple
(Q, q0, Act, T r,∆, l), where
• Q is a finite set of states;
• q0 ∈ Q is the starting state;
• Act is a set of actions;
• Tr ⊆ Q×Act×Q is a serial transition relation;
• ∆ is a set of atomic propositions;
• l : Q→ 2∆ is a labelling function.

An LTS is deterministic if for any q, q′, q′′ and a, if
(q, a, q′) ∈ Tr and (q, a, q′′) ∈ Tr, then q′ = q′′; otherwise,
it’s non-deterministic. A transition system (TS) is an LTS
without actions and whose transition relation is Tr ⊆ Q×Q.
A run of a TS is an infinite sequence of states, starting from
the initial state q0 and following the transition relation Tr.

CTLK Model Checking
Our verification relies on model checking against CTLK
specifications [Fagin et al. 1995; Lomuscio and Raimondi
2006]. For our purposes, we define the syntax of logic
CTLK by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | AXϕ | AGϕ | Kϕ
The validity judgement for CTLK formulas is written
T , r, n |= ϕ, where T is an epistemic transition system
(ETS), which denotes a TS with an indistinguishable rela-
tion ∼ over states, r is a run of the ETS, and n is a natural
number. We use r(n) to denote the nth state of r. Given r
and r′, we use r =[i...j] r

′ to express that for any k ∈ [i, j],
there is r(k) = r′(k). Validity is defined as follows:
T , r, n |= p iff p ∈ l(r(n));

T , r, n |= ¬ϕ iff T , r, n 2 ϕ;

T , r, n |= ϕ1 ∨ ϕ2 iff T , r, n |= ϕ1 or T , r, n |= ϕ2;

T , r, n |= AXϕ iff for any r′ s.t. r′ =[0...n] r,

there is T , r′, n+ 1 |= ϕ;

T , r, n |= AGϕ iff for any r′ s.t. r′ =[0...n] r and for any n′

s.t. n′ ≥ n, there is T , r′, n′ |= ϕ;

T , r, n |= Kϕ iff for any r′ and n′ s.t. r(n) ∼ r′(n′),
there is T , r′, n′ |= ϕ.

EXϕ means ¬AX¬ϕ. T |= ϕ means that for any run r of T ,
there is T , r |= ϕ , where T , r |= ϕ means T , r, 0 |= ϕ.

Propositional Agent Abstraction
For our purposes, we focus on propositional agent abstrac-
tion over LTSs, concerning model-level abstractions instead
of theory-level abstractions in agent abstraction [Bani-
hashemi, Giacomo, and Lespérance 2017]. We assume that
there are two levels of languages. Let ∆l be the low-level
atoms and Al be the low-level action terms; and let ∆h be
the high-level atoms and Ah be the high-level action terms.
We say that an atom or an action term is grounded if its
parameters do not contain variables, e.g., on(B1, B2) is a
grounded atom while on(B1, x) is not, as x is a variable. In
the followings, we assume that atoms and action terms are
grounded. A loop-free program δ is defined as follows:

δ ::= α | ϕ? | (δ1; δ2) | (δ1|δ2),

where α is an action term; ϕ is a logical formula, and ϕ?
is a test action testing whether ϕ holds; (δ1; δ2) means the
sequential composition of δ1 and δ2; (δ1|δ2) means the
non-deterministic choice between δ1 and δ2.

The key component of propositional agent abstraction is
a propositional refinement mapping, which maps high-level
atoms to low-level formulas, and associates high-level
actions to low-level loop-free programs. Formally,
Definition 2. Given a set Φ of formulas and a set Υ
of loop-free programs over ∆l and Al, a propositional
refinement mapping m is a bijection function such that
• for any fh ∈ ∆h, m(fh) = φ, where φ ∈ Φ;
• for any ah ∈ Ah, m(ah) = δ, where δ ∈ Υ.

Example 1. Suppose that there are two blocks named B1

and B2. The refinement mapping in the Introduction is
m(move to table) = δ, where δ is the following program:
¬ontable(B1)?;unstack(B1, B2); putdown(B1)

|¬ontable(B2)?;unstack(B2, B1); putdown(B2).

m(all ontable) = ontable(B1) ∧ ontable(B2).

A propositional refinement mapping relates a high-level
LTS to a low-level LTS as follows. First, the abstraction
relation between high-level states and low-level states is
characterized by m-isomorphic. Let υ be a function that
maps grounded action terms and grounded atoms to actions
and propositions in an LTS. We have:
Definition 3. Given a propositional refinement mapping m,
a function υ and two LTSs Th and Tl, we say that a state qh ∈
Qh is m-isomorphic to a state ql ∈ Ql, written (Th, qh) ∼m
(Tl, ql), if for any fh ∈ ∆h,

Th, υ, qh |= fh iff Tl, υ, ql |= m(fh).

The abstraction relation between a high-level LTS and
a low-level LTS is then characterized by a notion called
m-bisimulation , based on m-isomorphic and the semantics
of loop-free programs over LTSs.
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Definition 4. Given an LTS T and a loop-free program δ,
the semantics of δ is specified byQυ(T , δ), which is defined
inductively:
• Qυ(T , α)

.
= {(q, q′) | (q, υ(α), q′) ∈ Tr};

• Qυ(T , ϕ?)
.
= {(q, q) | T , υ, q |= ϕ};

• Qυ(T , δ1|δ2)
.
= Qυ(T , δ1) ∪Qυ(T , δ2);

• Qυ(T , δ1; δ2)
.
= {(q, q′′) | there exists q′ s.t. (q, q′) ∈

Qυ(T , δ1) and (q′, q′′) ∈ Qυ(T , δ2)}.
We assume that programs in a refinement mapping m are

disjoint, i.e., Qυ(T , δ) ∩Qυ(T , δ′) = ∅, for any δ, δ′ ∈ m.
Definition 5. Given a function υ, a relation B ⊆ Qh × Ql
is an m-bisimulation relation between Th and Tl if for any
〈qh, ql〉 ∈ B implies:

• (Th, qh) ∼m (Tl, ql);
• for any ah ∈ Ah, if there exists q′h such that (qh, q

′
h) ∈

Qυ(Th, ah), then there exists q′l such that (ql, q
′
l) ∈

Qυ(Tl,m(ah)) and 〈q′h, q′l〉 ∈ B;
• for any ah ∈ Ah, if there exists q′l such that (ql, q

′
l) ∈

Qυ(Tl,m(ah)), then there exists q′h such that (qh, q
′
h) ∈

Qυ(Th, ah) and 〈q′h, q′l〉 ∈ B.

If 〈qh0 , ql0〉 ∈ B, where B is an m-bisimulation relation
between Th and Tl, then Th is m-bisimilar to Tl, written
Th ∼m Tl.

Intuitively, if Th is m-bisimilar to Tl, then Th and Tl be-
have the same if Tl is viewed in an abstract way with the re-
finement mapping m, by taking low-level programs as high-
level actions and low-level formulas as high-level atoms.

Abstraction for LTSs
In this section, we introduce a general abstraction frame-
work for LTSs, and show that propositional agent abstraction
can be characterized by it.

We first introduce some notations. Given a function f ,
we use dom(f) to denote the domain of f , and range(f)
to denote the range of f . A procedure is a finite sequence
of actions. Given an LTS, two states q, q′ and a procedure
τ = ai; . . . ; aj , we use q τ−→ q′ to denote that q′ is reachable
from q via procedure τ , i.e., there exist qi, . . . , qj , qj+1 s.t.
for each k ∈ [i, j], there is (qk, ak, qk+1) ∈ Tr and qi = q

and qj+1 = q′. We call such q τ−→ q′ a path, and if q is q0,
then we call such procedure τ a trace.

We introduce two notions called state abstractions and
procedure abstractions.

Definition 6. Given two sets Q and Q̂ of states, a state
abstraction is a function λ : Q→ Q̂.
Definition 7. Given a set Π of procedures, and a set Act of
actions, a procedure abstraction is a function π : Π→ Act.

We then introduce abstractions for LTSs
Definition 8. Given an LTS T , an abstraction for T is a
tuple (T̂ , λ, π), where T̂ is an LTS, λ is a state abstraction
and π is a procedure abstraction.

Inspired by sound abstraction and complete abstraction
for situation calculus models [Cui, Liu, and Luo 2021], we
define sound abstraction and complete abstraction for LTSs.

Definition 9. An abstraction (T̂ , λ, π) for T is sound if
there exists a relation B over Q× Q̂ s.t. 〈q0, q̂0〉 ∈ B and

• 〈q, q̂〉 ∈ B implies λ(q) = q̂;
• If 〈q, q̂〉 ∈ B and there exist a ∈ Âct and q̂′ ∈ Q̂ s.t.
q̂

a−→ q̂′, then there exist τ ∈ dom(π) and q′ ∈ Q s.t.
q
τ−→ q′ and π(τ) = a and 〈q′, q̂′〉 ∈ B.

Sound abstraction guarantees that if there is a trace ending
at a state of the abstract LTS, then there exists a refined trace
ending at a refined state of the concrete LTS.

Formally, if notation π?(τ, τ̂) denotes that τ̂ is an abstract
procedure of procedure τ , i.e., τ can be partitioned into
τ1; , . . . ; τn s.t. π(τ1) = a1, ..., π(τn) = an and thus
τ̂ = a1; . . . ; an, then we have:

Proposition 1. If (T̂ , λ, π) is sound abstraction for T , then

for any state q̂ and procedure τ̂ s.t. q̂0
τ̂−→ q̂, there exist state

q and procedure τ s.t. q0
τ−→ q and λ(q) = q̂ and π?(τ, τ̂).

Proof (sketch). We prove by induction on the length of
procedure τ̂ .

Definition 10. An abstraction (T̂ , λ, π) for T is complete
if there exists a relation B over Q× Q̂ s.t. 〈q0, q̂0〉 ∈ B and

• 〈q, q̂〉 ∈ B implies λ(q) = q̂;
• If 〈q, q̂〉 ∈ B and there exist τ ∈ dom(π) and q′ ∈ Q s.t.
q
τ−→ q′, then there exist a ∈ Âct and q̂′ ∈ Q̂ s.t. q̂ a−→ q̂′

and π(τ) = a and 〈q′, q̂′〉 ∈ B.

Complete abstraction guarantees that given a trace ending
at a state of the concrete LTS, if this trace is abstractable,
then there exists an abstract trace ending at the abstract state
of the abstract LTS. Formally,

Proposition 2. If (T̂ , λ, π) is complete abstraction for T ,
then for any state q and procedure τ s.t. q0

τ−→ q, if there
exists a procedure τ̂ s.t. π?(τ, τ̂), then there exists state q̂ s.t.

λ(q) = q̂ and q̂0
τ̂−→ q̂.

Abstractions can be deterministic and non-deterministic.

Definition 11. An abstraction (T̂ , λ, π) for T is determin-
istic if there exists a relation B over Q× Q̂ s.t. 〈q0, q̂0〉 ∈ B
and

• 〈q, q̂〉 ∈ B implies λ(q) = q̂;
• If 〈q, q̂〉 ∈ B and there exist a ∈ Âct and q̂′ ∈ Q̂

s.t. q̂ a−→ q̂′, then for any τ ∈ dom(π) and q′ ∈ Q s.t.
q
τ−→ q′, if π(τ) = a, then 〈q′, q̂′〉 ∈ B.

If an abstraction is deterministic, then an abstract trace
can only end at an unique final state:

Proposition 3. If (T̂ , λ, π) for T is deterministic, then if

there exist state q̂ and procedure τ̂ s.t. q̂0
τ̂−→ q̂, then for any

q̂′ s.t. q̂0
τ̂−→ q̂′, we have q̂′ = q̂.

Proof (sketch). We prove by induction on the length of
procedure τ̂ .
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In the followings, we show that propositional agent ab-
straction is a strong version of non-deterministic, sound and
complete abstraction (NDeSCA), which we call NDeSCA+.
Similarly, we introduce a strong version of deterministic,
sound and complete abstraction (DeSCA) called DeSCA+.

Definition 12. An abstraction (T̂ , λ, π) for T is NDeSCA+

if it is sound abstraction with some relation B and complete
abstraction with some B′, and B = B′.

NDeSCA+ is stronger than NDeSCA, in that the relations
that constitute sound abstraction and complete abstraction
are the same in NDeSCA+ while they are not necessarily the
same in NDeSCA. Similarly, we have:

Definition 13. An abstraction (T̂ , λ, π) for T is DeSCA+

if it is NDeSCA+ with some relation B, and deterministic
abstraction with some B′, and B = B′.

We show that m-bisimilar relation can be characterized
by our framework.

Proposition 4. Given a refinement mapping m and LTSs
T̂ and T , there exist a state abstraction λ and a procedure
abstraction π s.t. T̂ ∼m T iff (T̂ , λ, π) is NDeSCA+ for T .

Proof (sketch). We first show that from a refinement map-
ping m, we can induce a state abstraction λ and a procedure
abstraction π as follows. If (T̂ , q̂) ∼m (T , q), then λ(q) =
q̂. For any loop-free program δ ∈ m, if (q, q′) ∈ Qυ(T , δ),
and there exists a procedure τ s.t. q τ−→ q′, then π(τ) = aδ ,
where aδ is an abstract action we use for δ. We then show
that m-bisimilar coincides with NDeSCA+.

Finally, we define our verification problems.

Definition 14. NDeSCA+ existence problem is that given
an LTS T , a state abstraction λ and a procedure abstrac-
tion π, determine if there exists an LTS T̂ s.t. (T̂ , λ, π) is
NDeSCA+ for T .

Definition 15. DeSCA+ existence problem is that given an
LTS T , a state abstraction λ and a procedure abstraction π,
determine if there exists an LTS T̂ s.t. (T̂ , λ, π) is DeSCA+

for T .

Verifying the Existence of Abstraction
In this section, we show how to solve NDeSCA+ and
DeSCA+ existence problem via CTLK model checking.

We first investigate necessary and sufficient conditions
under which there exists complete abstraction and there
exists sound abstraction, given an LTS, a state abstraction
λ, and a procedure abstraction π.

The conditions of the existence of complete abstraction
make use of a notion called π-reachable states.

Definition 16. Given an LTS T and a procedure abstraction
π, the π-reachable states of T , written QπT , is defined
inductively:

• q0 ∈ QπT ;
• for any q ∈ QπT and for any τ ∈ dom(π), if there exists

state q′ s.t. q τ−→ q′, then q′ ∈ QπT .

We show that all the π-reachable states should be ab-
stracted for the existence of complete abstraction. Formally,
let q be a state and λ be a state abstraction. We use λ(q) = ⊥
to denote that λ(q) is not defined. Then,

Proposition 5. Given an LTS T , a state abstraction λ and a
procedure abstraction π, if there exists complete abstraction
for T , then ∀q ∈ QπT .λ(q) 6= ⊥.

Proof (sketch). We prove by contradiction. Suppose that
there exist complete abstraction and q ∈ QπT s.t. λ(q) = ⊥.
We show that by establishing a relation B for complete
abstraction, as q ∈ QπT , 〈q, q̂〉must be in B for a certain q̂. It
follows that λ(q) = q̂, which comes to a contradiction.

With the π-reachable states, we show how to obtain com-
plete abstraction. We make use of the following notations.

abs(q
τ−→ q′, q̂

a−→ q̂′)
.
= q

τ−→ q′

and λ(q) = q̂ and λ(q′) = q̂′ and π(τ) = a,

which means that q τ−→ q′ is a path abstractable to
q̂

a−→ q̂′. Given a state set Q, if there exists q τ−→ q′ s.t.
abs(q

τ−→ q′, q̂
a−→ q̂′) holds, then we call such q̂ a−→ q̂′ an

∃-abstract-edge wrt Q, written E∃Q(q̂
a−→ q̂′).

Proposition 6. Given an LTS T , a state abstraction λ, and
a procedure abstraction π, if ∀q ∈ QπT .λ(q) 6= ⊥, then there
exists complete abstraction for T .

Proof (sketch). We show how to build an LTS T̂ that is
complete abstraction for T . The intuition is that we let states
in T̂ be the states abstracted from QπT , the π-reachable
states of T . We let transitions in T̂ be ∃-abstract-edges wrt
QπT . We can show that (T̂ , λ, π) is complete abstraction for
T by establishing a relation B inductively.

To build sound abstraction, we introduce a similar concept
called ∀-abstract-edge wrt Q, written E∀Q(q̂

a−→ q̂′).

E∀Q(q̂
a−→ q̂′)

.
= ∀q ∈ Q, ∃τ ∈ dom(π), ∃q′ ∈ Q.

ifλ(q) = q̂, then abs(q τ−→ q′, q̂
a−→ q̂′),

which means that for any state q abstractable to q̂, there
exists a path q τ−→ q′ abstractable to q̂ a−→ q̂′.

Note however that, it is trivial to show that sound abstrac-
tion exists when λ(q0) 6= ⊥, as one can construct a trivial
abstract LTS which contains only a state λ(q0).

With the above results, we show the necessary and
sufficient conditions for the existence of NDeSCA+ and the
existence of DeSCA+.

Theorem 1. Given an LTS T , a state abstraction λ, and a
procedure abstraction π, there exists an LTS T̂ s.t. (T̂ , λ, π)
is NDeSCA+ for T iff the following two conditions hold:

• ∀q ∈ QπT .λ(q) 6= ⊥;

• For any q̂, a, q̂′, if E∃QπT (q̂
a−→ q̂′), then E∀QπT (q̂

a−→ q̂′).
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Proof (sketch). We first prove the if-direction. By Prop. 6,
there exists complete abstraction. We show that this com-
plete abstraction is also sound abstraction by the definition
of E∀QπT (q̂

a−→ q̂′). We then prove the only-if-direction. By
Prop. 5, the first condition is necessary. We prove that the
second condition is necessary by contradiction. Suppose
that there exist q̂, a, q̂′ s.t. E∃QπT (q̂

a−→ q̂′) holds while

E∀QπT (q̂
a−→ q̂′) does not hold. It follows that there exists

q ∈ QπT s.t. abs(q τ−→ q′, q̂
a−→ q̂′) does not hold. Since 〈q, q̂〉

must be in B, we fail to obtain B for sound abstraction,
which comes to a contradiction.

Intuitively, the above theorem says that if the abstract
LTS built via ∃-abstract-edges wrt the π-reachable states
results in the same abstract LTS built via ∀-abstract-edges
wrt the π-reachable states, then NDeSCA+ exists.

Additionally, to see whether an abstraction is determin-
istic, we check whether at any π-reachable state, if two
procedures are bound to the same abstract action, then their
resulting states are bound to the same abstract state.

Theorem 2. Given an LTS T , a state abstraction λ, and a
procedure abstraction π, there exists an LTS T̂ s.t. (T̂ , λ, π)
is DeSCA+ for T iff the following two conditions hold:

• (T̂ , λ, π) is NDeSCA+ for T ;
• for any q, q′, q′′ ∈ QπT and any τ, ω ∈ dom(π) s.t., q τ−→
q′ and q ω−→ q′′, if π(τ) = π(ω), then λ(q′) = λ(q′′).

Proof (sketch). By Theorem 1, we only need to prove that
the second condition holds iff (T̂ , λ, π) is deterministic. We
first prove the if-direction. We show that (T̂ , λ, π) is also
deterministic (Def. 11) by the second condition. We then
prove the only-if-direction by contradiction. Suppose that
there exist q, q′, q′′ ∈ QπT and τ, ω ∈ dom(π) s.t. q τ−→ q′,
q
ω−→ q′′, π(τ) = π(ω) and λ(q′) 6= λ(q′′). There must exist

q̂ s.t. 〈q, q̂〉 ∈ B. Since q τ−→ q′, suppose that π(τ) = a and
λ(q′) = q̂′, by Def. 10, we have q̂ a−→ q̂′. Since q ω−→ q′′,
π(ω) = π(τ) = a, by Def. 11, we have λ(q′) = q̂′ = λ(q′′),
which violates λ(q′) 6= λ(q′′).

In the following, we reduce DeSCA+ and NDeSCA+

existence problems to CTLK model-checking problems.
We assume that a state abstraction λ is complete, i.e.,
∀q.λ(q) 6= ⊥. The intuition for reduction is to make use
of indistinguishability. We say that two concrete states are
indistinguishable if they are abstracted to the same state;
two procedures are indistinguishable if they are abstracted
to the same action; two paths are indistinguishable if both
their procedures and ending states are indistinguishable.

We first induce an ETS from an LTS by

• focusing on the π-reachable states and their transitions;
• introducing propositional variables for abstract actions

and abstract states;
• labelling states to indicate indistinguishable paths;
• introducing an indistinguishable relation over states.

Definition 17. Let T = (Q, q0, Act, T r,∆, l) be an LTS,
λ be a state abstraction, and π be a procedure abstraction.
The induced ETS of T wrt λ and π, written Tλ,π , is a tuple
(Q′, q′0, R

′,∆′, l′,∼), where

• Q′ = QπT and q′0 = q0;
• R′ = {(q, q′) | q τ−→ q′ for q, q′ ∈ Q′, τ ∈ dom(π)};
• ∆′ = {pâ | â ∈ range(π)} ∪ {pŝ | ŝ ∈ range(λ)};
• l′(q) = {pâ | there exist s ∈ Q′, τ ∈ dom(π) and
â ∈ range(π) s.t. s τ−→ q and π(τ) = â } ∪ {pλ(q)};
• ∼= {(q, q′) | λ(q) = λ(q′) for q, q′ ∈ Q′}.

With the induced ETS Tλ,π , to decide whether NDeSCA+

exists for T , we can check whether the following condition
holds: for any state q of Tλ,π , if there exists a path starting
from q, then for any its indistinguishable state q′, there
exists an indistinguishable path starting from q′. This
condition can be formalized by the logic CTLK.

Theorem 3. Given an LTS T , a state abstraction λ and a
procedure abstraction π, there exists an LTS T̂ s.t. (T̂ , λ, π)
is NDeSCA+ for T iff the induced ETS Tλ,π satisfies that for
any â ∈ range(π) and ŝ ∈ range(λ),

Tλ,π |= AG(EX(pâ ∧ pŝ) ⊃ KEX(pâ ∧ pŝ)).

Proof (sketch). To prove the if-direction, by the semantics
of CTLK over LTSs and the definition of Tλ,π , we can
show that it satisfies the conditions for NDeSCA+. The
only-if-direction can be proved by contradiction. If the
checking fails, by the definition of Tλ,π , we can show that it
violates the conditions for NDeSCA+.

Theorem 4. Given an LTS T , a state abstraction λ and a
procedure abstraction π, there is an LTS T̂ s.t. (T̂ , λ, π) is
DeSCA+ for T iff the induced ETS Tλ,π satisfies that for any
â ∈ range(π) and ŝ ∈ range(λ),

Tλ,π |= AG(EX(pâ ∧ pŝ) ⊃ KEX(pâ ∧ pŝ));
Tλ,π |= AG(EX(pâ ∧ pŝ) ⊃ AX(pâ ⊃ pŝ)).

Proof (sketch). By Theorem 2 and Theorem 3, we only need
to prove that for any â ∈ range(π) and ŝ ∈ range(λ),
Tλ,π |= AG(EX(pâ ∧ pŝ) ⊃ AX(pâ ⊃ pŝ)) iff the second
condition in Theorem 2 holds. It follows by the semantics of
CTLK.

As the complexity of CTLK model checking is PTIME-
complete [Raimondi 2006] wrt the model size and formula
size, by Def. 17 and Theorem 3&4, we have:

Corollary 1. DeSCA+ existence problem and NDeSCA+

existence problem can be solved in PTIME.

Automated Verification
In this section, we show how to verify propositional agent
abstraction in the setting of propositional STRIPS planning
[Bylander 1994]: Signature Σ is a set of propositional vari-
ables used in a propositional language. A literal is either a
propositional variable p or its negation ¬p. Let Θ be a set of
literals. Θ̃ denotes {¬l | l ∈ Θ}. A cube is a set of literals,
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understood as the conjunction of them. An action a is char-
acterized by a tuple (prea, effa), where prea is the precondi-
tion and effa is the effects, which are cubes. An action a is
applicable in state s if s |= prea. If an action a is applicable,
executing a in state s results in a successor state s′, which
is the unique state s.t. s′ |= effa and for any l /∈ effa ∪ ẽffa,
there is s′ |= l iff s |= l. A propositional STRIPS planning
domain D is a tuple (X, sI ,A), where X is s set of
propositional variables, sI is the initial state, and A is a set
of actions. Given a propositional STRIPS planning domain
D, it is trivial to induce an LTS, which we denote as TD.

Our problem is defined as follows. Given a propositional
STRIPS planning domain D = (X, sI ,A) and a refinement
mapping m, which is devised over an abstract language and
the concrete elements X and A, we decide if there is an ab-
stract planning domainD′ s.t. the induced LTSs TD′ and TD
satisfy TD′ ∼m TD. As we have shown that m-bisimilar re-
lation can be characterised by NDeSCA+, and verifying the
existence of NDeSCA+ needs the induced ETS, our prob-
lem lies in how to construct the ETS from D and m. This
construction is symbolic, as both D and m are symbolic.

Thus our verification process first generates a symbolic
representation of ETS in Def. 17, given D and m, and
then performs symbolic model checking against CTLK
specifications by Theorem 3.

To get the transition relation of a symbolic ETS, we treat
a loop-free program occurring in refinement mapping m as
an action in planning, thus we first show how to obtain the
precondition and effects of a loop-free program. Similar to
propositional formulas, we introduce a normal form of a
program called NRSP. A program is of the form NRSP if it
is the non-deterministic choice of restricted sequential pro-
grams (RSPs). A sequential program is a program resulting
from the sequential composition of actions. A sequential
program is restricted if the formula φ of any test action is
a conjunctive clause, i.e., the conjunction of literals. Given
a program δ, we can obtain an equivalent program of the
form NRSP as follows: we first obtain an equivalent δ′ from
δ by translating each formula φ in δ to an equivalent DNF
formula φ′ and splitting φ′ s.t. formulas in δ′ are conjunctive
clauses. For instance, program (p1∧p2∨p3)?; a is rewritten
to (p1 ∧ p2?; a)|(p3?; a). We then translate δ′ to an equiv-
alent program in the form of NRSP. For instance, program
(a|b); c is rewritten to (a; c)|(b; c). We use RSP(δ) to denote
the set of RSPs with δ being of the form NRSP. Hence we
can focus on obtaining preconditions and effects of RSPs.

Before doing so, we introduce some notations, and
operations over sets of literals. Given a sequential program
δ and a natural number i, notation δ[i] denotes the ith
action in program δ. Notation > denotes the set containing
no literals, meaning that all states are possible, and ⊥
represents the set containing all the literals, meaning that
no state is possible. We have ⊥ ⊇ ∆ ⊇ >, for any set ∆ of
literals. Given two sets Γ, Θ of literals, Γ�Θ is a new set of
literals such that if there is no literal l s.t. l ∈ Γ and ¬l ∈ Θ,
then Γ � Θ = Γ \Θ; otherwise Γ � Θ = ⊥. Γ]Θ is a new
set of literals such that if there is no literal l s.t. l ∈ Γ and
¬l ∈ Θ, then Γ ]Θ = Γ ∪Θ; otherwise Γ ]Θ = ⊥.

Definition 18. Given a RSP δ, the precondition of δ, written
pre∗δ , is pre(δ,>), where pre(δ,∆) is defined as:
• pre(a,∆)

.
= prea ] (∆ � effa), where a is an action;

• pre(φ?,∆)
.
= L(φ)]∆, whereL(φ) denotes literals in φ;

• pre(δ1; δ2,∆)
.
= pre(δ1, pre(δ2,∆)),

Proposition 7. Given a RSP δ, a function υ, and a state q in
an LTS T , we have that T , υ, q |= pre∗δ iff there exists state
q′ s.t. (q, q′) ∈ Qυ(T , δ).

Proof (sketch). We first prove that T , υ, q |= pre(δ,∆) iff
there exists state q′ s.t. (q, q′) ∈ Qυ(T , δ) and T , υ, q′ |= ∆.
We prove that by structural induction on δ. When ∆ is >, it
follows that the proposition holds.

Definition 19. Given a RSP δ, the effects of δ, written eff∗δ ,
are eff(>, δ), where eff(∆, δ) is defined as:
• eff(∆, a)

.
= ∆ \ {l,¬l | l ∈ effa} ∪ effa;

• eff(∆, φ?)
.
= ∆;

• eff(∆, δ1; δ2)
.
= eff(eff(∆, δ1), δ2).

Proposition 8. Given a RSP δ, a function υ, and a state q
in an LTS T , if there is state q′ s.t. (q, q′) ∈ Qυ(T , δ), then
T , υ, q′ |= eff∗δ and for any l /∈ eff∗δ ∪ ẽff

∗
δ , q′ |= l iff q |= l.

Proof (sketch). We first prove that for any l ∈ ∆, we have
l ∈ eff(∆, δ) or ¬l ∈ eff(∆, δ) by structural induction on δ.
We then prove a stronger proposition that if T , υ, q |= ∆ and
there exists state q′ s.t. (q, q′) ∈ Qυ(T , δ), then T , υ, q′ |=
eff(∆, δ) and for any l /∈ (eff(∆, δ) \∆) ∪ (ẽff(∆, δ) \ ∆̃),
there is q′ |= l iff q |= l by structural induction. When ∆ is
>, it follows that the original proposition holds.

We then show how to induce a symbolic representation of
an ETS, which can be viewed as a result of an agent execut-
ing a physical action and a sensing action alternatively in an
environment. A physical action has the same precondition
and effects as a low-level RSP of a loop-free program of
the refinement mapping. The only sensing action senses the
truth values of low-level properties represented by formulas
of the refinement mapping.
Definition 20. Given a propositional STRIPS planning do-
main D = (X, sI ,A) and a propositional refinement map-
ping m, a symbolic epistemic transition system S is a tuple
〈X ′, s′I ,A′,Ao〉, where
• X ′ = X ∪ XP ∪ XF ∪ {po}, where XP = {pδ | δ ∈
range(m)}; XF = {pφ | φ ∈ range(m)};

• s′I = sI ∪ {po}
• A′ = {aδi | δi ∈ RSP(δ), δ ∈ range(m)}, where aδi is

a physical action determined by (preaδi , effaδi ), where

– preaδi = pre∗δi ∪ {¬po};
– effaδi = eff∗δi∪{po}∪{pδ}∪{¬pδ′ | pδ′ ∈ XP\{pδ}}.

• Ao = {ao}, where ao is a sensing action deter-
mined by (preao , effao), where preao = {po} and
effao = {φ ⊃ pφ,¬φ ⊃ ¬pφ | φ ∈ range(m)}∪{¬po}.
XP records which loop-free program is performed. XF

evaluates low-level properties. po is for the execution alter-
nating between a sensing action and a physical action.
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Given a symbolic ETS, it is trivial to derive an ETS.
But the induced ETS has spurious states, in that we only
need to focus on states resulting from the sensing action.
Thus CTLK specifications are that for any pδ ∈ XP and
pφ ∈ XF , AG(¬po ∧EXEX(pδ ∧ pφ) ⊃ KEXEX(pδ ∧ pφ)).

Experiments
To evaluate our approach, we implemented a prototype
system called PAAChecker1 using Python. For CTLK
model checking, we make use of the state-of-the-art tool,
MCMAS [Lomuscio, Qu, and Raimondi 2017]. The time-
out bound is 3600 seconds. All experiments ran on a Linux
machine with 2.2 GHz CPU and 96GB memory. To simplify
specifications, refinement mappings are first-order and will
be propositional via the grounding process, given a set of
objects. Program π(k).action(k) means performing action
with a certain object k. Our tested domains are Blocksworld
[Slaney and Thiébaux 2001], Robot [Kabanza, Barbeau,
and St-Denis 1997] and Childsnack [Vallati et al. 2015].

Blocksworld A robot is re-assembling stackable blocks
on a table with unlimited space. The robot can stack a block
onto another block, unstack a block from another block, put
down a block, or pick up a block from the table. Auxiliary
predicates goal ontable, goal on, and done related to
planning goals are introduced.

We devise a refinement mapping as follows. High-level
action onestep move is the non-deterministic choice of

• if π(x, y).¬done(x) ∧ done(y) ∧ goal on(x, y), then
pickup(x) or π(k).unstack(x, k), and then stack(x, y)

• if π(x).¬done(x) ∧ ¬on table(x), then π(k).
unstack(x, k), and then putdown(x)

• if π(x).on table(x)∧ goal on table(x)∨∃y.on(x, y)∧
goal on(x, y) ∧ done(y), then mark done(x)

• if ∀x.done(x), then do nothing.

High-level atom success denotes the disjunction of

• ∃x, y.¬done(x) ∧ goal on(x, y) ∧ done(y)

• ∃x.¬done(x) ∧ ¬on table(x)

• ∃x.on table(x) ∧ goal on table(x) ∧ ¬done(x)

• ∃x, y.on(x, y) ∧ goal on(x, y) ∧ done(y) ∧ ¬done(x)

• ∀x.done(x).

Robot A robot is picking up objects in their initial
locations and placing them in their goal locations. The
robot also can open a door, or move from one location
to another location given that the door is open. We de-
vise a refinement mapping where 4 high-level actions
h pickup, move release, move to object h holding, and
3 high-level atoms pickable, movable, success are given.

Childsnack A robot is making and serving sandwiches
for a group of children in which some are allergic to gluten.
The robot can make a sandwich or make a sandwich taking
into account that all ingredients are gluten-free. She also
can put a sandwich on a tray, move a tray from one place

1It is available at https://github.com/luokailun/PAAChecker

Instance #4 #8 #S Tmc(s) T(s)
B10 1 0 550 2.0 2.1
B15 1 0 5666 18.9 19.0
B20 1 0 119682 35.8 36.0
B25 1 0 73506 766.0 766.2
B30 1 0 6.6e+06 1691.4 1691.6
B35 1 0 312678 2437.3 2437.7

R04-05 7 5 291 0.5 0.5
R05-10 9 3 86 0.7 0.8
R10-20 7 5 24295 91.9 92.0
R15-30 – – – – Timeout
R20-40 8 4 273535 448.1 448.2
R25-50 – – – – Timeout

C04 1 0 132850 37.1 39.2
C06 1 0 2.2e+06 136.3 143.5
C08 1 0 3.3e+06 853.9 862.6
C10 1 0 5.9e+07 1650.4 1676.7
C12 1 0 7.2e+07 1179.2 1208.3
C14 – – – – Timeout

Table 1: Experimental results

to another or serve sandwiches. We devise a refinement
mapping where a high-level action serve and a high-level
atom success are given.

Experimental results are summarized in Table 1, where
#4 (resp. #8) denotes the number of formulas verified to
be true (resp. false); #S and Tmc (in seconds) denote the
number of reachable states and the time for CTLK model
checking; T is the total time for running the system. Six
instances of an increasing number of objects of each domain
are tested. On an instance of medium size, our system
can return a result in a reasonable amount of time. On a
large instance, the verification seems too computationally
expensive with a complicated refinement mapping. Note
however that, a propositional refinement mapping m can be
reused for many planning problems. That is, if m is verified
to be correct for domain instance D, then it is suitable for
any planning problem (D, g), given that the planning goal
g is abstractable by m. Thus our system is suitable for the
scenario where the planning goal is often changed.

Conclusion
We have investigated the existence problem of proposi-
tional agent abstraction, given a refinement mapping and
a planning domain in the propositional case. We have
shown that the problem is reducible to a CTLK model
checking problem, which yields an automated approach
for verification. We implemented a prototype system, and
the experimental results showed that our system can solve
domains of medium size in a reasonable amount of time.

In the future, to solve larger domains, we would like to
exploit compacted representation such as SAS+ [Helmert
2009], and consider planning-goal-oriented abstraction by
relaxing the requirement of complete abstraction. Based on
our work, we would like to explore the synthesis of abstract
planning domains and the synthesis of refinement mappings.
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