
FASTDIAGP: An Algorithm for Parallelized Direct Diagnosis

Viet-Man Le1, Cristian Vidal Silva2, Alexander Felfernig1,
David Benavides3, José Galindo3, Thi Ngoc Trang Tran1

1 Graz University of Technology, Graz, Austria
2 Universidad de Talca, Talca, Chile

3 University of Sevilla, Seville, Spain
{vietman.le,alexander.felfernig,ttrang}@ist.tugraz.at, cvidal@utalca.cl, {jagalindo,benavides}@us.es

Abstract

Constraint-based applications attempt to identify a solution
that meets all defined user requirements. If the requirements
are inconsistent with the underlying constraint set, algorithms
that compute diagnoses for inconsistent constraints should
be implemented to help users resolve the “no solution could
be found” dilemma. FASTDIAG is a typical direct diagno-
sis algorithm that supports diagnosis calculation without pre-
determining conflicts. However, this approach faces runtime
performance issues, especially when analyzing complex and
large-scale knowledge bases. In this paper, we propose a
novel algorithm, so-called FASTDIAGP, which is based on
the idea of speculative programming. This algorithm extends
FASTDIAG by integrating a parallelization mechanism that
anticipates and pre-calculates consistency checks requested
by FASTDIAG. This mechanism helps to provide consistency
checks with fast answers and boosts the algorithm’s runtime
performance. The performance improvements of our pro-
posed algorithm have been shown through empirical results
using the Linux-2.6.3.33 configuration knowledge base.

Introduction
In many applications of constraint-based representations
such as knowledge-based configuration (Stumptner 1997),
recommendation (Felfernig and Burke 2008), automated
analysis of feature models (Benavides, Segura, and Ruiz-
Cortés 2010), and scheduling (Castillo et al. 2005), there ex-
ist some scenarios where over-constrained formulations oc-
cur in the underlying constraint sets (Felfernig et al. 2010;
Jannach, Schmitz, and Shchekotykhin 2015). Some exam-
ples thereof are inconsistencies between the knowledge base
and a set of test cases (Felfernig et al. 2004; Le et al. 2021),
or inconsistencies between user requirements and the knowl-
edge base (Felfernig et al. 2009). In such scenarios, diagno-
sis detection mechanisms are essential to identify preferred
minimal sets of constraints (i.e., diagnoses) that are less im-
portant (from the user’s point of view) and can be adapted or
deleted to restore consistency in the knowledge base (Reiter
1987; Felfernig, Schubert, and Zehentner 2012).

Direct diagnosis techniques have been recognized as ef-
ficient solutions in identifying faulty constraints without
predetermining the corresponding conflict sets (Felfernig,

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Schubert, and Zehentner 2012; Felfernig et al. 2018). FAST-
DIAG (Felfernig, Schubert, and Zehentner 2012) is a typical
example of these techniques, designed to find one preferred
minimal diagnosis at a time within a given set of constraints
(C). The algorithm divides C into two subsets. If a subset
is consistent, then diagnosis detection must not be applied
to this subset since no diagnosis elements can be found in
it. This way, C can be reduced by half, and the algorithm
returns one preferred minimal diagnosis at a time. Although
FASTDIAG works efficiently in many scenarios, there exist
cases where it faces runtime issues, especially in interactive
settings, where users are interacting with a configurator with
a huge and complex knowledge base and expect to receive
instant responses (Felfernig et al. 2018).

Consistency checking is an expensive computational task
that makes up most of FASTDIAG’s execution time (Felfer-
nig et al. 2014). A practical solution for this issue is to pre-
calculate in parallel consistency checks potentially required
by FASTDIAG. This solution provides fast answers for con-
sistency checks (via simple lookup in a list of already-
calculated consistency checks instead of a direct solver call),
which helps to accelerate the algorithm’s execution. Based
on this idea, we propose in this paper a novel diagnosis
detection algorithm, so-called FASTDIAGP, dealing with
FASTDIAG’s run-time limitation. FASTDIAGP is a paral-
lelized version of FASTDIAG, adopting the speculative pro-
gramming principle (Burton 1985) to pre-calculate consis-
tency checks. Although this principle is not new, modern
CPUs with integrated parallel computation capabilities now
make it possible to implement some speculative approaches.

The contributions of our paper are three-fold. First, we
show how to parallelize direct diagnosis based on a flex-
ible look-ahead strategy to scale its performance depend-
ing on the number of available computing cores. Second,
we show how to integrate the proposed approach into FAST-
DIAG, which is applicable to interactive constraint-based ap-
plications. Third, using the inconsistent Linux-2.6.33.3 fea-
ture model taken from Diverso Lab’s benchmark (Heradio
et al. 2022), we show the performance improvements of
FASTDIAGP when working with large-scale configuration
knowledge bases. Particularly, this algorithm improves the
performance of diagnosis detection tasks scaling with avail-
able CPU cores, making it possible to efficiently solve more
complex diagnosis problems.

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

6442

Related Work
Solution Search. The increasing size and complexity of
knowledge bases have led to the need of improving search
solutions (Bordeaux, Hamadi, and Samulowitz 2009; Gent
et al. 2018). Such solutions have been implemented as par-
allelization algorithms in different contexts. For example,
(Bordeaux, Hamadi, and Samulowitz 2009) propose a paral-
lelization approach to determine solutions for sub-problems
independent of available cores. Due to the development
of multi-core CPU architectures, parallelization approaches
have become increasingly popular to exploit computing re-
sources better and obtain expected results more efficiently.

Conflict Detection. Determining more efficiently minimal
conflicts is a core requirement in many application settings
(Jannach, Schmitz, and Shchekotykhin 2015). In constraint-
based reasoning scenarios, the QUICKXPLAN algorithm
(Junker 2004) is applied to identify minimal conflict sets
following the divide-and-conquer-based strategy. Although
this algorithm helps to reduce the number of needed consis-
tency checks significantly and supports interactive settings,
it faces runtime performance issues. In this context, (Vidal
et al. 2021) proposes a conflict detection approach based
on speculative programming, called the so-called PARAL-
LELIZED QUICKXPLAIN. The empirical results show that
this approach helps to significantly improve the runtime per-
formance of QUICKXPLAN.

Conflict Resolution. Conflict detection is the basis of con-
flict resolution that attempts to identify sets of minimal di-
agnoses (Reiter 1987; Marques-Silva et al. 2013). For in-
stance, (Jannach, Schmitz, and Shchekotykhin 2015, 2016)
propose approaches to parallelize the computation of hitting
sets (diagnoses). In these studies, a level-wise expansion of
a breadth-first search tree is adopted to parallelize model-
based diagnosis (Reiter 1987) and compute minimal cardi-
nality diagnoses. However, the determination of individual
conflict sets is still a sequential process (based on QUICKX-
PLAIN (Junker 2004)). In another study, (Jannach, Schmitz,
and Shchekotykhin 2016) replace the level-wise expansion
with a full hitting set parallelization and take into account
additional mechanisms to ensure diagnosis minimality. Al-
though the mentioned approaches focus on the paralleliza-
tion of conflict resolution, they do not offer solutions to
increase the efficiency of conflict detection. In this paper,
based on the speculative programming principle (Burton
1985), we propose an algorithm integrating a parallelized
conflict resolution mechanism that helps to significantly im-
prove the runtime performance of direct diagnosis processes.

Example Configuration Knowledge Base
For demonstration purposes, we introduce a working exam-
ple with a configuration knowledge base from the smart-
watch domain. A Smartwatch must have at least one type
of Connector and Screen. The connector can be one or more
out of the following: GPS, Cellular, Wifi, or Bluetooth. The
screen can be either Analog, High Resolution, or E-ink. A
Smartwatch may include a Camera and a Compass. Besides,
Compass requires GPS and Camera requires High Resolu-
tion. Finally, Cellular and Analog exclude each other.

CSP representation
Constraints in the knowledge base - CKB

c0 Smartwatch = t
c1 Smartwatch↔ Connector
c2 Smartwatch↔ Screen
c3 Camera→ Smartwatch
c4 Compass→ Smartwatch
c5 Connector ↔ (GPS ∨ Cellular ∨Wifi ∨Bluetooth)
c6 Screen↔ xor(Analog,High Resolution,E-ink)
c7 Camera→ High Resolution
c8 Compass→ GPS
c9 ¬(Cellular ∧Analog)

User requirements - CR

c10 Cellular = t c12 Compass = t
c11 Analog = t c13 GPS = f

Table 1: Constraints in CKB = {c0 . . c9} derived
from our simplified configuration knowledge base, CR =
{c10 . . c13} is a set of user requirements.

Our simplified configuration knowledge base can be rep-
resented as a configuration task which is defined as a con-
straint satisfaction problem (CSP) (Rossi, van Beek, and
Walsh 2006). A configuration task and its configuration (so-
lution) are defined as follows (Hotz et al. 2014):
Definition 1 (Configuration task). A configuration task can
be defined as a CSP (V,D,C) where V = {v1, v2 . . vn} is
a set of variables, D = {dom(v1), dom(v2) . . dom(vn)}
is a set of domains for each of the variables in V , and
C = CKB ∪ CR is a set of constraints restricting possible
solutions for a configuration task. CKB represents the con-
figuration knowledge base (the configuration model) andCR

represents a set of user requirements.
Definition 2 (Configuration). A configuration (solution) S
for a given configuration task (V,D,C) is an assignment
A = {v1 = a1 . . vn = an}, ai ∈ dom(vi). S is valid if it is
complete (i.e., each variable in V has a value) and consistent
(i.e., S fulfills the constraints in C).
Example 1 (CSP-based representation of a Smartwatch con-
figuration task). A CSP-based representation of a configura-
tion task (V,D,C = CKB∪CR) that can be generated from
our simplified configuration knowledge base is the following
(see Table 1 for constraints in CKB and CR):

• V = {Smartwatch, Connector, Screen, Camera,
Compass,GPS,Cellular,Wifi,Bluetooth,Analog,
High Resolution, E-ink},

• D = {dom(Smartwatch) . . dom(E-ink)}, where
dom(vi) = {(t)rue, (f)alse},

• CKB = {c0 . . c9}, CR = {c10 . . c13}.
According to Table 1, we can observe that some con-

straints in CR are inconsistent with the constraints in CKB .
For instance, c10 and c11 in CR are inconsistent with c9 in
CKB . Therefore, no solution can be found for this configura-
tion task. For related faulty constraints, see Example 2.

Due to inconsistent constraints in the knowledge
base/user requirements, the reasoning engine (e.g., con-
straint solver) cannot determine a solution. In this context,

6443

identifying explanations (in terms of diagnoses) is extremely
important to help users adapt their requirements and thus
restore consistency. In the next section, we introduce basic
concepts regarding diagnoses and preferred minimal diag-
noses. Also, we revisit the FASTDIAG algorithm (Felfernig,
Schubert, and Zehentner 2012) and show how a preferred
minimal diagnosis can be determined using this algorithm.

Determination of Preferred Diagnoses
Since the notions of a (minimal) conflict and a (minimal) di-
agnosis will be used in the following sections, we provide
the corresponding definitions here. We use consistent(C) to
denote that the constraint set C is consistent, and inconsis-
tent(C) to denote that the constraint set C is inconsistent.

A conflict set can be defined as a minimal set of con-
straints that is responsible for an inconsistency, i.e., a sit-
uation in which no solution can be found for a given set of
constraints C (see Definition 3).

Definition 3 (Conflict set). A conflict set is a set CS ⊆ C :
inconsistent(CS). CS is minimal iff @CS′ : CS′ ⊂ CS.

Example 2 (Minimal conflict sets). We are able to identify
the following minimal conflict sets: CS1 = {c10, c11} and
CS2 = {c12, c13}. The minimality property is fulfilled since
@CS3 : CS3 ⊂ CS1 and @CS4 : CS4 ⊂ CS2.

In order to resolve all conflicts, we need to determine cor-
responding hitting sets (also denoted as diagnoses (Reiter
1987)) that have to be adapted or deleted to make the user
requirements consistent with the knowledge base. Based on
the definition of a conflict set, we now introduce the defini-
tion of a diagnosis task and a corresponding diagnosis.

Definition 4 (Diagnosis task). A diagnosis task can be de-
fined by a tuple (CR, CKB), where CR is a set of user re-
quirements to be analyzed and CKB is a set of constraints
specifying the configuration knowledge base.

Definition 5 (Diagnosis and Maximal Satisfiable Subset). A
diagnosis ∆ of a diagnosis task (CR, CKB) is a set ∆ ⊆
CR : consistent(CR \ ∆ ∪ CKB). ∆ is minimal iff @∆′ :
∆′ ⊂ ∆. A complement of ∆ (i.e., CR \ ∆) is denoted as
Maximal Satisfiable Subset (MSS) Ω.

Example 3 (Minimal diagnoses). Applying conflict-
directed diagnosis approaches (Reiter 1987) to the diagnosis
task (CR = {c10 . . c13}, CKB = {c0 . . c9}) presented
in Examples 1 and 2, the corresponding minimal diagnoses
are the following: ∆1 = {c10, c12}, ∆2 = {c10, c13},
∆3 = {c11, c12}, and ∆4 = {c11, c13}.

Preferred Diagnosis
To resolve given inconsistencies, a user has to choose a
diagnosis consisting the constraints that need to be adapt-
ed/deleted. In this context, a diagnosis less important to the
user is chosen first (Junker 2004). Such a diagnosis is a
so-called “preferred diagnosis” (Marques-Silva and Previti
2014) (defined in Definition 8 based on Definitions 6 and 7).

Definition 6 (Strict total order). Let< be a strict total order
over the constraints in C = {c1 . . cm} which is represented
as 〈c1 < c2 <. .< cm〉, i.e., ci is preferred over ci+1.

Definition 7 (Anti-lexicographic preference, A-Preference).
Given a strict total order < over C, a set X ⊆ C is anti-
lexicographically preferred over another set Y ⊆ C (de-
noted X <antilex Y) iff ∃i≤k≤m : ck ∈ Y \ X and
X ∩ {ck+1 . . cm} = Y ∩ {ck+1 . . cm}.
Definition 8 (Preferred diagnosis). A minimal diagnosis ∆
for a given diagnosis task (CR, CKB) is a preferred diagno-
sis for (CR, CKB) iff ∀∆′ : ∆′ <antilex ∆.

Given a strict total order < over a set of constraints, there
exists a unique preferred diagnosis.

Example 4 (A preferred diagnosis). Given two minimal di-
agnoses ∆3 = {c11, c12}, ∆4 = {c11, c13} and the strict
total order 〈c11 < c12 < c13〉, we can say:

• ∆3 is anti-lexicographically preferred over ∆4 since
c13 ∈ ∆4 \∆3 with ∆4 ∩ ∅ = ∆3 ∩ ∅.

• ∆4 is a preferred diagnosis since it contains c13 that is
less important than c12 presented in ∆3.

FASTDIAG
FASTDIAG (Felfernig, Schubert, and Zehentner 2012) de-
termines a diagnosis without the need of conflict detection
and a related derivation of hitting sets (Reiter 1987). Algo-
rithms 1 and 2 below show a variant of FASTDIAG, where
Algorithm 2 - FD determines a maximal satisfiable subset Ω
instead of a minimal correction subset as in the original ver-
sion presented in (Felfernig, Schubert, and Zehentner 2012).

Algorithm 1 - FASTDIAG includes two variablesC andB,
where C consists of potentially faulty constraints in CR and
B contains correct constraints inCKB . The constraint order-
ing in C conforms to the definition of the strict total order
(see Definition 6). If inconsistent(B ∪ C), then Algorithm 2
- FD is activated to identify constraints in C that are respon-
sible for the inconsistency. FD determines an MSS Ω, from
which the corresponding minimal diagnosis can be derived
(∆ = C \Ω). In FD, if consistent(B∪C), then C is returned
since no diagnosis elements can be found and C becomes
part of the MSS. If there is only one constraint ci in C, then
ci is an element of a conflict since inconsistent(B ∪ C).
This element is removed from C (by returning an empty
set) to guarantee that C is an MSS. If inconsistent(B ∪ C)
and C has more than one element, the SPLIT function is
called to divide C into two subsets Cl = {c1 . . ck} and
Cr = {ck+1 . . cn}, where k = bn2 c. Finally, FASTDIAG re-
turns an MSS and the corresponding minimal diagnosis ∆.

The parameter ρ in the FD algorithm plays an important
role in avoiding redundant consistency checks. Assigning
Cr to ρ (see line 8) triggers a consistency check for B ∪Cl.
If consistent(B ∪ Cl), Cl will be returned by the FD call at
line 2. The FD call at line 9 does not trigger a consistency

Algorithm 1: FASTDIAG(C,B) : ∆

1: if C = ∅ or CONSISTENT(B ∪ C) then
2: return(∅)
3: else
4: return(C \ FD(C,B, ∅))
5: end if

6444

Algorithm 2: FD(C = {c1 . . cn}, B, ρ) : Ω

1: if ρ 6= ∅ and CONSISTENT(B ∪ C) then
2: return(C)
3: end if
4: if |C| = 1 then
5: return(∅)
6: end if
7: SPLIT(C,Cl, Cr)
8: Ω2 ← FD(Cl, B,Cr)
9: Ω1 ← FD(Cr, B ∪ Ω2, Cl \ Ω2)

10: return(Ω1 ∪ Ω2)

check in line 1 since Cl \ Ω2 = ∅, i.e., B ∪ Cr ∪ Ω2 =
B ∪Cr ∪Cl = B ∪C has been already checked. The details
of how FASTDIAG works are shown in Figure 1 on the basis
of our working example.

[1] C = {c10 . . c13}, B = CKB , ⇢ = ;,
Cl = {c10, c11}, Cr = {c12, c13},

return({c10, c12})

[2] C = {c10, c11}, B = CKB ,
⇢ = {c12, c13},

Cl = {c10}, Cr = {c11},
return({c10})

[3] C = {c10},
B = CKB ,
⇢ = {c11},

return({c10})

[4] C = {c11},
B = CKB [{c10},

⇢ = ;,
return(;)

[5] C = {c12, c13}, B = CKB [{c10},
⇢ = {c11},

Cl = {c12}, Cr = {c13},
return({c12})

[6] C = {c12},
B = CKB [{c10},

⇢ = {c13},
return({c12})

[7] C = {c13},
B = CKB [{c10, c12},

⇢ = ;,
return(;)

Figure 1: FD execution trace for C = {c10 . . c13} and B = CKB . FD determines a maximal satisfiable subset MSS (� = {c10, c12}), the corresponding diagnosis is
� = {c11, c13} (the MSS-complement). Underlined C and B instances denote FD consistency checks. For example, in the step [2], the activated consistency check is
CKB [{c10, c11}.

2

Figure 1: FD execution trace for C = {c10 . . c13} and
B = CKB . FD determines a MSS Ω = {c10, c12} and the
corresponding diagnosis ∆ = {c11, c13}. The underlined C
and B instances denote FD consistency checks.

FASTDIAGP - Parallelized FASTDIAG

General idea. FASTDIAGP is the parallelized version of
FASTDIAG, in which we integrate a look-ahead mecha-
nism adopting the speculative programming principle (Bur-
ton 1985) into the CONSISTENT function. The look-ahead
mechanism performs two tasks: (1) anticipating potential
consistency checks that FASTDIAG might need in the near
future, and (2) scheduling the asynchronous execution of an-
ticipated consistency checks.

To ensure correct and useful anticipated consistency
checks (i.e., FD will request consistency checks’ results in
its next calls), the anticipation of the look-ahead mechanism
complies with the two following principles P1 and P2:

- P1 (Following two assumptions concerning the consis-
tency of B ∪ C): In each recursive step of FD, the decision
for the next recursive call depends on the consistency of the
currentB∪C. If inconsistent(B∪C), FD applies the divide-
and-conquer strategy to C. Otherwise, a strategy for ρ is
used, holding the sibling half of C. Thus, an inconsistency
assumption helps to discover the next level of the FD execu-
tion tree, while a consistency one helps to exploit the sibling
of the current call. This way, the look-ahead mechanism can
generate all needed consistency checks without redundancy.

node-id constraint set consistent
1 {CKB ∪ {c10 . . c13}} false
1.2 {CKB ∪ {c10, c11}} false
1.2.1 {CKB ∪ {c10, c11, c12}} –
1.2.1.2 {CKB ∪ {c10, c11, c13}} –
1.2.2 {CKB ∪ {c10}} true

Table 2: A LOOKUP table created in our working example,
including part of consistency checks generated by ADDCC
in the LOOKAHEAD function (see Figure 2) and executed
in parallel. The ‘–’ entries indicate that the corresponding
consistency checks are still ongoing or have not been started.

- P2 (Complying with the divide-and-conquer strategy of
FASTDIAG): In each recursive step of FD, when inconsis-
tent(B ∪C) and C is not a singleton, consistency checks for
the two halves ofC are triggered by FD. Thus, regarding the
look-ahead mechanism, when the current consideration set
is not a singleton, the divide-and-conquer strategy is applied
to both consistency and inconsistency assumption branches
to obtain the same effect as FD can make. The current con-
sideration set could be C or ρ.

Besides, the anticipation considers the computer re-
sources in terms of available CPU cores (#cores) in or-
der to generate adequate consistency checks. For instance,
the current FD execution needs the consistency check for
C = {c1, c2}. The algorithm also knows that B = ∅,
ρ = {c3, c4}, i.e., the remaining constraints will be checked
if C is consistent, and the system has a 4-cores CPU. In this
context, the look-ahead mechanism can generate and exe-
cute in parallel three consistency checks:
1. C1 = {c1, c2} - the consistency check, which is being

required by FD.
2. C2 = {c1} - the first half of C, which will be checked in

the next FD call if {c1, c2} is inconsistent.
3. C3 = {c1, c2, c3} - a union of C and the first half of ρ,

which will be checked if {c1, c2} is consistent.
Since the look-ahead mechanism runs on one CPU core,

only three future consistency checks are generated in our ex-
ample. Each generated consistency check is asynchronously
executed in one core.

LOOKUP table. Consistency checks generated by the
look-ahead mechanism are stored in a global LOOKUP table
(see Table 2). If FD needs to know the consistency of a given
set of constraints, a simple lookup is triggered to get the cor-
responding consistency check’s result. Assume that there is
no consistency check for the requested set in the LOOKUP
table. In that case, the algorithm runs the look-ahead mech-
anism to generate and execute in parallel anticipated consis-
tency checks. Consistency checks in the LOOKUP table can
also be exploited to restrict the generation of the consistency
checks that have already been created in the previous steps
of the look-ahead mechanism. This way, all anticipated con-
sistency checks can be done only once and will not waste
computer resources.

CONSISTENT function. FASTDIAGP uses the CONSIS-
TENT function (see Algorithm 3) that requires three inputs:
a consideration set C, a background knowledge B, and a

6445

Algorithm 3: CONSISTENT(C,B, ρ) : Boolean

1: if ¬EXISTCC(B ∪ C) then
2: LOOKAHEAD(C,B, {ρ})
3: end if
4: return LOOKUP(B ∪ C)

set of constraints ρ that has not been checked yet. Differ-
ent from the CONSISTENT function in FASTDIAG, the addi-
tional parameter ρ is needed to help the look-ahead mech-
anism conduct inferences about future needed consistency
checks. Since these sets are FD’s inputs at each recursive
step, no additional computations are required.

The CONSISTENT function checks the existence of a con-
sistency check for B ∪C in the LOOKUP table. If this is the
case, the function returns the consistency check’s outcome.
Otherwise, it activates the LOOKAHEAD function (see Al-
gorithm 4) to generate further consistency checks that might
be relevant in upcoming FD recursive calls.

LOOKAHEAD function. The look-ahead mechanism is
implemented in the recursive LOOKAHEAD function (Algo-
rithm 4), requiring three parameters: (1) a consideration set
C, (2) a background set B holding the already-considered
and assumed consistent constraints, and (3) an ordered set φ
in which each item is a set of constraints to be considered
when C is a singleton or assumed to be consistent.

The first constraint set φ1 of φ is always the most re-
cent second subset divided from C in the last recursive
call. φ1 has to be considered first when LOOKAHEAD takes
into account sets of φ. With the structure of φ, the order
of consistency checks generated by LOOKAHEAD matches
the order of consistency checks requested by FASTDIAG.
For instance, in node [1.2.2] of the LOOKAHEAD execution
trace (see Figure 2), φ contains two sets: φ1 = {c11} and
φ2 = {c12, c13}. The set φ2 = {c12, c13}, which is added to
φ in node [1], is the second half of C = {c10 . . c13}. The
set φ1 = {c11} separated from C = {c10, c11} is added to
φ in node [1.2]. Since φ1 is added later on, it will be con-
sidered first in the next LOOKAHEAD call. In particular, it is
considered in node [1.2.2.2] before taking into account φ2 in
node [1.2.2.2.1]. This mechanism works in a similar fashion
as FASTDIAG.

In each LOOKAHEAD call, two global parameters
curGCC (initialized by zero) and maxGCC (initialized by
#cores) are used to restrict the maximum number of gener-
ated speculative consistency checks. LOOKAHEAD checks
the available space for further consistency checks and ex-
amines if any consistency check exists for B ∪ C so far. If
not, then the AddCC function is called to activate a consis-
tency check for B ∪C asynchronously and adds an entry of
B ∪ C to the LOOKUP table. Next, LOOKAHEAD predicts
potentially relevant consistency checks needed by FD based
on two assumptions: (1) B ∪ C is consistent and (2) B ∪ C
is inconsistent (see the details in the next paragraphs). The
order of two assumptions is opposite to this in FASTDIAG
since consistency checks with larger cardinality should be
executed in advance, which helps reduce the waiting time in
case the corresponding consistency checks are still ongoing.

Algorithm 4:
LOOKAHEAD(C,B, φ = {{φ1} . . {φp}})
1: if curGCC < maxGCC then
2: if ¬EXISTCC(B ∪ C) then
3: curGCC ← curGCC + 1
4: ADDCC(B ∪ C)
5: end if
6: {B ∪ C assumed consistent}
7: if |φ| > 1∧ |φ1| = 1∧ EXISTCC(B ∪C ∪φ1) then {case

1.1}
8: SPLIT(φ2, φ2l, φ2r)
9: LOOKAHEAD(φ2l, B ∪ C, φ2r ∪ (φ \ {φ1, φ2}))

10: else if φ 6= ∅ ∧ |φ1| = 1 then {case 1.2}
11: LOOKAHEAD(φ1, B ∪ C, φ \ φ1)
12: else if φ 6= ∅ ∧ |φ1| > 1 then {case 1.3}
13: SPLIT(φ1, φ1l, φ1r)
14: LOOKAHEAD(φ1l, B ∪ C, φ1r ∪ (φ \ φ1))
15: end if
16: {B ∪ C assumed inconsistent}
17: if |C| > 1 then {case 2.1}
18: SPLIT(C,Cl, Cr)
19: LOOKAHEAD(Cl, B,Cr ∪ φ)
20: else if |C| = 1 ∧ |φ1| = 1 then {case 2.2}
21: LOOKAHEAD(φ1, B, φ \ φ1)
22: else if |C| = 1 ∧ |φ1| > 1 then {case 2.3}
23: SPLIT(φ1, φ1l, φ1r)
24: LOOKAHEAD(φ1l, B, φ1r ∪ (φ \ φ1))
25: end if
26: end if

Assumption 1 (B ∪ C is consistent): The function fur-
ther checks the sets of φ when B ∪ C is consistent, i.e., all
LOOKAHEAD calls will have B ∪ C as the background set.

• If there is a consistency check for B ∪ C ∪ φ1 in the
LOOKUP table (see case 1.1 in Algorithm 4), LOOKA-
HEAD omits φ1 and further checks φ2. The function con-
siders the first half of φ2 (φ2l) as the consideration set.
{φ1, φ2} in φ are replaced with the second half of φ2
(i.e., φ2r ∪ (φ \ {φ1, φ2})). Let’s have a look at an exam-
ple in Figure 2. In node [1.2.2], the consistency check for
CKB ∪ {c10, c11} has already been generated. Hence, in
node [1.2.2.1], the function omits φ1 = {c11} and pro-
ceeds with a further look ahead for φ2.

• If |φ1| = 1 (see case 1.2 in Algorithm 4), the input pa-
rameters of the function are φ1, B∪C, and φ\φ1. In our
example (Figure 2), this case will be applied to expand
the consistent branch of node [1.2.2.1].

• If |φ1| > 1 (see case 1.3 in Algorithm 4), φ1 is divided
into two halves φ1l and φ1r. LOOKAHEAD is called
where C is replaced with the first half φ1l and φ1 in φ
is replaced with the second half φ1r (i.e., φ1r ∪ (φ\φ1)).
One example is shown in node [1.2] of Figure 2.

Assumption 2 (B ∪ C is inconsistent): Consistency
checks for the halves ofC are necessary to identify elements
of C responsible for the inconsistency.

• If the cardinality of C is greater than 1 (see case 2.1 in
Algorithm 4), C is divided into two halves Cl and Cr.
Thereafter, LOOKAHEAD for Cl is called, where B ∪Cl

6446

[1]
C = {c10 . . c13}, B = CKB ,� = ;,

curGCC = 1, AddCC(CKB [{c10 . . c13}),
Cl = {c10, c11}, Cr = {c12, c13}

⇥
[1.2]

C = {c10, c11}, B = CKB ,� = {{c12, c13}},
curGCC = 2, AddCC(CKB [{c10, c11}),

�1l = {c12}, �1r = {c13}, Cl = {c10}, Cr = {c11}

[1.2.1]
C = {c12}, B = CKB [{c10, c11},� = {{c13}},
curGCC = 3, AddCC(CKB [{c10, c11, c12})

[1.2.1.1]
C = {c13},

B = CKB [{c10, c11, c12},
� = ;

[1.2.1.2]
C = {c13}, B = CKB [{c10, c11},

� = ;, curGCC = 4,
AddCC(CKB [{c10, c11, c13})

[1.2.2]
C = {c10}, B = CKB ,� = {{c11}, {c12, c13}},

curGCC = 5, AddCC(CKB [{c10}),
�2l = {c12}, �2r = {c13}

[1.2.2.1]
C = {c12}, B = CKB [{c10},� = {{c13}},
curGCC = 6, AddCC(CKB [{c10, c12})

[1.2.2.1.1]
C = {c13}, B = CKB [{c10, c12},

� = ;, curGCC = 7,
AddCC(CKB [{c10, c12, c13})

[1.2.2.1.2]
C = {c13}, B = CKB [{c10},

� = ;, curGCC = 8,
AddCC(CKB [{c10, c13})

[1.2.2.2]
C = {c11}, B = CKB ,� = {{c12, c13}},
curGCC = 9, AddCC(CKB [{c11}),

�1l = {c12}, �1r = {c13}

[1.2.2.2.1]
C = {c12}, B = CKB [{c11},
� = {{c13}}, curGCC = 10,
AddCC(CKB [{c11, c12})

Figure 2: LookAhead execution trace for C = {c10 . . c13}, B = CKB , � = ;, and #cores = 8. The consistency checks {CKB [{c10, c11}}, {CKB [{c10}},
{CKB [{c10, c12}}, and {CKB [{c10, c12, c13}} generated by LookAhead, can be used by the FastDiag execution trace illustrated in Figure 1.

3

Figure 2: LOOKAHEAD execution trace for C = {c10 . . c13}, B = CKB , φ = ∅, and maxGCC = 10. The consistency
checks {CKB ∪ {c10, c11}}, {CKB ∪ {c10}}, {CKB ∪ {c10, c12}}, and {CKB ∪ {c10, c12, c13}} generated by LOOKAHEAD,
can be used by the FASTDIAG execution trace illustrated in Figure 1.

becomes the next consistency check, and Cr is stored in
φ to be considered when B ∪Cl is assumed to be consis-
tent orCl is a singleton. Note thatCr is added to the head
of φ to be considered first when the function takes into
account the sets of φ. Examples of this case are shown in
nodes [1] and [1.2] of Figure 2.

• If |C| = 1, the function further checks the sets of φ with
the inconsistency assumption:
– If the first set of φ is a singleton (|φ1| = 1) (see case

2.2 in Algorithm 4), LOOKAHEAD is called, where C
is replaced with φ1 and φ1 is removed from φ. The
execution of LOOKAHEAD according to this case can
be found in nodes [1.2.1] and [1.2.2] of Figure 2.

– If φ1 consists of several constraints to be consid-
ered (|φ1| > 1) (see case 2.3 in Algorithm 4), φ1
is divided into two halves φ1l and φ1r. The function
LOOKAHEAD is called, where the first half φ1l is the
consideration set, φ1 in φ is replaced with φ1r (i.e.,
φ1r ∪ (φ \φ1)). In Figure 2, the inconsistent branch of
node [1.2.2.2] is created based on this case.

Theoretical Analysis of FASTDIAGP
Soundness and Completeness of FASTDIAGP. FASTDI-
AGP preserves the soundness and completeness properties
of FASTDIAG. FASTDIAGP does not change the FD func-
tion but integrates the look-ahead mechanism, where some
consistency checks requested by FD are pre-calculated. Be-
sides, FD performs simple lookups instead of expensive
solver calls. Therefore, FASTDIAGP obtains better perfor-
mance, and the returned diagnosis is minimal and preferred.

Soundness and Completeness of LOOKAHEAD.
LOOKAHEAD generates correct consistency checks for
subsets of the consideration set C. Assuming that C ′ is a
set generated by LOOKAHEAD, but C ′ 6⊆ (C ∪ φ). We can

say that ∃ck : ck ∈ C ′ ∧ ck 6∈ (C ∪ φ). Since LOOKAHEAD
does not exploit constraints outside of C ∪ φ, C ′ is not
a set generated by LOOKAHEAD. Besides, by following
two principles P1 and P2, LOOKAHEAD can generate all
possible combinations of constraints in C.

Uniqueness of anticipated consistency checks.
LOOKAHEAD exploits φ in both assumption branches,
which leads to redundant consistency checks when ex-
ploiting φ according to the consistency assumption. The
checks in lines 2 and 7 (Algorithm 4) assure that generated
consistency checks are unique.

Complexity analysis. FD complexity. The worst-case
complexity of FD in terms of the number of needed consis-
tency checks for determining MSS Ω and the corresponding
diagnosis ∆ = C−Ω is 2d×log2(n

d)+2d, where d is the set
size of the minimal diagnosis, n is the number of constraints
in C, and 2d represents the branching factor and the number
of leaf-node consistency checks. The best-case complexity
is log2(n

d) + 2d. In the worst case, each diagnosis element
is located in a different path of the search tree. The factor
log2(n

d) represents the depth of a path of the FD search tree.
In the best case, all constraints part of a diagnosis are in-
cluded in a single path of the search tree.

LOOKAHEAD complexity. Assuming that φ = ∅, the
number of consistency checks (N) generated by LOOKA-
HEAD is the sum of all possible combinations of n con-
straints in the consideration set C. It means that N =∑n

i=1

(
n
i

)
= 2n − 1. Due to the uniqueness of LOOKA-

HEAD, the upper bound of its space complexity in terms of
the number of LOOKAHEAD calls is 2n − 1.

Termination of LOOKAHEAD. If maxGCC ≤ 2n − 1,
recursive calls of LOOKAHEAD stop when maxGCC con-
sistency checks are generated. Otherwise, LOOKAHEAD ter-
minates if C and φ are empty.

6447

Empirical Evaluation
Experiment design. In this study, we compared the perfor-
mance of FASTDIAGP and FASTDIAG according to three
aspects: (1) run-time R needed to determine the preferred
diagnosis, (2) speedup S that tells us the gain we get through
the parallelization, and (3) efficiencyE representing the ratio
between the speedup and the number of processes in which
we run the algorithm. In particular, speedup Sp is computed
as = T1/Tp, where T1 is the wall time when using 1 core
(FASTDIAG) and Tp is the wall time when p cores are used.
The efficiency Ep is defined as Sp/p. These aspects were
analyzed in two dimensions: the diagnosis cardinality and
the available computing cores (#cores).

Dataset and Procedure. The basis for these evaluations
was the Linux-2.6.33.3 configuration knowledge base taken
from Diverso Lab’s benchmark1 (Heradio et al. 2022). The
characteristics of this knowledge base are the following:
#features = 6,467; #relationships = 6,322; and #cross-tree
constraints = 7,650. For this knowledge base, we randomly
synthesized2 and collected 20,976 inconsistent sets of re-
quirements, whose cardinality ranges from 5 to 250. We ap-
plied systematic sampling technique (Mostafa and Ahmad
2018) to select 10 inconsistent requirements with diagnosis
cardinalities of 1, 2, 4, 8, and 16.

The diagnosis algorithms were implemented in Python
using SAT4J (Le Berre and Parrain 2010) as a reasoning
solver.3 We used the CNF class of PYSAT (Ignatiev, Mor-
gado, and Marques-Silva 2018) for representing constraints
and the Python multiprocessing package for running parallel
tasks. All experiments reported in the paper were conducted
with an Amazon EC2 instance4 of the type c5a.8xlarge, of-
fering 32 vCPUs with 64-GB RAM.

Results. The experimental results show that FASTDIAGP
outperforms the sequential direct diagnosis approach in al-
most all scenarios (see the bold values in Table 3). Besides,
in Tables 3 and 4, the optimal number of CPU cores is 8
and the corresponding speedup values range from 1.28 to
1.65, showing the runtime deduction up to 40%. The #cores
higher than 8 becomes less efficient for boosting the per-
formance. Particularly, in Table 3, the increase of #cores
(that also triggers the increase of maxGCC (maxGCC =
#cores − 1)) leads to gradual runtime increase (i.e., lower
performance). A parallelization mechanism with more than
8 cores is not so much helpful in such a scenario. This man-
ifests when #cores = 32, maxGCC = 31, and |diag| =
4, 8, 16. The reason is that the LOOKAHEAD function ap-
plies a sequential mechanism. When maxGCC gets higher,
the runtime of LOOKAHEAD increases exponentially, lead-
ing to a significant increase of FASTDIAGP’s runtime. Be-
sides, Table 4 confirms that the utilization of more than 8
CPU cores becomes less efficient. In this evaluation, our idea

1https://github.com/diverso-lab/benchmarking
2To ensure the reproducibility of the results, we used the seed

value of 141982L for the random number generator.
3The dataset, the implementation of algorithms, and eval-

uation programs can be found at https://github.com/AIG-ist-
tugraz/FastDiagP.

4https://aws.amazon.com/ec2/instance-types/c5/

#cores
1 4 8 16 32

|diag|

1
R 4.56 3.08 2.77 2.63 3.29
S 1.48 1.65 1.74 1.39
E 0.49 0.24 0.12 0.05

2
R 5.60 4.00 3.69 3.71 5.05
S 1.40 1.52 1.51 1.11
E 0.47 0.22 0.10 0.04

4
R 8.13 5.95 5.76 6.43 10.11
S 1.37 1.41 1.26 0.80
E 0.46 0.20 0.08 0.03

8
R 11.96 9.06 8.74 9.63 14.52
S 1.32 1.37 1.24 0.82
E 0.44 0.20 0.08 0.03

16
R 20.95 16.80 16.38 19.02 29.28
S 1.25 1.28 1.10 0.72
E 0.42 0.18 0.07 0.02

Table 3: Average runtime R (in sec), speedup S, and effi-
ciency E of FASTDIAGP (#cores > 1) versus FASTDIAG
(#cores = 1) needed for determining the preferred diagno-
sis with a repetition rate of 3 per setting and maxGCC =
#cores− 1. |diag| denotes the cardinality of the diagnosis.

#cores
1 8 16 32

|diag|

1 4.56 2.78 2.79 2.81
2 5.60 3.69 3.70 3.72
4 8.13 5.76 5.80 5.87
8 11.96 8.74 8.78 8.84

16 20.95 16.38 16.41 16.64

Table 4: Average runtime (in sec) of FASTDIAGP
(#cores > 1) versus FASTDIAG (#cores = 1) needed for
determining the preferred diagnosis with a repetition rate of
3 per setting and maxGCC = 7. |diag| denotes the cardi-
nality of the preferred diagnosis. The bold values prove the
optimal number of CPU cores (#cores = 8).

was to fix the maxGCC value (maxGCC = 7) to see how
the performance of FASTDIAGP is when #cores is higher
than 8.

Conclusion
In this paper, we have proposed a parallelized variant of
the FASTDIAG algorithm to diagnose over-constrained prob-
lems. Our parallelized approach helps to exploit multi-core
architectures and provides an efficient preferred diagnosis
detection mechanism. Furthermore, our approach is helpful
for dealing with complex over-constrained problems, boost-
ing the performance of various knowledge-based applica-
tions, and making these systems more accessible, especially
in the context of interactive settings. Open topics for future
research are the following: (1) performing more in-depth
evaluations on the basis of industrial configuration knowl-
edge bases (in this context, we plan to analyze the different
look-ahead search approaches, e.g. breadth-first search, in
further detail), and (2) applying speculative reasoning for
supporting anytime diagnosis tasks.

6448

Acknowledgements
This work has been partially funded by the FFG-funded
project PARXCEL (880657) and two other projects COPER-
NICA (P20 01224) and METAMORFOSIS (FEDER US-
1381375) funded by Junta de Andalucı́a.

References
Benavides, D.; Segura, S.; and Ruiz-Cortés, A. 2010. Auto-
mated Analysis of Feature Models 20 Years Later: A Liter-
ature Review. Information Systems, 35(6): 615–636.
Bordeaux, L.; Hamadi, Y.; and Samulowitz, H. 2009. Ex-
periments with Massively Parallel Constraint Solving. In
21st International Joint Conference on Artifical Intelligence,
443–448. California, USA: Morgan Kaufmann.
Burton, F. W. 1985. Speculative computation, parallelism,
and functional programming. IEEE Transactions on Com-
puters, C-34(12): 1190–1193.
Castillo, L.; Borrajo, D.; Salido, M.; and Oddi, A. 2005.
Planning, Scheduling and Constraint Satisfaction: From
Theory to Practice, volume 117 of Frontiers in Artificial In-
telligence and Applications. IOPress.
Felfernig, A.; and Burke, R. 2008. Constraint-based Rec-
ommender Systems: Technologies and Research Issues. In
ACM International Conference on Electronic Commerce
(ICEC’08), 17–26. Innsbruck, Austria.
Felfernig, A.; Friedrich, G.; Jannach, D.; and Stumptner, M.
2004. Consistency-based diagnosis of configuration knowl-
edge bases. Artificial Intelligence, 152: 213–234.
Felfernig, A.; Friedrich, G.; Schubert, M.; Mandl, M.; Mair-
itsch, M.; and Teppan, E. 2009. Plausible Repairs for Incon-
sistent Requirements. In Proceedings of the 21st Interna-
tional Jont Conference on Artifical Intelligence (IJCAI’09),
791–796. California, USA: Morgan Kaufmann.
Felfernig, A.; Hotz, L.; Bagley, C.; and Tiihonen, J. 2014.
Knowledge-based Configuration: From Research to Busi-
ness Cases. San Francisco, CA, USA: Morgan Kauf-
mann Publishers Inc., 1 edition. ISBN 012415817X,
9780124158177.
Felfernig, A.; Schubert, M.; Mandl, M.; Friedrich, G.; and
Teppan, E. 2010. Efficient Explanations for Inconsistent
Constraint Sets. In ECAI 2010 - 19th European Conference
on Artificial Intelligence, Lisbon, Portugal, August 16-20,
2010, 1043–1044. IOS Press.
Felfernig, A.; Schubert, M.; and Zehentner, C. 2012. An Ef-
ficient Diagnosis Algorithm for Inconsistent Constraint Sets.
Artif. Intell. Eng. Des. Anal. Manuf., 26(1): 53–62.
Felfernig, A.; Walter, R.; Galindo, J. A.; Benavides, D.; Erd-
eniz, S. P.; Atas, M.; and Reiterer, S. 2018. Anytime diagno-
sis for reconfiguration. J. Intell. Inf. Syst., 51(1): 161–182.
Gent, I.; Miguel, I.; Nightingale, P.; McCreesh, C.; Prosser,
P.; Nooore, N.; and Unsworth, C. 2018. A Review of Litera-
ture on Parallel Constraint Solving. Theory and Practice of
Logic Programming, 18(5–6): 725–758.
Heradio, R.; Fernandez-Amoros, D.; Galindo, J. A.; Bena-
vides, D.; and Batory, D. 2022. Uniform and scalable sam-
pling of highly configurable systems. Empirical Software
Engineering, 27(2): 44.

Hotz, L.; Felfernig, A.; Stumptner, M.; Ryabokon, A.;
Bagley, C.; and Wolter, K. 2014. Configuration Knowledge
Representation and Reasoning. In Felfernig, A.; Hotz, L.;
Bagley, C.; and Tiihonen, J., eds., Knowledge-based Config-
uration – From Research to Business Cases, 41 – 72. Boston:
Morgan Kaufmann.
Ignatiev, A.; Morgado, A.; and Marques-Silva, J. 2018.
PySAT: A Python Toolkit for Prototyping with SAT Oracles.
In SAT, 428–437.
Jannach, D.; Schmitz, T.; and Shchekotykhin, K. 2015. Par-
allelized Hitting Set Computation for Model-Based Diag-
nosis. In 29th AAAI Conference on Artificial Intelligence,
1503–1510. Austin, Texas: AAAI Press.
Jannach, D.; Schmitz, T.; and Shchekotykhin, K. 2016.
Parallel Model-Based Diagnosis on Multi-Core Computers.
Journal of Artificial Intelligence Research, 55: 835–887.
Junker, U. 2004. QUICKXPLAIN: Preferred Explanations
and Relaxations for over-Constrained Problems. In Pro-
ceedings of the 19th National Conference on Artifical In-
telligence, AAAI’04, 167–172. AAAI Press.
Le, V.-M.; Felfernig, A.; Uta, M.; Benavides, D.; Galindo, J.;
and Tran, T. N. T. 2021. DIRECTDEBUG: Automated Test-
ing and Debugging of Feature Models. In 2021 IEEE/ACM
43rd International Conference on Software Engineering:
New Ideas and Emerging Results (ICSE-NIER), 81–85.
Le Berre, D.; and Parrain, A. 2010. The SAT4J library, re-
lease 2.2. Journal on Satisfiability, Boolean Modeling and
Computation, 7(2-3): 59–64.
Marques-Silva, J.; Heras, F.; Janota, M.; Previti, A.; and
Belov, A. 2013. On Computing Minimal Correction Sub-
sets. In 23rd International Joint Conference on Artificial
Intelligence, 615–622. Beijing, China.
Marques-Silva, J.; and Previti, A. 2014. On Computing Pre-
ferred MUSes and MCSes. In Theory and Applications of
Satisfiability Testing – SAT 2014, 58–74. Cham: Springer.
Mostafa, S. A.; and Ahmad, I. A. 2018. Recent develop-
ments in systematic sampling: A review. Journal of Statisti-
cal Theory and Practice, 12(2): 290–310.
Reiter, R. 1987. A Theory of Diagnosis from First Princi-
ples. Artif. Intell., 32(1): 57–95.
Rossi, F.; van Beek, P.; and Walsh, T. 2006. Handbook of
Constraint Programming. Elsevier.
Stumptner, M. 1997. An Overview of Knowledge-based
Configuration. Ai Communications, 10(2): 111–125.
Vidal, C.; Felfernig, A.; Galindo, J.; Atas, M.; and Bena-
vides, D. 2021. Explanations for over-constrained problems
using QUICKXPLAIN with speculative executions. Journal
of Intelligent Information Systems, 57(3): 491–508.

6449

