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Abstract

Learning programs with numerical values is fundamental to
many AI applications, including bio-informatics and drug de-
sign. However, current program synthesis approaches struggle
to learn programs with numerical values. An especially dif-
ficult problem is learning continuous values from multiple
examples, such as intervals. To overcome this limitation, we
introduce an inductive logic programming approach which
combines relational learning with numerical reasoning. Our
approach, which we call NUMSYNTH, uses satisfiability mod-
ulo theories solvers to efficiently learn programs with numer-
ical values. Our approach can identify numerical values in
linear arithmetic fragments, such as real difference logic, and
from infinite domains, such as real numbers or integers. Our
experiments on four diverse domains, including game playing
and program synthesis, show that our approach can (i) learn
programs with numerical values from linear arithmetical rea-
soning, and (ii) outperform existing approaches in terms of
predictive accuracies and learning times.

1 Introduction
Zendo is a game in which one player, the Master, creates a
rule that structures made of pieces must follow. The rest of
the players, as Students, try to discover this rule by building
and studying structures which follow or break the rule. The
first student to correctly guess the rule wins. For instance,
suppose the structure on the left of Figure 1a follows the
secret rule while the one on the right does not. Figure 1b
shows a possible secret rule. It states that structures must have
two pieces in contact, one with size at least 7. Discovering
this rule involves identifying the numerical value 7.

Suppose we want to use machine learning to play Zendo,
i.e. to learn secret rules from examples of structures. Then
we need an approach that can (i) learn explainable rules, and
(ii) generalise from small numbers of examples. However,
these requirements are difficult for standard machine learn-
ing techniques, yet are crucial for many real-world problems
(Cropper et al. 2022) including protein folding (Turcotte,
Muggleton, and Sternberg 2001), mutagenic activity (Srini-
vasan et al. 1996) or drug design (Finn et al. 1998).

Inductive logic programming (ILP) (Muggleton 1991) is
a form of machine learning that can learn explainable rules
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Positive example Negative example

(a) Examples

zendo(A) ← piece(A,B), contact(B,C),
size(C,D), geq(D,7)

(b) A rule which states that two pieces are in contact,
one with size greater or equal to 7.

zendo(A) ← piece(A,B), contact(B,C), size(C,D),
geq(D,N), @numerical(N)

(c) Intermediate hypothesis.

Figure 1: Learning a hypothesis for Zendo. Learning this
hypothesis involves reasoning with the numerical predicate
geq represented in bold to identify the numerical value 7.

from small numbers of examples. Existing ILP techniques
could, for instance, learn rules for simple Zendo problems.
However, existing approaches struggle to learn rules that
require identifying numerical values from infinite domains
(Corapi, Russo, and Lupu 2011; Evans and Grefenstette 2018;
Cropper and Morel 2021). Moreover, although some ILP ap-
proaches can learn programs with numerical values (Muggle-
ton 1995; Hocquette and Cropper 2022), they cannot perform
complex numerical reasoning, such as identifying numerical
values by reasoning over multiple examples jointly. For in-
stance, they struggle to learn that the size of one piece must
be greater than some particular numerical value, or that the
sum of the coordinates describing the position of a piece must
be lower than some particular numerical value. These limita-
tions are not specific to ILP and, as far as we are aware, apply
to all current program synthesis approaches (Raghothaman
et al. 2019; Ellis et al. 2018; Shi et al. 2022).

To overcome these limitations, we introduce an approach
that can identify numerical values from infinite domains and
reason from multiple examples. The key idea of our approach
is to decompose the learning task into two stages (i) program
search, and (ii) numerical search.
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In the program search stage, the learner searches for partial
hypotheses (sets of rules) with variables in place of numerical
symbols. This step follows ALEPH’s lazy evaluation proce-
dure (Srinivasan and Camacho 1999). For example, to learn
a rule for Zendo, the learner may generate the partial hypoth-
esis shown in Figure 1c. In this hypothesis, the variable N
is marked as a numerical variable with the predicate symbol
@numerical but is not bound to any particular value.

In the numerical search stage, the learner searches for val-
ues for the numerical variables using the training examples.
We encode the search for numerical values as a satisfiability
modulo theories (SMT) formula. For instance, to find values
for N in the hypothesis in Figure 1c, the learner executes
the partial hypothesis without its numerical literal geq(D,N)
against the examples to find possible substitutions for the vari-
able D, from which it builds a system of linear inequations.
These inequations constrain the search for the numerical vari-
able N with the values obtained for D from the examples.
Finally, the learner substitutes N in the partial program with
any solution found for the inequations.

To implement our idea, we build on the state-of-the-art
learning from failures (LFF) (Cropper and Morel 2021) ILP
approach. LFF is a constraint-driven approach where the
learner accumulates constraints on the hypothesis space. A
LFF learner continually generates and tests hypotheses, from
which it infers constraints. We implement our numerical rea-
soning approach in NUMSYNTH, which, as it builds on the
LFF learner POPPER, supports predicate invention, learning
recursive and optimal (textually minimal) programs. NUM-
SYNTH additionally uses built-in numerical literals to support
linear arithmetic reasoning over integers and real numbers.

Novelty and Contributions Compared to existing ap-
proaches, the main novelty of our approach is expressiv-
ity: NUMSYNTH can learn programs with numerical values
whose identification requires reasoning over multiple exam-
ples in linear arithmetic fragments. In other words, our ap-
proach can learn programs that existing approaches cannot.
For instance, our experiments show that our approach can
learn programs of the form shown in Figure 1b. In addition,
our approach can (i) efficiently search for numerical values in
infinite domains such as real numbers or integers, (ii) identify
numerical values which may not appear in the background
knowledge, and (iii) learn programs with several chained nu-
merical literals. For instance, it can learn that the sum of two
variables is lower than some particular numerical value. As
far as we are aware, no existing approach can efficiently solve
such problems. Overall, we make the following contributions:
1. We introduce an approach for numerical reasoning in infi-

nite domains. Our approach supports numerical reasoning
in linear arithmetic fragments.

2. We implement our approach in NUMSYNTH, which can
learn programs with numerical values, perform predicate
invention, and learn recursive and optimal programs.

3. We experimentally show on four domains (geometry, bi-
ology, game playing, and program synthesis) that our
approach can (i) learn programs requiring numerical rea-
soning, and (ii) outperform existing ILP systems in terms
of learning time and predictive accuracy.

2 Related Work
Program Synthesis Program synthesis approaches that
enumerate the search space (Raghothaman et al. 2019; Ellis
et al. 2018; Evans et al. 2021) can only learn from small and fi-
nite domains and, by contrast with NUMSYNTH, cannot learn
from infinite domains. Several program synthesis systems
delegate the search for programs to an SMT solver (Jha et al.
2010; Gulwani et al. 2011; Reynolds et al. 2015; Albargh-
outhi et al. 2017). By contrast, we delegate the search for
numerical values to an SMT solver. Moreover, NUMSYNTH
can learn programs with numerical values from infinite do-
mains. Sketch (Solar-Lezama 2009) uses a SAT solver to
search for suitable constants given a partial program, where
the constants can be numerical values. This approach is simi-
lar to our numerical search stage. However, Sketch does not
learn the structure of programs but expects as input a skeleton
of a solution: it requires a partial program and its task is to
fill in missing values with constants symbols. By contrast,
NUMSYNTH learns both the program and numerical values.

ILP Many ILP approaches (Muggleton 1995; Srinivasan
2001) use bottom clause construction to search for programs.
However, these approaches can only identify numerical val-
ues that appear in the bottom clause of a single example.
They cannot reason about multiple examples jointly, which
is, for instance, necessary to learn inequations.

Constraint inductive logic programming (Sebag and Rou-
veirol 1996) uses constraint logic programming to learn pro-
grams with numerical values. This approach generalises a
single positive example given some negative examples and is
restricted to numerical reasoning in difference logic.

Anthony and Frisch (1997) propose an algorithm to learn
hypotheses with numerical literals. FORS (Karalič and
Bratko 1997) fits regression lines to subsets of the positive ex-
amples in a positive example only setting. In contrast to NUM-
SYNTH, these two approaches allow some error in numerical
values predicted by numerical literals. However, these two ap-
proaches follow top-down refinement with one specialisation
step at a time, which prevents them from learning hypotheses
with multiple chained numerical literals.

TILDE (Blockeel and De Raedt 1998) uses a discretiza-
tion procedure to find relevant candidate numerical constants
(Blockeel and De Raedt 1997). However, TILDE cannot learn
recursive programs and struggles to learn from small numbers
of examples.

Many recent ILP systems enumerate every possible rule in
the search space (Corapi, Russo, and Lupu 2011; Kaminski,
Eiter, and Inoue 2018; Evans and Grefenstette 2018; Schüller
and Benz 2018) or all constant symbols as unary predicate
symbols (Evans and Grefenstette 2018; Cropper and Morel
2021; Purgał, Cerna, and Kaliszyk 2022) and therefore cannot
handle infinite domains.

LFF Recent LFF systems represent constant symbols with
unary predicate symbols (Cropper and Morel 2021; Purgał,
Cerna, and Kaliszyk 2022), which prevents them from learn-
ing in infinite domains. MAGICPOPPER (Hocquette and Crop-
per 2022) can identify constant symbols from infinite do-
mains. Similar to ALEPH’s lazy evaluation approach and
our program search approach, MAGICPOPPER builds partial
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hypotheses with variables in place of constant symbols. It
then executes the partial hypotheses independently over each
example to identify particular candidate constant symbols.
However, it may find an intractable number of candidate con-
stants when testing hypotheses with non-deterministic predi-
cates with a large or infinite number of answer substitutions,
such as greater than. Moreover, it cannot perform numerical
reasoning from multiple examples jointly. By contrast, NUM-
SYNTH uses all the examples simultaneously when reasoning
about numerical values and can for instance learn intervals
whereas MAGICPOPPER cannot.

Lazy Evaluation The most related work is an extension
of ALEPH that supports lazy evaluation (Srinivasan and Ca-
macho 1999). During the construction of the bottom clause,
ALEPH replaces numerical values with existentially quanti-
fied variables. During the refinement search of the bottom
clause, ALEPH finds substitutions for these variables by exe-
cuting the partial hypothesis on the examples. This procedure
can predict output numerical variables using custom loss
functions measuring error (Srinivasan et al. 2006), while
NUMSYNTH cannot. However, ALEPH needs the user to
write background definitions to find numerical values, such
as a definition for computing a threshold or linear regression
coefficients from data. By contrast, NUMSYNTH has built-in
numerical literals. Moreover, ALEPH executes each definition
used during lazy evaluation independently which prevents it
from learning hypotheses with multiple literals requiring lazy
evaluation sharing variables, such as an upper and a lower
bound for the same variable. By contrast, NUMSYNTH can
learn hypotheses with multiple chained numerical literals.
Finally, ALEPH does not support predicate invention, is not
guaranteed to learn optimal (textually minimal) programs,
and struggles to learn recursive programs.

3 Problem Setting
We now describe our problem setting. We assume familiarity
with logic programming (Lloyd 2012). Our problem setting
is the learning from failures (LFF) (Cropper and Morel 2021)
setting, which is based on the learning from entailment setting
(Muggleton and De Raedt 1994) of ILP. LFF assumes a
meta-language L, which is a language about hypotheses. LFF
uses hypothesis constraints, expressed in L, to restrict the
hypothesis space. A LFF input is defined as:
Definition 1 A LFF input is a tuple (E+, E−, B,H, C)
where E+ and E− are sets of ground atoms representing
positive and negative examples respectively, B is a definite
program representing background knowledge,H is a hypothe-
sis space i.e a set of possible hypotheses as definite programs,
and C is a set of hypothesis constraints expressed in the
meta-language L.
Given a set of hypotheses constraints C, we say that a hypoth-
esis H is consistent with C if, when written in L, H does
not violate any constraint in C. We callHC the subset ofH
consistent with C. We define a LFF solution:
Definition 2 Given a LFF input (E+, E−, B,H, C), a LFF
solution is a hypothesis H ∈ HC such that H is complete
with respect to E+ (∀e ∈ E+, B ∪H |= e) and consistent
with respect to E− (∀e ∈ E−, B ∪H ̸|= e).

Conversely, given a LFF input, a hypothesis H is incomplete
when ∃e ∈ E+, H ∪B ̸|= e, and is inconsistent when ∃e ∈
E−, H ∪B |= e.

In general, there might be multiple solutions given a LFF
input. We associate a cost to each hypothesis and prefer
optimal solutions, which are solutions with minimal cost. In
the following, we use as cost function the size of hypotheses,
measured as the number of literals in it.

A hypothesis which is not a solution is called a failure. A
LFF learner identifies constraints from failures to restrict the
hypothesis space. For instance, if a hypothesis is inconsistent,
a generalisation constraint prunes its generalisations, as they
are provably also inconsistent.

4 Numerical Reasoning
We extend the framework presented in the previous section to
allow numerical reasoning in possibly infinite domains. We
assume familiarity with SMT theory (De Moura and Bjørner
2011). The idea is to separate the search into two stages (i)
program search, and (ii) numerical search. First, the learner
generates partial programs with first-order numerical vari-
ables in place of numerical values. Then, the learner searches
for numerical values to fill in the numerical variables.

4.1 Program Search
The learner first searches for partial programs with variables,
called numerical variables, in place of numerical values.

Numerical Variables. We extend the meta-language L of
LFF to contain numerical variables. A numerical variable is
a first-order variable that can be substituted by a numerical
value, i.e. a numerical variable acts as a placeholder for a
numerical symbol. In the following, we represent numerical
variables with the unary predicate symbol @numerical. For
example, in the program in Figure 1c, the variable N marked
with the syntax @numerical is a numerical variable.

Numerical Literals. A numerical literal is a literal which
requires numerical reasoning and whose arguments all are nu-
merical. A numerical literal may contain numerical variables
as arguments. During the program search stage, the learner
builds partial hypotheses with variables in place of numerical
symbols in numerical literals. For example, the learner may
generate the following program, where the literal leq(B,N) is
a numerical literal which contains the numerical variable N :

H: f(A)← length(A,B), leq(B,N), @numerical(N)

Related Variables. A related variable is a variable that
appears both in a numerical literal and in a regular literal. Re-
lated variables act as bridges between relational learning and
numerical reasoning. For instance, the variable B is a variable
related to the numerical variable N in the program H above.
Possible substitutions for the related variables are identified
by executing the hypothesis without its numerical literals over
the positive and negative examples. For instance, given the
positive examples {f([a, b]), f([])} and the negative exam-
ples {f([b, c, a, d, e, f ]), f([c, e, d, a, b])}, the hypothesis H
above has the following positive SP (B) and negative SN (B)
substitutions for the related variable B: SP (B) = {2, 0} and
SN (B) = {6, 5}.
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4.2 Numerical Search
During the numerical search stage, the learner builds an SMT
formula from the definition of the numerical literals and the
possible substitutions for the related variables. It generates
a constraint for each positive example to ensure the learned
hypothesis covers it. It generates a constraint for each nega-
tive example to ensure the learned hypothesis does not cover
it. For instance, the learner translates the numerical search in
the hypothesis above as the following SMT formula:

2 ≤ N ∧ 0 ≤ N ∧ ¬(6 ≤ N) ∧ ¬(5 ≤ N)

The appendix includes more details of how NUMSYNTH
builds the SMT formula. The solutions for the formula repre-
sent possible numerical values for the partial program tested.
In other words, if the formula is satisfiable, any solution is
a substitution for the numerical variables in the partial pro-
gram such that the resulting program is a solution to the LFF
input. For instance, the substitution N = 3 is a solution to
the formula above. Applying this substitution to the program
H above forms the following LFF solution:

H: f(A)← length(A,B), leq(B,3)

In practice, to account for non-deterministic literals, we build
one expression from each of the substitutions found for the
related variables. The constraints assert that at least one of
these expressions is verified for each positive example and
none are verified for any negative examples. In other words,
the multi-instance problem (Dietterich, Lathrop, and Lozano-
Pérez 1997) is delegated to the solver through a disjunction.

The number of literals in the resulting SMT formula is
upper bounded by ne ∗ s ∗ nv, where ne is the number of
examples, s is the maximum number of substitutions per
example, and nv is the number of variables in the candidate
hypothesis. A proof of this result is in the appendix.

4.3 Constraints
If a candidate program is not a solution to the LFF input,
we generate constraints to prune other programs from the
hypothesis space and constrain subsequent program search
stages. Following Hocquette and Cropper (2022), we use
the following constraints. Given a partial program P with
numerical variables generated in the program search stage:

1. If there is no solution in the numerical search stage, then
P cannot cover any of the positive examples and therefore
P is too specific. We prune programs which include one
of the specialisations of P as a subset.

2. If all solutions found in the numerical search stage result
in programs which are too specific, then P is too spe-
cific. We prune specialisations of P without additional
numerical literals.

3. If all solutions found in the numerical search stage result
in programs which are too general, then P is too general.
We prune non-recursive generalisations of P .

These constraints are optimally sound (Hocquette and Crop-
per 2022) as they do not prune optimal solutions from the
hypothesis space. The appendix contains an example of con-
straints generated.

Literal Definition Example
geq(A,N) A ≥ N geq(A,3)
leq(A,N) A ≤ N leq(A,5.2)
add(A,B,C) A+B = C add(A,B,C)
mult(A,N,C) A ∗N = C mult(A,2,C)

Figure 2: Numerical literals in NUMSYNTH. N is a numeri-
cal variable which can be substituted for a numerical value.
Variables A, B, C, N range over real numbers or integers.

Fragment NUMSYNTH Example
Linear real arithm. ✓ X + 6.3 ∗ Y ≤ 3
Linear integer arithm. ✓ U + 6 ∗ V ≤ 3
Mixed real / integer ✓ X + 6.3 ∗ V ≤ 3
Integer difference logic ✓ U − V ≤ 4
Real difference logic ✓ X − Y ≤ 4
Unit two-variable / ineq. ✓ X + Y ≤ 4
Polynomial real arithm. X X2 + Y 2 = 2
Non-linear integer arithm. X U2 = 2

Figure 3: Arithmetical fragments supported by NUMSYNTH.
X and Y range over real numbers and U and V over integers.

5 Implementation
We present our implementation called NUMSYNTH. We first
briefly describe POPPER (Cropper and Morel 2021), on which
NUMSYNTH is based.

5.1 POPPER

POPPER takes as input a LFF input, which contains a set of
positive and negative examples, a background knowledge
B, a bound over the size of hypotheses allowed inH, and a
set of hypothesis constraints C. POPPER learns hypotheses
as definite programs. To generate hypotheses, POPPER uses
an ASP program P whose models are hypothesis solutions
represented in the meta-language L. In other words, each
model (answer set) of P represents a hypothesis. POPPER
follows a generate, test, and constrain loop to find a solution.
First, it generates a hypothesis as a solution to the ASP pro-
gram P with the ASP system Clingo (Gebser et al. 2014).
Then, POPPER tests this hypothesis given the background
knowledge against the examples, typically using Prolog. If
the hypothesis is a solution, POPPER returns it. Otherwise,
the hypothesis is a failure: POPPER identifies the kind of
failure and builds constraints accordingly. For instance, if
the hypothesis is inconsistent, POPPER builds a generalisa-
tion constraint. POPPER adds these constraints to the ASP
program P to constrain the subsequent generate steps. This
loops repeats until a hypothesis solution is found or until
there are no more models to the ASP program P .

5.2 NUMSYNTH

NUMSYNTH builds on POPPER. It also follows a generate,
test, and constrain loop.

Partial programs. First, NUMSYNTH generates partial pro-
grams which may contain numerical literals. The maximum
number of numerical literals in a clause is a user parameter,
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with a default value of 2. This setting expresses the trade-off
between search complexity and expressivity.

Numerical literals. NUMSYNTH supports the built-in nu-
merical literals shown in Figure 2. While add reasons from
regular numerical first-order variables and does not have nu-
merical variables which are substituted for constant symbols,
other literals have such numerical variables represented by N .
As shown in Figure 3, the numerical literals in NUMSYNTH
are sufficient to reason about standard linear arithmetic frag-
ments. Other fragments which currently are not supported
by NUMSYNTH include non-linear arithmetic for complexity
reasons. More details about numerical literals are provided in
the appendix. The user can specify a subset of these numerical
literals to use if this bias is known. Otherwise, NUMSYNTH
automatically identifies which of these literals to use, at the
expense of more search. If known, the user also can option-
ally specify argument types (real or integer) and domains for
the numerical variables to restrict the search.

Numerical Reasoning NUMSYNTH performs numerical
reasoning during the test stage. It first identifies possible sub-
stitutions for the related variables. To do so, it adds related
variables in numerical literals as new arguments to the head
literal. Then, it removes numerical literals from the hypothe-
sis. For instance, the hypothesis H below becomes H ′:

H: f(A)← length(A,B), leq(B,C)
H’: f(A,B)← length(A,B)

NUMSYNTH executes the resulting hypothesis over the ex-
amples with Prolog. We use Prolog because of its ability to
handle lists and large, potentially infinite, domains. NUM-
SYNTH saves the substitutions found for the newly added
head variables. It then builds an SMT formula from the defi-
nition of the numerical literals and the values found for the
related variables. Finally, NUMSYNTH uses the SMT solver
Z3 (Moura and Bjørner 2008) to determine the satisfiability
of the resulting SMT formula. If a solution exists, it saves
a possible value for each numerical variable and substitutes
these values into the original program. Otherwise, it repeats
the loop and generates more programs.

We set the SMT solver to return any solution to the formula.
We do not optimise the choice of numerical values because
it is unclear how to trade off learning textually minimal pro-
grams and learning optimal numerical values (potentially
multiple ones in a program). Addressing this limitation is
future work.

6 Experiments
We claim that NUMSYNTH can learn programs with numeri-
cal values from numerical reasoning. Therefore, our experi-
ments aim to answer the following question:

Q1 Can NUMSYNTH learn programs with numerical values?

To answer Q1, we evaluate NUMSYNTH on a variety of tasks
requiring numerical reasoning.

We also claim that our approach can reduce search com-
plexity and thus improve learning performance. Therefore,
our experiments aim to answer the following question:

halfplane(A,B) ← mult(A,3,D), add(B,D,E), leq(E,6).

Figure 4: Example halfplane hypothesis. Numerical literals
and examples of numerical values are in bold.

zendo2(A) ← piece(A,B), position(B,C,D),
add(C,D,E), leq(E,6.92).

zendo2(A) ← piece(A,B), rotation(B,D),
leq(D,4.12), geq(D,3.23)

Figure 5: Example zendo2 hypothesis. Numerical literals and
examples of numerical values are in bold.

Q2 How well does NUMSYNTH perform compared to other
approaches?

To answer Q2, we compare NUMSYNTH against MAGICPOP-
PER and ALEPH, which are the only program synthesis sys-
tems capable of learning programs with numerical constants1.

As described in Section 4.2, the size of the SMT formula
built by NUMSYNTH is an increasing function of the number
of examples. Therefore, to evaluate how well our system
scales, we investigate the following question:

Q3 How well does NUMSYNTH scale with the number of
examples?

To answer Q3, we vary the number of examples and evaluate
the performance of NUMSYNTH.

Domains We consider four domains which we briefly de-
scribe. The appendix includes more details.

Geometry. These tasks involve learning that points belong
to geometrical objects (interval, halfplane), which parame-
ters are numerical values to be learned. Figure 4 shows an
example hypothesis for the task halfplane.

Zendo. Zendo is a multiplayer game in which players
aim to identify a rule which structures made from a set of
pieces with varying attributes must follow. We consider four
increasingly complex tasks. Figures 1b and 5 show examples
of target hypotheses for tasks 1 and 2, respectively.

Pharmacophores. The goal is to identify properties of
pharmacophores responsible for medicinal activity (Finn et al.
1998). This domain requires reasoning about distances be-
tween atoms with varying properties and bonds linking each
other. We consider four increasingly complex tasks. Figure 6
shows an example of a target hypothesis for task 4.

Program Synthesis. We consider three program synthesis
tasks. These tasks are list transformation tasks which involve
learning recursive programs and numerical reasoning.

Systems To evaluate Q2, we compare NUMSYNTH against
MAGICPOPPER and ALEPH. We briefly describe each of
these systems. The appendix contains more details.

1We also considered other systems (Corapi, Russo, and Lupu
2011; Evans and Grefenstette 2018; Kaminski, Eiter, and Inoue
2018; Schüller and Benz 2018). However, these systems cannot
handle infinite domains and thus cannot solve any of the tasks pro-
posed or require user-provided metarules (Muggleton, Lin, and
Tamaddoni-Nezhad 2015) making them unusable in practice (Crop-
per et al. 2022).
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pharma4(A) ← zinc(A,B), hacc(A,C), dist(A,B,C,D),
leq(D,4.18), geq(D,2.22)

pharma4(A) ← hacc(A,B), hacc(A,C), dist(A,B,C,D),
geq(D,1.23), leq(D,3.41)

pharma4(A) ← zinc(A,B), zinc(A,C), bond(B,C,du),
dist(A,B,C,D), leq(D,1.23)

Figure 6: Example pharma4 hypothesis. Numerical literals
and examples of numerical values are in bold.

MAGICPOPPER and NUMSYNTH. We provide NUM-
SYNTH and MAGICPOPPER with the same input2. We allow
MAGICPOPPER to learn constant symbols for variables of
type real or integer in literals with a finite number of answer
substitutions. The experimental difference is the ability to
perform numerical reasoning for NUMSYNTH.

ALEPH. We provide ALEPH with definitions adapted from
NUMSYNTH’s numerical literals to fit its lazy evaluation
procedure. ALEPH uses a different bias than NUMSYNTH
to bound the hypothesis space. Therefore, the comparison is
less fair and should be interpreted as indicative only.

Experimental Setup We enforce a timeout of 10 minutes
per task. We measure predictive accuracy and learning time.
We measure the mean and standard error over 10 trials. We
use an 8-Core 3.2 GHz Apple M1 and a single CPU.

6.1 Experiment 1: Comparison Against SOTA

Task ALEPH MAGICPOPPER NUMSYNTH

interval 69 ± 1 70 ± 0 99 ± 1
halfplane 99 ± 0 84 ± 7 96 ± 1

zendo1 98 ± 0 68 ± 3 99 ± 0
zendo2 51 ± 1 56 ± 1 96 ± 1
zendo3 71 ± 1 51 ± 1 96 ± 1
zendo4 63 ± 1 52 ± 1 94 ± 1

pharma1 82 ± 1 64 ± 3 99 ± 0
pharma2 83 ± 1 77 ± 2 95 ± 1
pharma3 81 ± 1 82 ± 1 98 ± 1
pharma4 76 ± 1 62 ± 2 92 ± 1

memberbetween 49 ± 0 75 ± 4 97 ± 1
lastleq 50 ± 0 51 ± 1 98 ± 1
nextgeq 50 ± 0 50 ± 0 92 ± 5

Table 1: Predictive accuracies. We round accuracies to integer
values. The error is standard error.

Tables 1 and 2 show the results. They show that NUM-
SYNTH consistently achieves high accuracy on all tasks. The
accuracy is not maximal because, given a training set, several
numerical values may result in a complete and consistent
hypothesis, and NUMSYNTH does not optimise the choice
of numerical values. For instance, given the SMT formula,
2 ≤ N ∧ 0 ≤ N ∧ ¬(6 ≤ N) ∧ ¬(5 ≤ N), NUMSYNTH
may return any value N such that 2 ≤ N < 5.

These results demonstrate that NUMSYNTH can learn pro-
grams with numerical values in a reasonable time (less than

2Both systems use Popper 2.0.0 (Cropper and Hocquette 2022).

Task ALEPH MAGICPOPPER NUMSYNTH

interval 1 ± 0 0 ± 0 0 ± 0
halfplane 1 ± 0 60 ± 26 2 ± 1

zendo1 25 ± 8 timeout 10 ± 1
zendo2 68 ± 18 97 ± 11 17 ± 1
zendo3 106 ± 26 112 ± 9 69 ± 2
zendo4 147 ± 30 timeout 76 ± 2

pharma1 2 ± 0 3 ± 0 1 ± 0
pharma2 10 ± 2 7 ± 0 2 ± 0
pharma3 24 ± 3 66 ± 5 20 ± 1
pharma4 3 ± 0 62 ± 2 20 ± 0

memberbetween 1 ± 0 161 ± 38 2 ± 0
lastleq 0 ± 0 589 ± 10 13 ± 1
nextgeq 0 ± 0 336 ± 17 39 ± 6

Table 2: Learning times. We round times over one second to
the nearest second. The error is standard error.

80s) in a variety of domains. NUMSYNTH can identify numer-
ical values which require reasoning from multiple examples
and which may not appear in the background knowledge.
For instance, it can solve pharma1 which involves learning
that the distance between two atoms must be smaller than a
particular value. It also can learn programs with numerical
values from infinite domains, such as real numbers or integers.
Finally, it can learn hypotheses with multiple chained numer-
ical literals for instance for halfplane or pharma4 (Figures 4
and 6). Given these results, we answer Q1 positively.

We compare NUMSYNTH against ALEPH and MAGICPOP-
PER. Table 1 shows NUMSYNTH achieves higher or equal
accuracies than both ALEPH and MAGICPOPPER. An inde-
pendent t-test confirms the significance of the difference at
the p < 0.01 level for all tasks except halfplane and zendo1.
These results show that NUMSYNTH can solve tasks other
systems struggle with. For instance, ALEPH struggles to learn
hypotheses with multiple numerical literals sharing variables
such as for zendo2 or zendo3. ALEPH performs lazy evalua-
tion over all substitutions for positive and negative examples
and, therefore, struggles to learn disjunctive numerical hy-
potheses such as for zendo2 or pharma2. ALEPH may instead
learn a hypothesis as facts, which do not generalise to the
test set. Finally, ALEPH struggles to learn recursive programs
and performs poorly on the program synthesis tasks. ALEPH
can perform well on other tasks, such as halfplane or zendo1.

MAGICPOPPER can learn programs, potentially recursive
ones, with constant symbols from infinite domains. However,
it cannot reason from multiple examples jointly and cannot
identify constants in literals with large or infinite number of
substitutions, such as greater than. These limitations prevent
it from learning inequalities, such as in pharma2.

Table 2 shows the learning times. It shows ALEPH can
have longer learning times than NUMSYNTH. For instance,
ALEPH solves zendo1 in 25s while NUMSYNTH requires
10s. Yet, in contrast to ALEPH, NUMSYNTH searches for
textually optimal solutions. NUMSYNTH also outperforms
MAGICPOPPER in terms of learning times. Owing to the lack
of numerical reasoning ability, MAGICPOPPER is unable
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Figure 7: Learning time versus the number of examples for
zendo1 (left) and pharma2 (right).

to express a concise hypothesis on some tasks and there-
fore searches up to larger depth. Moreover, MAGICPOPPER
follows a generate-and-test approach to identify numerical
values: it first generates candidate numerical values from the
execution of the partial programs over single examples. Then,
it tests candidate values over all examples. Conversely, NUM-
SYNTH solves a single problem with all examples jointly. It
thus avoids the need to consider possibly many candidate
values and can be more efficient. Given these results, the
answer to Q2 is that NUMSYNTH can outperform existing ap-
proaches in terms of learning times and predictive accuracies
when learning programs with numerical values.

6.2 Experiment 2: Scalability
We compare the performance of NUMSYNTH against ALEPH
and MAGICPOPPER when varying the number of training
examples. We use the task zendo1, which other systems can
solve. However, the main advantage of our approach is that
it can learn concepts existing approaches cannot. Therefore,
we also evaluate scalability on the task pharma2, which ex-
isting systems struggle to solve. Figure 7 shows the learning
times versus the number of examples for these two tasks.
The appendix shows the predictive accuracies. They are not
maximal for MAGICPOPPER and ALEPH on pharma2.

As the number of examples grows, the complexity of the
learning task, and thus the learning time, increases. Predictive
accuracies degrade when timeout is reached for ALEPH and
MAGICPOPPER. NUMSYNTH has shorter learning times than
MAGICPOPPER on both tasks and its learning time increases
slower. MAGICPOPPER generates all candidate numerical val-
ues derivable from single examples, then tests them against
the remaining examples. Conversely, NUMSYNTH generates
constraints from all examples, which it can propagate when
solving the SMT formula. It thus achieves shorter learning
times. However, owing to the complexity of the SMT prob-
lem, NUMSYNTH can struggle to scale to large numbers of
examples. The SMT formula can include disjunctions in the
case of non-deterministic literals which further adds com-
plexity. The appendix includes a breakdown of the learning
time of NUMSYNTH. It shows its learning time is dominated
by the construction and solving of the SMT formula. Finally,
NUMSYNTH scales better than ALEPH on pharma2 but worse
on zendo1. Therefore, the answer to Q3 is that NUMSYNTH
scales better than MAGICPOPPER with the number of exam-

ples and can scale better than ALEPH. However, scalability is
limited by the complexity of the numerical reasoning stage.
This result highlights a limitation of NUMSYNTH.

7 Conclusions and Future Work
Learning programs with numerical values is essential for
many AI applications. However, existing program synthe-
sis systems struggle to identify numerical values from infi-
nite domains and reason about multiple examples. To over-
come these limitations, we have introduced NUMSYNTH, an
ILP system that combines relational learning and numerical
reasoning to efficiently learn programs with numerical val-
ues. The key idea of our approach is to decompose learning
into two stages: (i) the search for a program, and (ii) the
search for numerical values. During the search for a program,
NUMSYNTH builds partial programs with variables in place
of numerical values. Then, given a partial program, NUM-
SYNTH searches for numerical values by building an SMT
formula using the training examples. NUMSYNTH uses a set
of built-in numerical literals (Figure 2) to support a large
class of arithmetical fragments (Figure 3), such as linear inte-
ger arithmetic. Our experiments on four domains (geometry,
game playing, biology, and program synthesis) show that
our approach can (i) learn programs with numerical values,
and (ii) improve predictive accuracies and reduce learning
times compared to state-of-the-art ILP systems. In particular,
it can learn programs with multiple numerical values, includ-
ing recursive programs. In other words, we have shown that
NUMSYNTH can solve numerical tasks that existing systems
cannot. At a higher level, we think that this paper helps bridge
relational and numerical learning.

7.1 Limitations and Future Work
Scalability. A limitation to the scalability of our approach
is the complexity of the numerical reasoning stage, which is
a function of the number of (i) examples, and (ii) numerical
variables. Future work will aim to identify a subset of the
examples which are sufficient to identify suitable numerical
values (Anthony and Frisch 1997).

Cost Function. NUMSYNTH learns optimal programs,
where the cost function is the size of the hypothesis (the num-
ber of literals in it). However, it might be desirable to prefer
hypotheses based on different criteria, such as maximum mar-
gin or mean square error in the case of numerical prediction
(Srinivasan and Camacho 1999). Future work should explore
learning with alternative cost functions.

Noise. In contrast to other ILP systems (Karalič and Bratko
1997; Blockeel and De Raedt 1998; Srinivasan 2001), NUM-
SYNTH cannot identify numerical values from noisy exam-
ples. Wahlig (2022) extended LFF to support learning from
noisy examples. This extension should be directly applicable
to NUMSYNTH.

Code, Data, and Appendices
A longer version of this paper with the appendices is
available at https://arxiv.org/pdf/2210.00764.pdf. The exper-
imental code and data are available at https://github.com/
celinehocquette/numsynth-aaai23.
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