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Abstract

Syntax splitting is a property of inductive inference operators
that ensures we can restrict our attention to parts of the condi-
tional belief base that share atoms with a given query. To ap-
ply syntax splitting, a conditional belief base needs to consist
of syntactically disjoint conditionals. This requirement is of-
ten too strong in practice, as conditionals might share atoms.
In this paper we introduce the concept of conditional syn-
tax splitting, inspired by the notion of conditional indepen-
dence as known from probability theory. We show that lexi-
cographic inference and system W satisfy conditional syntax
splitting, and connect conditional syntax splitting to several
known properties from the literature on non-monotonic rea-
soning, including the drowning effect.

1 Introduction
Inductive inference operators generate non-monotonic in-
ference relations |∼∆ on the basis of a set of conditionals
∆ of the form (ψ|φ), read as “if φ holds, then typically
ψ holds”. Examples of inductive inference operators in-
clude rational closure (also known as system Z) (Goldszmidt
and Pearl 1996), lexicographic inference (Lehmann 1995),
system W (Komo and Beierle 2022) and c-representations
(Kern-Isberner 2002). For these systems, known complexity
results point to a high computational complexity (Eiter and
Lukasiewicz 2000). Syntax splitting for inference operators
(Kern-Isberner, Beierle, and Brewka 2020) is a property re-
quiring that, for a belief base which can be split syntactically
into two parts (i.e. there exists two sub-signatures such that
every conditional in the belief base is built up entirely from
one of the two sub-signatures), restricting attention to the
sub-signature does not result in a loss or addition of infer-
ences. In other words, syntax splitting ensures we can safely
restrict our attention to parts of the belief base that share
atoms with a given query, thus seriously decreasing the com-
putational strain for many specific queries. However, this
presupposes that parts of a conditional belief base are syn-
tactically independent, meaning that no common atoms are
allowed. This might be an overly strong requirement, as the
two parts of the belief base might have common elements.
Consider the following example:
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Example 1. Usually, bikes are chain-driven (c|b), usually
chain-driven bikes have multiple gears (g|c), and usually
a bike frame consists of four pipes (f |b). The form of the
frame is independent of whether a bike is chain driven and
how many gears it has. However, syntax splitting as defined
in (Kern-Isberner, Beierle, and Brewka 2020) does not allow
us to restrict attention to {(f |b)} when we want to make
inferences about the form of a bike frame, as the common
atom b prevents us from splitting the belief base into two
syntactically unrelated parts.

An intuitively related problem that was surprisingly
shown to be independent of syntax splitting in (Heyninck,
Kern-Isberner, and Meyer 2022) is the so-called drowning
problem. It consists of the fact that with some inductive in-
ference relations, abnormal individuals do not inherit any
properties. It is best illustrated using the Tweety-example:
Example 2 (The Drowning Problem, (Pearl 1990; Benfer-
hat, Dubois, and Prade 1993)). The drowning problem is il-
lustrated by using the following conditional belief base ∆ =
{(f |b), (b|p), (¬f |p), (e|b)}, which represents the Tweety-
example, i.e. that birds typically fly, penguins are typically
birds, and penguins typically don’t fly, together with the
additional conditional “birds typically have beaks”. The
drowning problem is predicated on the fact that some in-
ductive inference operators, such as system Z, do not infer
that penguins typically have beaks (p |∼ Z

∆b), i.e. the abnor-
mality of penguins w.r.t. flying drowns inferences about the
beaks of penguins. It is well-known that lexicographic infer-
ence does not suffer from the drowning problem (Lehmann
1995).

The drowning problem seems to be related to syntax split-
ting. Intuitively, {(e|b)} is unrelated to the rest of the be-
lief base, in the sense that, as long as we know we are talk-
ing about birds, having beaks has nothing to do with flying
or having wings. However, (unconditional) syntax splitting
does not allow capturing this kind of independence, since the
atom b prohibits the belief base from being split into infor-
mation about flying and wings on the one hand, and infor-
mation about beaks on the other hand. It is exactly this kind
of conditional independencies between conditionals that we
seek to formally capture and study in this paper.

The definition of conditional independence is of major
practical relevance. Over the last decades, conditional in-
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dependence was shown to be a crucial concept supporting
adequate modelling and efficient reasoning in probabilistic
reasoning (Pearl 1988), as it is fundamental for network-
based reasoning, arguably one of the most important fac-
tors in the rise of contemporary artificial intelligence. Even
though many reasoning tasks on the basis of probabilistic in-
formation have a high worst-case complexity due to their se-
mantic nature, network-based models allow for the efficient
computation of many concrete instances of these reasoning
tasks thanks to local reasoning techniques. The formulation
of a concept of conditional independence for inductive in-
ference operators is therefore an important step towards ef-
ficient implementations of non-monotonic reasoning.

The contributions of the paper are the following:
1. We introduce and study the notion of conditional split-

ting of a belief base, a property of conditional belief
bases, and generalize the concept of syntax splitting, a
property of inductive inference operators, to conditional
syntax splitting, thus bringing a notion of conditional in-
dependence to inductive inference operators;

2. We show that lexicographic entailment and system W
satisfy conditional syntax splitting;

3. We show that the drowning effect can be seen as a viola-
tion of conditional syntax splitting.

Outline of this paper: Section 2 states the necessary pre-
liminaries, while Section 3 introduces the concept of con-
ditional syntax splitting. We show that lexicographic infer-
ence and system W satisfy conditional syntax splitting in
Section 4, and how avoidance of the drowning effect can be
seen as a special case of conditional syntax splitting in Sec-
tion 5. We discuss related work in Section 6 and conclude in
Section 7.

2 Preliminaries
In the following we recall preliminaries on propositional
logic, and technical details on inductive inference.

2.1 Propositional Logic
For a set Σ of atoms, here referred to as a signature, let L(Σ)
be the corresponding propositional language constructed us-
ing the usual connectives ∧ (and), ∨ (or), ¬ (negation),
→ (material implication) and↔ (material equivalence). A
(classical) interpretation (also called possible world) ω for a
propositional language L(Σ) is a function ω : Σ→ {>,⊥}.
Let Ω(Σ) denote the set of all interpretations for Σ. We sim-
ply write Ω if the set of atoms is implicitly given. An in-
terpretation ω satisfies (or is a model of) an atom a ∈ Σ,
denoted by ω |= a, if and only if ω(a) = >. The satis-
faction relation |= is extended to formulas as usual. As an
abbreviation we sometimes identify an interpretation ω with
its complete conjunction, i. e., if a1, . . . , an ∈ Σ are those
atoms that are assigned > by ω and an+1, . . . , am ∈ Σ are
those propositions that are assigned ⊥ by ω we identify ω
by a1 . . . anan+1 . . . am (or any permutation of this). For
X ⊆ L(Σ) we also define ω |= X if and only if ω |= A
for every A ∈ X . Define the set of models Mod(X) =
{ω ∈ Ω(Σ) | ω |= X} for every formula or set of for-
mulas X . A formula or set of formulas X1 entails another

formula or set of formulas X2, denoted by X1 |= X2, if
Mod(X1) ⊆ Mod(X2). Where θ ⊆ Σ, and ω ∈ Ω(Σ),
we denote by ωθ the restriction of ω to θ, i.e. ωθ is the
interpretation over Σθ that agrees with ω on all atoms in
θ. Where Σi,Σj ⊆ Σ, Ω(Σi) will also be denoted by Ωi
for any i ∈ N, and likewise Ωi,j we denote Ω(Σi ∪ Σj)
(for i, j ∈ N). Likewise, for some X ⊆ L(Σi), we define
Modi(X) = {ω ∈ Ωi | ω |= X}.

2.2 Reasoning with Nonmonotonic Conditionals
Given a language L, conditionals are objects of the form
(B|A) where A,B ∈ L. The set of all conditionals based on
a language L is defined as: (L|L) = {(B|A) | A,B ∈ L}.
We follow the approach of (de Finetti 1937) who considered
conditionals as generalized indicator functions for possible
worlds resp. propositional interpretations ω:

((B|A))(ω) =

{
1 : ω |= A ∧B
0 : ω |= A ∧ ¬B
u : ω |= ¬A

(1)

where u stands for unknown or indeterminate. In other
words, a possible world ω verifies a conditional (B|A) iff
it satisfies both antecedent and conclusion ((B|A)(ω) = 1);
it falsifies, or violates it iff it satisfies the antecedence but
not the conclusion ((B|A)(ω) = 0); otherwise the condi-
tional is not applicable, i. e., the interpretation does not sat-
isfy the antecedent ((B|A)(ω) = u). We say that ω satis-
fies a conditional (B|A) iff it does not falsify it, i.e., iff ω
satisfies its material counterpart A→ B. Given a total pre-
order (in short, TPO) or strict partial order (in short, SPO)
� on possible worlds, representing relative plausibility, we
define A � B iff for every ω′ ∈ min�(Mod(B)) there is
an ω ∈ min�(Mod(A)) such that ω � ω′. This allows for
expressing the validity of defeasible inferences via stating
that A |∼�B iff (A ∧ B) ≺ (A ∧ ¬B) (Makinson 1988).
Analogously, we define the validity of defeasible inferences
for strict partial orders (SPOs). As usual, we denote ω � ω′

and ω′ � ω by ω ≈ ω′ and ω � ω′ and ω′ 6� ω by ω ≺ ω′

(and similarly for formulas).
We can marginalize total preorders and even inference re-

lations, i.e., restricting them to sublanguages, in a natural
way: If Θ ⊆ Σ then any TPO � on Ω(Σ) induces uniquely
a marginalized TPO �|Θ on Ω(Θ) by setting

ωΘ
1 �|Θ ωΘ

2 iff ωΘ
1 � ωΘ

2 . (2)

Note that on the right hand side of the iff condition above
ωΘ

1 , ω
Θ
2 are considered as propositions in the super-language

L(Ω); this marginalization of TPOs is a special case of the
forgetful functor Mod(σ) from Σ-models to Θ-models in
(Beierle and Kern-Isberner 2012) where σ is the inclusion
from Θ to Σ. Hence ωΘ

1 � ωΘ
2 is well defined (Kern-

Isberner and Brewka 2017). Similarly, any inference relation
|∼ on L(Σ) induces a marginalized inference relation |∼|Θ
on L(Θ) by setting, for any A,B ∈ L(Θ):

A |∼|Θ B iff A |∼B (3)

An obvious implementation of total preorders are ordi-
nal conditional functions (OCFs), (also called ranking func-
tions) κ : Ω → N ∪ {∞} with κ−1(0) 6= ∅. (Spohn
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1988). They express degrees of (im)plausibility of possible
worlds and propositional formulas A by setting κ(A) :=
min{κ(ω) | ω |= A}. A conditional (B|A) is accepted by κ
iff A |∼κB iff κ(A ∧B) < κ(A ∧ ¬B).

2.3 Inductive Inference Operators
In this paper we will be interested in inference relations |∼∆
parametrized by a conditional belief base ∆. In more detail,
such inference relations are induced by ∆, in the sense that
∆ serves as a starting point for the inferences in |∼∆. We
call such operators inductive inference operators:
Definition 1 ((Kern-Isberner, Beierle, and Brewka 2020)).
An inductive inference operator (from conditional belief
bases) is a mapping C that assigns to each conditional be-
lief base ∆ ⊆ (L|L) an inference relation |∼∆ on L that
satisfies the following basic requirement of direct inference:
DI If ∆ is a conditional belief base and |∼∆ is an inference

relation that is induced by ∆, then (B|A) ∈ ∆ implies
A |∼∆B.

As already indicated in Section 2.2, inference relations can
be obtained based on SPOs, TPOs, and OCFs, respectively:
Definition 2. An SPO-based inductive inference operator is
a mapping Cspo that assigns to each conditional belief base
∆ a strict partial order ≺∆ on Ω s.t. A |∼≺∆

B for every
(B|A) ∈ ∆ (i.e., s.t. DI is ensured). A model-based induc-
tive inference operator for total preorders Ctpo is defined
similarly, by using a TPO �∆ instead of an SPO ≺∆.

A model-based inductive inference operator for OCFs (on
Ω) is a mapping Cocf that assigns to each conditional belief
base ∆ an OCF κ∆ on Ω s.t. ∆ is accepted by κ∆ (i.e., s.t.
DI is ensured).

Examples of inductive inference operators for OCFs in-
clude System Z ((Goldszmidt and Pearl 1996), see Sec. 2.4)
and c-representations ((Kern-Isberner 2002), whereas lexi-
cographic inference ((Lehmann 1995), see Sec. 2.5) is an
example of an inductive inference operator for TPOs and
system W ((Komo and Beierle 2022), see Sec. 2.6) is an ex-
ample of an inductive inference operator for SPOs.

To define the property of syntax splitting (Kern-Isberner,
Beierle, and Brewka 2020), we assume a conditional belief
base ∆ that can be split into subbases ∆1,∆2 s.t. ∆i ⊂
(Li|Li) with Li = L(Σi) for i = 1, 2 s.t. Σ1 ∩ Σ2 = ∅ and
Σ1 ∪ Σ2 = Σ, writing ∆ = ∆1

⋃
Σ1,Σ2

∆2 whenever this is

the case.
Definition 3 (Independence (Ind), (Kern-Isberner, Beierle,
and Brewka 2020)). An inductive inference operator C sat-
isfies (Ind) if for any ∆ = ∆1

⋃
Σ1,Σ2

∆2 and for any
A,B ∈ Li, C ∈ Lj (i, j ∈ {1, 2}, j 6= i),

A |∼∆B iff AC |∼∆B.

Definition 4 (Relevance (Rel), (Kern-Isberner, Beierle, and
Brewka 2020)). An inductive inference operator C satisfies
(Rel) if for any ∆ = ∆1

⋃
Σ1,Σ2

∆2 and for any A,B ∈ Li
(i ∈ {1, 2}),

A |∼∆B iff A |∼∆iB.

Definition 5 (Syntax splitting (SynSplit), (Kern-Isberner,
Beierle, and Brewka 2020)). An inductive inference oper-
ator C satisfies (SynSplit) if it satisfies (Ind) and (Rel).

Thus, Ind requires that inferences from one sub-language
are independent from formulas over the other sublanguage,
if the belief base splits over the respective sublanguages. In
other words, information on the basis of one sublanguage
does not influences inferences made in the other sublan-
guage. Rel, on the other hand, restricts the scope of infer-
ences, by requiring that inferences in a sublanguage can be
made on the basis of the conditionals in a conditional belief
base formulated on the basis of that sublanguage. SynSplit
combines these two properties.

2.4 System Z
We present system Z defined in (Goldszmidt and Pearl
1996) as follows. A conditional (B|A) is tolerated by a fi-
nite set of conditionals ∆ if there is a possible world ω with
(B|A)(ω) = 1 and (B′|A′)(ω) 6= 0 for all (B′|A′) ∈ ∆, i.e.
ω verifies (B|A) and does not falsify any (other) conditional
in ∆. The Z-partitioning (or ordered partition) OP(∆) =
(∆0, . . . ,∆n) of ∆ is defined as:
• ∆0 = {δ ∈ ∆ | ∆ tolerates δ};
• OP(∆ \∆0) = ∆1, . . . ,∆n .

For δ ∈ ∆ we define: Z∆(δ) = i iff δ ∈ ∆i and OP(∆) =
(∆0, . . . ,∆n). Finally, the ranking function κZ∆ is defined
via: κZ∆(ω) = max{Z(δ) | δ(ω) = 0, δ ∈ ∆} + 1, with
max ∅ = −1. The resulting inductive inference operator
Cocf
κZ

∆

is denoted by CZ . In the literature, system Z has also
been called rational closure (Lehmann and Magidor 1992).

We now illustrate OCFs in general and System Z in par-
ticular with the well-known “Tweety the penguin”-example.
Example 3. Let ∆ = {(f |b), (b|p), (¬f |p)} be a sub-base
of belief base used in Example 2. This conditional belief
base has the following Z-partitioning: ∆0 = {(f |b)} and
∆1 = {(b|p), (¬f |p)}. This gives rise to the following κZ∆-
ordering over the worlds based on the signature {b, f, p}:

ω κZ∆ ω κZ∆ ω κZ∆ ω κZ∆

pbf 2 pbf 1 pbf 2 pb f 2
pbf 0 pbf 1 pbf 0 pb f 0

As an example of a (non-)inference, observe that e.g.
> |∼ Z

∆¬p and p ∧ f 6|∼ Z
∆b.

2.5 Lexicographic Entailment
We recall lexicographic inference as introduced by
(Lehmann 1995). For some conditional belief base ∆, the
order �lex

∆ is defined as follows: Given ω ∈ Ω and ∆′ ⊆
∆, V (ω,∆′) = |({(B|A) ∈ ∆′ | (B|A)(ω) = 0}|.
Given a set of conditionals OP(∆) = (∆0, . . . ,∆n),
the lexicographic vector for a world ω ∈ Ω is the
vector lex(ω) = (V (ω,∆0), . . . , V (ω,∆n)). Given two
vectors (x1, . . . , xn) and (y1, . . . , yn), (x1, . . . , xn) �lex

(y1, . . . , yn) iff there is some j 6 n s.t. xk = yk for every
k > j and xj 6 yj . ω �lex

∆ ω′ iff lex(ω) �lex lex(ω′). The
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resulting inductive inference operator Ctpo�lex will be denoted
by C lex to avoid clutter.
Example 4 (Example 3 ctd.). For the Tweety belief base ∆
as in Example 3 we obtain the following lex(ω)-vectors:

ω lex(ω) ω lex(ω) ω lex(ω) ω lex(ω)

pbf (0,1) pbf (1,0) pbf (0,2) pb f (0,1)
pbf (0,0) pbf (1,0) pbf (0,0) pb f (0,0)

The lex-vectors are ordered as follows:

(0, 0) ≺lex (1, 0) ≺lex (0, 1) ≺lex (0, 2).

Observe that e.g. > |∼ lex
∆ ¬p (since lex(> ∧ ¬p) =

(0, 0) ≺lex lex(> ∧ p) = (1, 0)) and p ∧ f |∼ lex
∆ b.

2.6 System W
System W is a recently introduced inductive inference oper-
ator (Komo and Beierle 2020, 2022) that takes into account
the structural information of which conditionals are falsified.
Definition 6 (ξj , preferred structure ≺w

∆ on worlds (Komo
and Beierle 2022)). For a consistent belief base ∆ =
{(Bi|Ai) | i ∈ {1, . . . , n}} with OP(∆) = (∆0, . . . ,∆k)
and for j = 0, . . . , k, the functions ξj are given by

ξj(ω) := {(Bi|Ai) ∈ ∆j | ω |= AiBi}.

The preferred structure on worlds is given by the binary re-
lation ≺w

∆ ⊆ Ω× Ω defined by, for any ω, ω′ ∈ Ω,

ω ≺w
∆ ω′ iff there exists an m ∈ {0 , . . . , k} such that

ξi(ω) = ξi(ω′) ∀i ∈ {m+ 1 , . . . , k} and

ξm(ω) ⊂ ξm(ω′) .

I.e., ω ≺w
∆ ω′ if and only if ω falsifies strictly fewer (in the

set-theoretic sense) conditionals than ω′ in the ∆m with the
biggest index m where the conditionals falsified by ω and
ω′ differ. Note that ≺w

∆ is a strict partial order (Komo and
Beierle 2022, Lemma 3).
Definition 7 (system W, |∼ w

∆(Komo and Beierle 2022)).
Let ∆ be a belief base and A,B be formulas. Then B is
a system W inference from A (in the context of ∆), de-
noted A |∼ w

∆B, if for every ω′ ∈ Mod(AB) there is an
ω ∈ Mod(AB) such that ω ≺w

∆ ω′.
The relation ≺w

∆ is a strict partial order. Thus, using Defi-
nition 2, system W is an SPO-based inductive inference op-
erator Cw : ∆ 7→ ≺w

∆. Note that system W satisfies DI
because it captures system Z (see (Komo and Beierle 2020))
which in turn satisfies DI. In fact, system W strictly lies be-
tween system Z and lexicographic inference:
Proposition 1 ((Komo and Beierle 2020; Haldimann and
Beierle 2022b)). If A is consistent, then A |∼z∆B implies
A |∼ w

∆B and A |∼ w
∆B implies A |∼ lex

∆ B, but not vice versa.
Example 5 (Example 3 ctd.). The belief base ∆ from Ex. 3
induces the ≺w

∆ below. We can entail pb |∼ w
∆f as the verify-

ing world pbf is ≺w
∆-preferred to the only falsifying world

pbf , i.e., pbf ≺w
∆ pbf .

pbf
pbf
pb f

pbf

pbf

pb f
pbf pbf

≺w
∆

3 Conditional Syntax Splitting
We now introduce a conditional version of syntax splitting.
A first central idea is the syntactical notion of conditional
splitting, a property of belief bases.
Definition 8. We say a conditional belief base ∆ can be
split into subbases ∆1,∆2 conditional on a sub-alphabet Σ3,
if ∆i = ∆ ∩ (L(Σi ∪ Σ3) | L(Σi ∪ Σ3)) for i = 1, 2 s.t.
Σ1, Σ2 and Σ3 are pairwise disjoint and Σ = Σ1∪Σ2∪Σ3,
writing:

∆ = ∆1
⋃

Σ1,Σ2

∆2 | Σ3 (4)

Intuitively, a conditional belief base can be split into Σ1

and Σ2 conditional on Σ3, if every conditional is built up
from atoms in Σ1∪Σ3 or atoms in Σ2∪Σ3. Thus, if (4) holds,
we have ∆1∪∆2 = ∆ and ∆1∩∆2 = ∆∩(L(Σ3) | L(Σ3)).

The above notion of conditional syntax splitting, however,
is too strong, in the sense that it does not warrant satisfac-
tion of conditional variants of relevance and independence
(we will define them in formal detail below) for e.g. lexico-
graphic inference. The underlying problem is that toleration
might not be respected by conditional belief bases that con-
ditionally split:
Example 6. Let ∆ = {(x|b), (¬x|a), (c|a ∧ b)}. Then

∆ = {(x|b), (¬x|a)}
⋃
{x},{c}

{(c|a ∧ b)} | {a, b}

However, this notion of purely syntactical conditional inde-
pendence is not reflected on the level of tolerance (and there-
fore entailment). Indeed, {(c|a ∧ b)} (trivially) tolerates it-
self, i.e. Z{(c|a∧b)}(c|a ∧ b) = 0, yet ∆ does not tolerate
(c|a ∧ b), i.e. Z∆(c|a ∧ b) = 1.

This means that for system Z and lexicographic entaiment,
conditional relevance (now only introduced informally) is
violated for this belief base. In more detail, even though ∆ =
{(x|b), (¬x|a)}

⋃
{x},{c}{(c|a ∧ b)} | {a, b}, we have e.g.

> 6|∼ lex
{(c|a∧b)}¬(a∧b) whereas> |∼ lex

∆ ¬(a∧b) (and likewise
for system Z).

What happens here is that (x|b) and (¬x|a) act as “con-
straints” on a and b being true together which, in turn, is
needed for (c|a ∧ b) to be tolerated. In other words, pure
syntactic conditional splitting is not reflected on the seman-
tic level (in contradistinction to unconditional splitting). We
can exclude such cases by using the following weaker notion
of safe conditional syntax splitting:
Definition 9. A conditional belief base ∆ =
∆1

⋃
Σ1,Σ2

∆2 | Σ3 can be safely split into subbases
∆1, ∆2 conditional on a sub-alphabet Σ3, writing:

∆ = ∆1
s⋃

Σ1,Σ2

∆2 | Σ3,
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if for every ω3 ∈ Ω(Σi ∪ Σ3), there is a ωj ∈ Ω(Σj) s.t.
ωjω3 6|=

∨
(F |E)∈∆j E ∧ ¬F (for i, j = 1, 2 and i 6= j).

The notion of safe splitting is explained as follows: ∆ can
be safely split into ∆1 and ∆2 conditional on Σ3 if it can be
split in ∆1 and ∆2 conditional on Σ3, and additionally, for
every world ωiω3 in the subsignature Σi ∪ Σ3, we can find
a world ωj in the subsignature Σj (i, j = 1, 2 and j 6= i)
s.t. no conditional δ ∈ ∆j is falsified by ωiωjω3 (or, equiv-
alently, by ωjω3). We will show some more syntactical for-
mulated conditions that ensure safe splitting below (Propo-
sition 2).

We argue here that safe splitting faithfully captures the in-
dependence of two conditional belief bases conditional on a
sub-signature Σ3. Indeed, safe splitting requires that (1) all
conditionals are built up from the sub-signatures Σ1 ∪Σ3 or
Σ2∪Σ3 (i.e. ∆1

⋃
Σ1,Σ2

∆2 | Σ3), and (2) that any informa-
tion on Σi ∪ Σ3 is compatible with ∆j , i.e. no world ωiω3

causes a conditional in ∆j to be violated. In other words,
toleration with respect to ∆j is independent of ∆i.

We now delineate some more syntactic conditions that en-
sure safe syntax splitting. These conditions are typically eas-
ier to check, and might reasonably be expected to hold for
certain natural language scenarios. For example, if it holds
that (1) ∆ = ∆1

⋃
Σ1,Σ2

∆2 | Σ3, (2) all antecedents and
consequents (of conditionals in ∆) using elements of the
common sub-alphabet Σ3 are equivalent, and (3) all material
versions of the conditional sub-base ∆i are consistent with
the set of consequents of the conditionals whose antecedent
uses atoms in the common sub-alphabet Σ3, then ∆ can be
safely split into ∆1 and ∆2 conditional on Σ3.
Proposition 2. Let a conditional belief base ∆ =
∆1

⋃
Σ1,Σ2

∆2 | Σ3 be given. If there is a C ∈ L(Σ3) s.t.
for every conditional in (B|A) ∈ ∆ = ∆1

⋃
Σ1,Σ2

∆2 | Σ3:

1. B ∈ L(Σ1) ∪ L(Σ2), or B ≡ C.
2. A ∈ L(Σ1) ∪ L(Σ2), or A ≡ C.
3.

∧
(G|H)∈∆i H → G 6`

∨
{¬F | (F |C ′) ∈ ∆i, C ′ ≡ C}

for i = 1, 2.1

Then ∆ = ∆1
⋃s

Σ1,Σ2
∆2 | Σ3.

A simpler case of conditions 1 and 2 in Proposition 2 is
a belief base where all antecedents derive from the common
alphabet Σ3 and all consequents derive from either Σ1 or
Σ2.

Notice that the conditional belief base from Example 2
has the form described in Proposition 2:
Example 7. Consider again ∆ from Example 2, and let
Σ1 = {f, p}, Σ2 = {e} and Σ3 = {b}. Observe that
∆ = {(f |b), (b|p), (¬f |p)}

⋃
Σ1,Σ2

{(e|b)} | Σ3.
Furthermore, the first two items in Proposition 2 are satis-

fied as every conditional is either completely on the basis of
the alphabet {f, p} or has as an antecedent or a consequent
b. Finally, the last condition is satisfied as {b → e} 6|= ¬e
and {b → f, p → b, p → ¬f} 6|= f ∨ ¬b. We thus see that
∆ = {(f |b), (b|p), (¬f |p)}

⋃s
Σ1,Σ2

{(e|b)} | Σ3.

1Or, equivalently, {H → G | (G|H) ∈ ∆i} ∪ {F | (F |C′) ∈
∆i, C′ ≡ C} 6` ⊥.

The bicycle example is also of this form:
Example 8. Consider again ∆ from Example 1. We see that
{(c|b), (g|c)}

⋃s
{g,c},{f}{(f |b)} | {b}.

Remark 1. Note that a weaker prerequisite such as taking
only the first two conditions in Proposition 2 does not work:
in more detail, requiring that there is a C ∈ L(Σ3) s.t. for
every conditional in (B|A) ∈ ∆ = ∆1

⋃
Σ1,Σ2

∆2 | Σ3:

1. B ∈ L(Σ1) ∪ L(Σ2)2,
2. A ∈ L(Σ1) ∪ L(Σ2), or A ≡ C.
In other words, these two conditions say that condition-
als are either fully from the language based on either Σ1

or Σ2, or their antecedent is fully based on Σ3, and there
is only a single formula allowed to occur as such. How-
ever, this notion is not consistent with toleration. Consider
∆ = {(y|>), (¬y|a), (x|a)}. Then

∆ = {(y|>), (¬y|a)}
⋃

{y},{x}

{(x|a)} | {a}

and {(x|a)} tolerates itself (trivially), yet
{(y|>), (¬y|a), (x|a)} does not tolerate (x|a). It is
not surprising that a purely syntactic condition is elusive.

Safe conditional splitting of a conditional belief base
is consistent with toleration, in the sense that ∆ =
∆1

⋃s
Σ1,Σ2

∆2 | Σ3 implies that toleration of a conditional
(B|A) by ∆ is equivalent to toleration of (B|A) by the con-
ditional sub-base ∆i in which it occurs. This gives further
evidence to the fact that safe conditional splitting adequately
captures the notion of independence of sub-bases: toleration
of a conditional is independent of an unrelated sub-base.
Proposition 3. Let a conditional belief base ∆ =
∆1

⋃
Σ1,Σ2

∆2 | Σ3 be given. ∆1
⋃s

Σ1,Σ2
∆2 | Σ3 implies

(for any i = 1, 2) that ∆i tolerates (B|A) ∈ ∆i iff ∆ toler-
ates (B|A).

We now move to the formulation of conditional syntax
splitting, a property of inductive inference operators that ex-
presses that the independencies between sub-bases of con-
ditionals, as encoded in safe splitting, are respected by an
inductive inference operator.

Conditional independence (CInd) and conditional rele-
vance (CRel) are defined analogous to (Ind) and (Rel), but
now assuming that a conditional belief base can be safely
split and taking into account that we have full information
on the “conditional pivot” Σ3:
Definition 10. An inductive inference operator C satisfies
(CInd) if for any ∆ = ∆1

⋃s
Σ1,Σ2

∆2 | Σ3, and for any
A,B ∈ L(Σi), C ∈ L(Σj) (for i, j ∈ {1, 2}, j 6= i) and a
complete conjunction D ∈ L(Σ3),

AD |∼∆B iff ADC |∼∆B

Thus, an inductive inference operator satisfies conditional
independence if, for any ∆ that safely splits into ∆1 and
∆2 conditional on Σ3, whenever we have all the necessary
information about Σ3, inferences from one sub-language are
independent from formulas over the other sub-language.

2Even though this is a stronger version of condition 1 in Prop. 2,
these two conditions are not sufficient to ensure safe splitting.
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Definition 11. An inductive inference operator C satisfies
(CRel) if for any ∆ = ∆1

⋃s
Σ1,Σ2

∆2 | Σ3, and for any
A,B ∈ L(Σi) (for i ∈ {1, 2}) and a complete conjunction
D ∈ L(Σ3),

AD |∼∆B iff AD |∼∆i
B.

Thus, CRel restricts the scope of inference by requiring
that inferences in the sub-language Σ1 ∪Σ3 can be made on
the basis of conditionals on the basis of that sub-language.

Syntax splitting (CSynSplit) combines the two properties
(CInd) and (CRel):
Definition 12. An inductive inference operator C satisfies
conditional syntax splitting (CSynSplit) if it satisfies (CInd)
and (CInd).

We now proceed with the study of conditional syntax
splitting. We first analyse the properties of CInd and CRel
for TPOs. We first notice that CInd and CRel for induc-
tive inference operators for TPOs, SPOs, and OCFs re-
spectively is equivalent to the following properties (for any
∆ = ∆1

⋃s
Σ1,Σ2

∆2 | Σ3 and for A,B ∈ L(Σi), complete
conjunction D ∈ L(Σ3), C ∈ L(Σj), i, j = 1, 2 and i 6= j):

CIndtpo AD �∆ BD iff ACD �∆ BCD

CReltpo AD �∆ BD iff AD �∆i BD

CIndspo AD ≺∆ BD iff ACD ≺∆ BCD

CRelspo AD ≺∆ BD iff AD ≺∆i
BD

CIndocf κ∆(AD) 6 κ∆(BD) iff κ∆(ACD) 6 κ∆(BCD)

CRelocf κ∆(AD) 6 κ∆(BD) iff κ∆i(AD) 6 κ∆i(BD)

We now connect CInd to the notion of conditional inde-
pendence of TPOs as known from belief revision. For this,
we need the following notion taken from (Kern-Isberner,
Heyninck, and Beierle 2022):

Definition 13 ((Kern-Isberner, Heyninck, and Beierle
2022)). Let � be a total preorder on Ω(Σ), and let
Σ1,Σ2,Σ3 be three (disjoint) subsignatures of Σ. Then Σ1

and Σ2 are independent conditional on Σ3, in symbols,
Σ1 |= � Σ2|Σ3, if for all ω1

1 , ω
1
2 ∈ Ω(Σ1), ω2

1 , ω
2
2 ∈ Ω(Σ2),

and ω3 ∈ Ω(Σ3) it holds that for all i, j ∈ {1, 2}, i 6= j,

ωi1ω
j
1ω

3 � ωi2ω
j
1ω

3 iff ωi1ω
3 � ωi2ω3. (5)

Independence of two subsignatures Σi and Σj conditional
on Σ3 means that, in the context of fixed information about
Σ3, information about Σj is irrelevant for the ordering of
worlds based on Σi: ω

j
1 can be “cancelled out”.

Proposition 4. An inductive inference operator for TPOs
Ctpo : ∆ 7→�∆ on L satisfies (CInd) iff for any ∆ =
∆1

⋃s
Σ1,Σ2

∆2 | Σ3, it holds that Σ1 |= �∆
Σ2|Σ3.

Proposition 4 establishes a correspondence between the
property CInd of inductive inference operators, and the
notion of conditional independence for TPOs, as already
known from belief revision.

Proposition 5. An inductive inference operator for TPOs
Ctpo : ∆ 7→�∆ on L satisfies (CRel) iff for any ∆ =
∆1

⋃s
Σ1,Σ2

∆2 | Σ3, it holds that �∆i= �∆|Σi
.

Thanks to the close relationship between rankings and
probabilities, there is a straightforward adaptation of con-
ditional independence for OCFs (Spohn 2012, Chapter 7).

Definition 14. Let Σ1∪̇Σ2∪̇Σ3 ⊆ Σ and let κ be an OCF.
Σ1,Σ2 are conditionally independent given Σ3 with respect
to κ, in symbols Σ1 |= κ Σ2|Σ3, if for all ω1 ∈ Ω(Σ1), ω2 ∈
Ω(Σ2), and ω3 ∈ Ω(Σ3), κ(ω1|ω2ω3) = κ(ω1|ω3) holds.

As for probabilities, conditional independence for OCFs
expresses that information on Σ2 is redundant for Σ1 if full
information on Σ3 is available and used. We can now char-
acterize CInd and CRel for OCFs as follows:

Proposition 6. An inductive inference operator for OCFs
Cocf : ∆ 7→ κ∆ satisfies CInd iff for any ∆ =
∆1

⋃s
Σ1,Σ2

∆2 | Σ3 we have Σ1 |= κ∆ Σ2|Σ3.

Proposition 7. An inductive inference operator for OCFs
Cocf : ∆ 7→ κ∆ satisfies CRel iff for any ∆ =
∆1

⋃s
Σ1,Σ2

∆2 | Σ3, we have κ∆i
= κ∆ |Σi∪Σ3

for i ∈
{1, 2}.

4 Lexicographic Inference and System W
Satisfy Conditional Syntax Splitting

We now show that two inductive inference operators, lexi-
cographic inference and system W, which both satisfy syn-
tax splitting (Heyninck, Kern-Isberner, and Meyer 2022;
Haldimann and Beierle 2022a) also satisfy conditional syn-
tax splitting, thus providing a proof of concept for the notion
of conditional syntax splitting.

Theorem 1. C lex satisfies CRel and CInd (and thus CSyn-
Split).

A crucial result for this proof is the fact that the compo-
nents of lex(ω) can be simply combined by summation over
disjoint sub-languages (taking into account double count-
ing), i.e. for ∆ = ∆1

⋃s
Σ1,Σ2

∆2 | Σ3 partitioned in
(∆0, . . . ,∆n), we have (for 1 6 i 6 n):

V (ω,∆i) = V (ω1ω3,∆1
i ) + V (ω2ω3,∆2

i )− V (ω3,∆1
i )

= V (ω1ω3,∆1
i ) + V (ω2ω3,∆2

i )− V (ω3,∆2
i )

Theorem 2. System W fulfils CRel and CInd (and thus
CSynSplit).

The proof of Theorem 2 is based on the observations that

for ∆ = ∆1

s⋃
Σ1,Σ2

∆2 | Σ3 the order ω ≺w
∆ ω′ of two worlds

coinciding on Σ2 ∪ Σ3 depends only on ∆1 and that the
order ω ≺w

∆1
ω′ of worlds induced by ∆1 does not change

if we change the valuation over Σ2 in the worlds. System Z
does not satisfy CSynSplit as it does not satisfy SynSplit
(Kern-Isberner, Beierle, and Brewka 2020).

5 The Drowning Effect as Conditional
Independence

As mentioned in the introduction, the drowning effect, il-
lustrated by Example 2, is intuitively related to syntax split-
ting. In more detail, the drowning effect is constituted by
the fact that according to some inductive inference operators
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(e.g. system Z), exceptional subclasses (e.g. penguins) do
not inherit any properties of the superclass (e.g. birds), even
if these properties are unrelated to the reason for the sub-
class being exceptional (e.g. having beaks). To the best of
our knowledge, discussion of the drowning effect in the lit-
erature has been restricted to informal discussions on the ba-
sis of examples such as the Tweety-example (see e.g. (Pearl
1990; Benferhat, Dubois, and Prade 1993; Giordano and
Gliozzi 2020; Benferhat et al. 1993), but no generic formal
description has been given.

In this paper, we have developed the necessary tools to
talk about the drowning effect in a formally precise man-
ner. Indeed, the first crucial notion is that of unrelatedness
of propositions. This notion is formally captured by safe
splitting into subbases (Definition 9): given a belief base ∆,
a proposition A is unrelated to a proposition C iff ∆ can
be safely split into subbases ∆1,∆2 conditional on a sub-
alphabet Σ3, i.e. ∆ = ∆1

⋃s
Σ1,Σ2

∆2 | Σ3, and A ∈ L(Σ2)

and C ∈ L(Σ1 ∪ Σ3). This means that the abstract situa-
tion of the drowning problem can be precisely described by
conditional syntax splitting. We see that the drowning effect
is nothing else than a violation of the postulate of condi-
tional independence (CInd): if we know that a typical prop-
ertyB ofAD-individuals (AD |∼∆B) is unrelated to an ex-
ceptional subclass C of AD, then we can also derive that if
something is ADC is typically B (ADC |∼∆B). In other
words, we can define the drowning effect in a general way,
i.e. without recourse to a specific example, as follows:
Definition 15. An inductive inference operator C shows the
drowning problem if there is some ∆ = ∆1

⋃s
Σ1,Σ2

∆2 | Σ3,
some A,B ∈ L(Σ1), some C ∈ L(Σ2) and a complete con-
junction D ∈ L(Σ3) for which AD |∼∆B yet ADC 6|∼∆B.

In other words, an inductive inference operator shows the
drowning problem if for some conditional belief base for
which C is unrelated to AD, and for which AD typically
implies B, ADC does not typically imply B.
Example 9 (Example 2 ctd.). We already saw in Example
7 that ∆ = {(f |b), (b|p), (¬f |p)}

⋃s
{f,p},{e}{(e|b)} | {b}.

The drowning problem for this belief base consists in the
fact that b |∼∆e yet b ∧ p 6|∼∆e. It is not hard to see that
any inductive inference operator C that satisfies (DI) and
(CInd) avoids the drowning effect. In more detail, we have:

b |∼∆e by DI (6)
b ∧ p |∼∆e by CInd and (5) (7)

For any inductive inference operator that additionally satis-
fies Cut (i.e. from A |∼B and A ∧ B |∼C derive A |∼C),
a postulate that holds for any inductive inference opera-
tor based on SPOs, TPOs or OCFs (Kraus, Lehmann, and
Magidor 1990), we obtain:

p |∼∆b by DI (8)
p |∼∆e by Cut, (7), and (8) (9)

Summarizing, we can express our findings as follows (no-
tice that the proof of this proposition is trivial):
Proposition 8. Any inductive inference operator that satis-
fies (CInd) does not show the drowning problem.

As an immediate corollary, we obtain that lexicographic
inference and system W avoid the drowning problem.

Notice that we do not claim here that the drowning prob-
lem is something that has to be avoided under any circum-
stances: in some situations, it might be useful to take a very
cautious approach about assuming typicality. However, in
many other situations, it is warranted to avoid the drowning
problem. Our work gives a general description of what this
means, and shows under which conditions on the inductive
inference operator this is guaranteed.

6 Related Work
The phenomenon of syntax splitting has been observed as
early as 1980 in (Shore and Johnson 1980) under the name
of “system independence”. Syntax splitting was coined in
(Parikh 1999) who studied it in the context of belief revi-
sion. Later, it was studied for other forms of belief revi-
sion in (Aravanis, Peppas, and Williams 2019; Kern-Isberner
and Brewka 2017), and for inductive inference operators in
(Kern-Isberner, Beierle, and Brewka 2020). In (Heyninck,
Kern-Isberner, and Meyer 2022) it was shown that lexi-
cographic inference satisfies syntax splitting, and that the
drowning effect is independent of (non-conditional) syntax
splitting. We pick up where (Heyninck, Kern-Isberner, and
Meyer 2022) stopped, showing the connection between the
drowning effect and conditional syntax splitting.

Conditional independence for OCFs has been studied in
(Spohn 1988), for belief revision in (Lynn, Delgrande, and
Peppas 2022), and for conditional belief revision in (Kern-
Isberner, Heyninck, and Beierle 2022). To the best of our
knowledge, it has not been considered for inductive infer-
ence operators. We connect inductive inference operators
with these works, as we show that the same conditions of
conditional independence as studied in (Spohn 1988; Kern-
Isberner, Heyninck, and Beierle 2022) on the TPOs respec-
tively OCFs underlying inductive inference operators (Defi-
nition 13) guarantee conditional syntax splitting.

7 Conclusion
The main contributions of this paper are the following: (1)
we define the concept of conditional syntax splitting for in-
ductive inference operators, thus bringing a notion of con-
ditional independence between sub-signatures to the realm
of inductive inference operators; (2) we show that lexico-
graphic inference and system W satisfy conditional syntax
splitting; and (3) we show how the drowning effect can be
seen as a violation of conditional syntax splitting.

Avenues for further work include investigating whether
other inference operators, such as c-representations (Kern-
Isberner 2002) and RC-extending inference relations (as de-
scribed in (Casini, Meyer, and Varzinczak 2019)) satisfy
conditional syntax splitting, developing algorithms for de-
ciding whether and how a conditional belief base can be
safely split and analyzing their complexity. Finally, we plan
to compare the semantic notion of syntax splitting with re-
lated notions studied in logic programming, such as splitting
(Lifschitz and Turner 1994) and modularity (Janhunen et al.
2009; Lierler and Truszczynski 2013).
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on Worlds. In Schmid, U.; Klügl, F.; and Wolter, D., eds.,
KI 2020: Advances in Artificial Intelligence - 43rd Ger-
man Conference on AI, Bamberg, Germany, September 21-
25, 2020, Proceedings, volume 12325 of LNCS, 102–115.
Springer.
Komo, C.; and Beierle, C. 2022. Nonmonotonic reasoning
from conditional knowledge bases with system W. Ann.
Math. Artif. Intell., 90(1): 107–144.
Kraus, S.; Lehmann, D.; and Magidor, M. 1990. Nonmono-
tonic reasoning, preferential models and cumulative logics.
Artificial intelligence, 44(1-2): 167–207.
Lehmann, D. 1995. Another perspective on default reason-
ing. Annals of mathematics and artificial intelligence, 15(1):
61–82.
Lehmann, D.; and Magidor, M. 1992. What does a condi-
tional knowledge base entail? Artificial intelligence, 55(1):
1–60.
Lierler, Y.; and Truszczynski, M. 2013. Modular answer set
solving. In Proceedings of the 17th AAAI Conference on
Late-Breaking Developments in the Field of Artificial Intel-
ligence, 68–70.
Lifschitz, V.; and Turner, H. 1994. Splitting a logic program.
In ICLP, volume 94, 23–37.
Lynn, M. J.; Delgrande, J. P.; and Peppas, P. 2022. Using
Conditional Independence for Belief Revision. In Proceed-
ings AAAI-22.
Makinson, D. 1988. General theory of cumulative infer-
ence. In International Workshop on Non-Monotonic Rea-
soning (NMR), 1–18. Springer.

6423



Parikh, R. 1999. Beliefs, belief revision, and splitting lan-
guages. Logic, language and computation, 2(96): 266–268.
Pearl, J. 1988. Probabilistic reasoning in intelligent systems:
networks of plausible inference. Morgan kaufmann.
Pearl, J. 1990. System Z: a natural ordering of defaults with
tractable applications to nonmonotonic reasoning. In Pro-
ceedings of the 3rd conference on Theoretical aspects of rea-
soning about knowledge, 121–135.
Shore, J.; and Johnson, R. 1980. Axiomatic derivation of
the principle of maximum entropy and the principle of mini-
mum cross-entropy. IEEE Transactions on Information The-
ory, IT-26: 26–37.
Spohn, W. 1988. Ordinal conditional functions: A dynamic
theory of epistemic states. In Causation in decision, belief
change, and statistics, 105–134. Springer.
Spohn, W. 2012. The laws of belief: Ranking theory and its
philosophical applications. Oxford University Press.

6424


