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Abstract

Answer Set Programming (ASP) is a problem modeling and
solving framework for several problems in KR with growing
industrial applications. Also for studies of computational com-
plexity and deeper insights into the hardness and its sources,
ASP has been attracting researchers for many years. These
studies resulted in fruitful characterizations in terms of com-
plexity classes, fine-grained insights in form of dichotomy-
style results, as well as detailed parameterized complexity
landscapes. Recently, this lead to a novel result establishing
that for the measure treewidth, which captures structural den-
sity of a program, the evaluation of the well-known class of
normal programs is expected to be slightly harder than decid-
ing satisfiability (SAT). However, it is unclear how to utilize
this structural power of ASP. This paper deals with a novel
reduction from SAT to normal ASP that goes beyond well-
known encodings: We explicitly utilize the structural power of
ASP, whereby we sublinearly decrease the treewidth, which
probably cannot be significantly improved. Then, compared to
existing results, this characterizes hardness in a fine-grained
way by establishing the required functional dependency of the
dependency graph’s cycle length (SCC size) on the treewidth.

1 Introduction
Answer Set Programming (ASP) (Brewka, Eiter, and
Truszczyński 2011; Gebser et al. 2012) is a declarative prob-
lem modeling and solving framework for knowledge repre-
sentation and reasoning and artificial intelligence in general.
This makes ASP a key formalism and suitable target language
for solving problems in that area effectively, e.g., (Balduccini,
Gelfond, and Nogueira 2006; Niemelä, Simons, and Soininen
1999; Nogueira et al. 2001; Guziolowski et al. 2013; Schaub
and Woltran 2018; Abels et al. 2019). Such problems are
thereby encoded in a logic program, which is a set of rules
describing its solutions by means of so-called answer sets
– an approach that goes beyond satisfying a set of clauses
(rules) as in SAT, but additionally requires justifications for
variables (atoms) that are claimed to hold. Considerable effort
has been put into providing extensions and a rich modeling
language that can be efficiently evaluated by solvers like
clasp (Gebser, Kaufmann, and Schaub 2009) or wasp (Al-
viano et al. 2019).
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Example 1 (Encoding with ASP). The classical way of
encoding satisfiability (SAT) of a formula F is to guess for
each variable v ∈ at(F ) its truth value via the two rules
v ← ¬v̂ and v̂ ← ¬v. Then, for every clause l1∨ l2∨ . . .∨ ln
in F , an additional constraint ensures the clause: ⊥ ←
l̄1, l̄2, . . . , l̄n with l̄i being vi, if li = ¬vi, and l̂i otherwise.

The computational complexity of ASP is fairly well stud-
ied, where for the consistency problem of deciding whether
a so-called normal logic program admits an answer set
is NP-complete (Bidoı́t and Froidevaux 1991; Marek and
Truszczyński 1991). This result also extends to the class of
head-cycle-free (HCF) programs (Ben-Eliyahu and Dechter
1994), but if full disjunctions are allowed in the heads of
a rule, the complexity increases to ΣP2 -completeness (Eiter
and Gottlob 1995). Over the time, studying the complex-
ity of ASP raised further attention. There is a wide range
of more fine-grained studies (Truszczynski 2011) for ASP,
also in the context of parameterized complexity (Cygan et al.
2015; Niedermeier 2006; Downey and Fellows 2013; Flum
and Grohe 2006), where certain parameters (Lackner and
Pfandler 2012) are taken into account. In parameterized com-
plexity, the “hardness” of a problem is classified according
to the effort required to solve the problem, e.g., runtime de-
pendency, in terms of a certain parameter. For ASP there is
growing research on the well-studied and prominent struc-
tural parameter treewidth (Jakl, Pichler, and Woltran 2009;
Bichler, Morak, and Woltran 2020; Bliem et al. 2020). In-
tuitively, treewidth yields a tree decomposition, which is a
structural representation that can be used for solving numer-
ous combinatorially hard problems in parts; the treewidth
indicates the maximum number of variables of these parts
one has to investigate during problem solving.

Recently, it has been shown that when assuming the Ex-
ponential Time Hypothesis (ETH) (Impagliazzo, Paturi, and
Zane 2001), which implies that SAT cannot be solved in
time better than single-exponential in the number of vari-
ables in the worst case, normal ASP seems to be slightly
harder (Hecher 2022) for treewidth than SAT. More precisely,
(i) normal ASP can be solved in time 2O(k·log(k)) · poly(n)
for any logic program of treewidth k with n variables (atoms)
and under ETH this dependency on the treewidth can not
be significantly improved. The reason for the hardness lies
in very large cycles (strongly connected components, SCCs)
of the program’s dependency graph; the hardness proof re-
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quires cycle lengths that are unbounded in the treewidth, i.e.,
cycles involve instance-size many atoms. Interestingly, this
is in stark contrast to (ii) SAT, which can be decided in
time 2O(k) ·poly(n). The classical reduction of SAT to ASP,
while preserving treewidth, does not introduce any cycles
in the encoding (see Example 1). Thus, the question arises
if one can construct cyclic programs to reduce SAT while
decreasing treewidth. In more details, this paper asks:
• How can we encode SAT in (normal) ASP, thereby de-

creasing the treewidth by the amount that reflects the
runtime difference between (i) and (ii)?

• Given the gap between unbounded cycle lenghts in (i) and
no cycles in (ii), what is the difference in cycle length
(SCC size) of the complexity between normal ASP and
SAT? Can we bound the cycle length in the treewidth that
still makes normal ASP hard?

• Can we draw further runtime consequences and lower
bounds for other fragments or related extensions of ASP?

Contributions. We address these questions via a novel re-
duction that closes the gap to existing complexity results and
lower bounds. Concretely, we provide the following results.
• First, we establish a novel reduction from SAT to nor-

mal ASP that in contrast to existing transformations fully
utilizes the power of reachability along cycles, thereby de-
creasing treewidth from k toO( k

log(k) ). Unless ETH fails,
it is not expected that this reduction can be significantly
improved, i.e., further major treewidth decreases are un-
expected. To the best of our knowledge, this is the first
reduction fully utilizing the structural power of normal
ASP. Then, we also study the largest cycles (SCC sizes)
of the dependency graph of the constructed program.

• Interestingly, the constructed cycles (SCC sizes) of the
dependency graph are of size at most 2O(k·log(k)). This is
a major improvement compared to the largest SCC sizes
of the recent hardness result, which is unbounded in the
treewidth. Then, we show that for the class of ι-tight pro-
grams, the SCC sizes can be even decreased to 2O(k·log(ι)),
while still preserving hardness for treewidth.

• Finally, we show that our reduction has immediate further
implications in terms of computational complexity. We
establish for the class of ι-tight programs a corresponding
ETH-tight lower bound. Further, counting answer sets of
a normal program with respect to a projection of interest
is expected to be slightly harder than counting answer
sets of disjunctive programs. Notably, both problems are
complete for the same (classical) complexity class, but
are surprisingly of different hardness for treewidth.

Related Work. Programs of bounded even or odd cycles have
been analyzed (Lin and Zhao 2004). Further, the feedback
width has been studied, which depends on the atoms required
to break large SCCs (Gottlob, Scarcello, and Sideri 2002).
There have been improvements for so-called ι-tight pro-
grams (Fandinno and Hecher 2021) with ι being smaller than
treewidth k, which allow for runtimes of 2O(k·log(ι))·poly(n).
For normal and HCF programs, slightly superexponential
algorithms in the treewidth (Fichte and Hecher 2019) for

solving consistency are known. For disjunctive ASP algo-
rithms have been proposed (Jakl, Pichler, and Woltran 2009;
Pichler et al. 2014) running in time linear in the instance size,
but double exponential in the treewidth. Hardness of further
problems has been studied by means of runtime dependency
in the treewidth, e.g., levels of exponentiality, where triple-
exponential algorithms are known (Marx and Mitsou 2016;
Fichte, Hecher, and Pfandler 2020).

Numerous reductions from ASP to SAT are known (Clark
1977; Ben-Eliyahu and Dechter 1994; Lin and Zhao 2003;
Janhunen 2006; Alviano and Dodaro 2016; Bomanson and
Janhunen 2013; Bomanson 2017). These reductions focus on
the resulting formula size and number of auxiliary variables,
where a sub-quadratic blow-up is unavoidable (Lifschitz and
Razborov 2006). Unless ETH fails, a sub-quadratic blow-
up in the treewidth cannot be circumvented as well (Hecher
2022). For SAT, empirical results (Atserias, Fichte, and Thur-
ley 2011) involving resolution-width and treewidth yield effi-
cient SAT solver runs on instances of small treewidth.

2 Preliminaries
We assume familiarity with graph terminology, cf., (Diestel
2012). Let G = (V,E) be a directed graph. Then, a set C ⊆
V of vertices of G is a strongly-connected component (SCC)
of G if C is a ⊆-largest set such that for every two distinct
vertices u, v in C there is a directed path from u to v in G.
Tree Decompositions (TDs). A tree decomposition
(TD) (Robertson and Seymour 1986) of a given
graph G=(V,E) is a pair T =(T, χ) where T is a
tree rooted at root(T ) and χ assigns to each node t of T
a set χ(t) ⊆ V , called bag, such that (i) V =

⋃
t of T χ(t),

(ii) E ⊆ {{u, v} | t in T, {u, v} ⊆ χ(t)}, and (iii) for
each r, s, t of T , such that s lies on the path from r to t,
we have χ(r) ∩ χ(t) ⊆ χ(s). For every node t of T , we
denote by chldr(t) the set of child nodes of t in T . We
let width(T ) :=maxt of T |χ(t)| − 1. The treewidth tw(G)
of G is the minimum width(T ) over all TDs T of G.
For a node t of T , we say that type(t) is leaf if t has no
children; join if t has exactly two children t′ and t′′ with
t′ ̸= t′′; inner if t has a single child. If for every node
t of T , type(t) ∈ {leaf, join, inner}, the TD is called nice.
A TD can be turned into a nice TD (Kloks 1994)[Lem.
13.1.3] without width-increase in linear time. Without loss of
generality, we assume that bags of nice TDs are distinct.
Answer Set Programming (ASP). We assume familiarity
with propositional satisfiability (SAT) (Biere et al. 2009;
Kleine Büning and Lettman 1999), where we use clauses,
formulas, and assignments in the usual meaning. Two assign-
ments I : X → {0, 1}, I ′ : X ′ → {0, 1} are compatible,
whenever for every x ∈ X ∩X ′ we have that I(x) = I ′(x).

We follow standard definitions of propositional
ASP (Brewka, Eiter, and Truszczyński 2011; Janhunen
and Niemelä 2016). Let ℓ, m, n be non-negative integers
such that ℓ ≤ m ≤ n, a1, . . ., an be distinct propositional
atoms. Moreover, we refer by literal to an atom or the
negation thereof. A program Π is a set of rules of the form
a1 ∨ · · · ∨ aℓ ← aℓ+1, . . . , am,¬am+1, . . . ,¬an. For a
rule r, we let Hr := {a1, . . . , aℓ}, B+

r := {aℓ+1, . . . , am},
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and B−
r := {am+1, . . . , an}. We denote the sets of

atoms occurring in a rule r or in a program Π by
at(r) := Hr ∪ B+

r ∪ B−
r and at(Π) :=

⋃
r∈Π at(r).

Program Π is normal if |Hr| ≤ 1 for every r ∈ Π. The
dependency graph DΠ of Π is the directed graph defined on
the atoms from

⋃
r∈ΠHr ∪B+

r , where for every rule r ∈ Π
two atoms a ∈ B+

r and b ∈ Hr are joined by an edge (a, b).
An interpretation I is a set of atoms. I satisfies a rule r if

(Hr ∪ B−
r ) ∩ I ̸= ∅ or B+

r \ I ̸= ∅. I is a model of Π if it
satisfies all rules of Π, in symbols I |= Π. For brevity, we
view propositional formulas as sets of formulas (e.g., clauses)
that need to be satisfied, and use the notion of interpretations,
models, and satisfiability analogously. The Gelfond-Lifschitz
(GL) reduct of Π under I is the program ΠI obtained from Π
by first removing all rules r withB−

r ∩I ̸= ∅ and then remov-
ing all¬z where z ∈ B−

r from the remaining rules r (Gelfond
and Lifschitz 1991). I is an answer set of a program Π, de-
noted I |= Π, if I is a minimal model of ΠI . The problem of
deciding whether an ASP program has an answer set is called
consistency, which is ΣP

2-complete (Eiter and Gottlob 1995).
If the input is restricted to normal programs, the complexity
drops to NP-complete (Marek and Truszczyński 1991).

The following characterization of answer sets is often in-
voked for normal programs (Lin and Zhao 2003). Let A ⊆
at(Π) be a set of atoms. Then, a function φ : A →
{0, . . . , |A| − 1} is an ordering over dom(φ) := A. Let I
be a model of a normal program Π and φ be an ordering
over I . An atom a ∈ I is proven if there is a rule r ∈ Π prov-
ing a, where a ∈ Hr with (i) B+

r ⊆ I , (ii) I ∩B−
r = ∅ and

I ∩ (Hr \ {a}) = ∅, and (iii) φ(b) < φ(a) for every b ∈ B+
r .

Then, I is an answer set of Π if (i) I is a model of Π, and (ii)
I is proven, i.e., every a ∈ I is proven. For an ordering φ and
two atoms a, b ∈ at(Π), we write a ≺φ b whenever b directly
succeeds a, i.e., φ(b) = φ(a) + 1. The empty ordering φ
with dom(φ) = ∅ is abbreviated by ∅.
Primal Graph. We need graph representations to use
treewidth for ASP (Jakl, Pichler, and Woltran 2009). The
primal graph GΠ of program Π has the atoms of Π as ver-
tices and an edge {a, b} if there exists a rule r ∈ Π and
a, b ∈ at(r). The primal graph GF of a Boolean Formula F
(in CNF) uses variables of F as vertices and adjoins two ver-
tices a, b by an edge, if there is a clause in F containing a, b.
Let T = (T, χ) be a TD of GF . Then, for every node t of T ,
we define the bag clauses Ft := {c ∈ F | at(c) ⊆ χ(t)}.
Example 2. Consider formula F := {c1, c2, c3}, where
c1 := (a ∨ ¬b), c2 := (¬a ∨ c ∨ d), c3 := (¬c ∨ ¬d).
Figure 1 (left) depicts the primal graph GF and Figure 1
(right) shows a TD of GF . Then, observe that Ft1 = {c1},
Ft2 = {c2, c3}, and Ft3 = ∅.
ι-Tightness. For a program Π and an atom a ∈
at(Π) we denote the SCC of atom a in DΠ by scc(a).
Then, given a TD T = (T, χ) of GΠ, the tightness
width is maxt of T maxx∈χ(t) |χ(t) ∩ scc(x)|. The tightness
treewidth ι of Π is the smallest tightness width among every
TD of width in O(tw(GΠ)); in this case we say Π is ι-tight.
Proposition 1 ((Fandinno and Hecher 2021)). Assume a nor-
mal, ι-tight program Π; the treewidth of GΠ is k. Then, consis-
tency of Π can be decided in time 2O(k·log(ι)) · poly(|at(Π)|).

d

a bc {a, b}t1 {a, c, d} t2

{a}t3

Figure 1: Graph G (left) and a TD T of G (right).

3 Decreasing Treewidth of SAT via ASP
In this section we show how to translate a Boolean formula
into a logic program, thereby decreasing the treewidth and
explicitly utilizing the structural power of ASP. Thereby, in
contrast to the standard translation as sketched in Example 1,
we explicitly utilize cycles and the power of reachability the
ASP formalism provides.

The concrete decrease of treewidth of our reduction of
the next subsection will be tightly linked to the following
observation, which expresses that the factorial k! of a num-
ber k ∈ N is bounded from below by kΩ(k).

Observation 1. Let k ∈ N. Then, k! is in 2Ω(k·log(k)).

Proof. We have k!
kk

= e−O(k) by using Stirling’s formula,
see, e.g., (Lokshtanov, Marx, and Saurabh 2011). As a re-
sult, we derive that k! corresponds to 2k·log(k)

eO(k) = 2k·log(k)

2log(e)·O(k) =
2k·log(k)−log(e)·O(k)= 2Ω(k·log(k)).

This observation immediately implies that k! is of the same
order of magnitude as kΘ(k), as obviously k! is in kO(k).

Decreasing Treewidth by the Power of Reachability
The idea of our main reduction R is as follows. We take
an instance F of SAT, i.e., a Boolean formula and a nice
tree decomposition T = (T, χ) of GF of width k. Then, we
simulate for each node of T , the up to 2k many assignments
via k′! many orderings, where k′ shall be sufficiently smaller
than k. More precisely, we decrease the treewidth from k

to k′ such that k′! ≥ 2k. Then, since k′! is in 2Ω(k′·log(k′))

(see Observation 1), we have that 2Ω(k′·log(k′)) is at least 2k
and therefore k′ = O( k

log(k′) ) = O( k
log(k) ). As a result,

our approach allows us to slightly reduce treewidth, thereby
efficiently utilizing the power of ASP and positive cycles in
order to solve SAT with less structural overhead. While this
seems surprising, it is in line with the known hardness result
of ASP, cf., Proposition 1 for ι = k.

Formally, we determine k′ by taking the smallest integer k′
such that k′! ≥ 2k. We define such a value for every node t
of T , where k′t is the smallest integer such that k′t! ≥ 2|χ(t)|.
Then, we define a set Vt of ordering vertices consisting of k′t
many fresh vertices that are uniquely determined by the
bag χ(t), i.e., for any TD nodes t, t′ we have χ(t) = χ(t′)
if and only if Vt = Vt′ . Using this set Vt, we refer to the re-
sulting set of at least 2|χ(t)| many orderings among elements
in Vt by ord(t). Further, for every node t of T , we refer to
the bijective mapping from a subset X ⊆ ord(t) of orderings
to assignments by It : X → 2χ(t). More precisely, for every
node t and ordering φ ∈ ord(t), the corresponding unique
assignment of φ over atoms in χ(t) is given by It(φ) (if
exists). Note that It is any arbitrary, but fixed bijection, i.e.,
it might be undefined for some unused orderings in ord(t).
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Example 3. Recall formula F and TD T = (T, χ) of Exam-
ple 2. By definition, we require that |Vt1 |! ≥ 22, |Vt2 |! ≥ 23,
and |Vt3 |! ≥ 2. As a result, we need to choose |Vt1 | = 3,
|Vt2 | = 4, and |Vt3 | = 2. Consequently, there are order-
ings α ∈ ord(t1), β ∈ ord(t2), where It1(α) and It2(β) is
not defined. By convention, we refer to the elements in Vt1
by vj1, to those in Vt2 by vj2 and to those in Vt3 by vj3.

Ordering-Augmented Tree Decompositions. Let T =
(T, χ) be a nice tree decomposition of GΠ. In order to decou-
ple the k′! many assignments, we need to get access to any of
the simulated orderings one-by-one. To this end, we define
an ordering-augmented tree decomposition.
Definition 1. Let F be a Boolean formula and T = (T, χ)
be a nice TD of GF . Then, we construct an ordering-
augmented TD T ′ = (T ′, χ′, φ, ψ) of GF from T as follows,
where (T ′, χ′) is a TD and φ,ψ are mappings from nodes to
orderings. For every t of T , let χ′(t) :=χ(t), φt :=∅, ψt :=∅.
For every two neighboring nodes t, t′ of T with t′ ∈ chldr(t)
and ord(t) × ord(t′) = {(α1, β1), . . . , (αℓ, βℓ)}, we add a
sequence of fresh nodes t1, . . . , tℓ between t and t′, such
that for every 1 ≤ i ≤ ℓ we define χ′(ti) :=χ(t), φti :=αi,
and ψti :=βi. For every leaf node t of T with ord(t) =
{α1, . . . , αℓ}, in T ′ we chain copy nodes t1, . . . , tℓ below t,
where for every 1 ≤ i ≤ ℓ, χ′(ti) :=χ(t), φti :=αi, ψti :=∅.

Observe that this definition provides the basis to analyze as-
signments in the form of different orderings, individually and
one-by-one. Further, by comparing every pair of orderings of
neighboring TD nodes, our reduction will later synchronize
neighboring orderings and ensure compatibility.
Example 4. Recall formula F and TD T = (T, χ) from the
previous example. Then, TD T can be turned into an ordering-
augmented TD T ′ = (T ′, χ′, φ, ψ) according to Definition 1.
Thereby we add a sequence (path) of child nodes to t1; each
of these nodes ti handles one ordering φti over Vt1 . Similarly,
this is carried out for node t2. Between t3 and t1 we also add
a path of fresh nodes, where each node covers a combination
(pair) of orderings φt3 , ψt1 , which will be essentially used for
synchronization. Analogously, this is done between t3 and t2.

Involved Atoms. In order to guess among those |ord(t)|
many orderings per node t of T , we characterize each order-
ing α ∈ ord(t) by means of atoms modeling ordering edges
of the form ex,y (and its negation êx,y) to indicate whether
for every two different vertices x, y ∈ Vt, we have x ≺α y.
Further, we require atoms of the form rx for every x ∈ Vt,
which stores whether x is reached or not. For Vt itself (which
might span over several TD nodes) and y ∈ Vt we require
an additional (source) reachability atom of the form rsVt

and
edge atom esVt ,y

. Then, we also use (destination) reachability
atom rdVt

and edge atoms ey,dVt
for every y ∈ Vt.

We will check, whether for every x ∈ Vt of every node t
of T , there is at most one outgoing edge, i.e., an atom ex,y
contained in an answer set. To ensure this, we guide informa-
tion of at most one outgoing edge along the tree decomposi-
tion, whereby for every node t of T and x ∈ Vt, we use an
auxiliary atom oxt . This is also required for the source sVt ,
i.e., we also use auxiliary atom o

sVt
t for every node t. Observe

that this includes atoms osVt

t′ for nodes t′, if Vt = Vt′ .

In order to compare orderings, for every tree decompo-
sition node t of T and element x contained in ordering α
with α ∈ {φt, ψt}, we use an additional ordering query
atom qxt . If this query atom holds, the ordering α is at least
fulfilled starting from the first atom contained in α up to the
atom x. Intuitively, if qyt holds for the last atom y contained
in α, we will ultimately be able to determine whether α holds.

These query atoms are supported by means of additional
testing points pxt as well as initial testing points pxϵ , which
we use for every atom x contained in every α ∈ {φt, ψt}
for every node t of T . The testing points allow us to check
orderings with queries in every node. For every node t of T
and atom x ∈ Vt, we refer by prev(x, t) to the testing points
of x preceding t. Formally, prev(x, t) := chldr(t) if x ∈
Vt′ for some t′ ∈ chldr(t), otherwise {ϵ}.
The Reduction. The reduction R takes a Boolean for-
mula F and an ordering-augmented TD T = (T, χ, φ, ψ).
Before we commence with the description ofR, we require
the following definition. For every node t of T , we let the
set Et of ordering edges be any arbitrary fixed subset of
direct successors of φt. More precisely, for the first ele-
ment a ∈ dom(φt) and the last element b ∈ dom(φt), i.e., a
has no≺φt

predecessor and b has no≺φt
successor,Et is the

largest subset with Et ⊆ {ex,y | x ≺φt
y} ∪ {esVt ,a

, eb,dVt
}

such that for any node t′ of T with t′ ̸= twe haveEt∩Et′=∅.
Example 5. Consider again formula F and ordering-
augmented TD T ′ = (T ′, χ′, φ, ψ) from above. Observe
that the definition of Et is rather open, but it essentially re-
quires that every ordering edge is encountered in exactly one
node of T ′. For example, the ordering φt∗ = {v11 7→ 0, v21 7→
1, v21 7→ 2} is handled in a node t∗ below t1. We could set
Et∗ = {esVt1

,v11
, ev11 ,v21 , ev21 ,v31 , ev31 ,dVt1

}. Assume a different

ordering φt′ = {v11 7→ 0, v31 7→ 1, v21 7→ 2} over Vt1 in the
child node t′ of t∗. Then, considering Et∗ , i.e., avoiding over-
lapping edges, we could set Et′ = {ev11 ,v31 , ev31 ,v21 , ev21 ,dVt1

}.
Similarly every remaining edge is covered uniquely in a node.

Overall, the reduction R as given in Figure 2 consists
of five blocks, where the first block of Formulas (1)–(7)
concerns the choice of orderings (via edge atoms ey,x) and
enforces that every reachability atom rx holds. Then, the
second block of Formulas (8)–(10) takes care that for every
node y ∈ Vt of every node t of T , there is at most one outgo-
ing edge of the form ey,x in an answer set. The third block of
Formulas (11)–(13) ensures that testing points are maintained.
This then allows us to properly define ordering queries in
the forth block of Formulas (14)–(16). Finally, the last block
of Formulas (17)–(19) takes care that chosen orderings are
compatible and that every clause in F is satisfied.

Block 1: Choice of Orderings, Formulas (1)–(7). The first
block concerns choosing orderings. Note that the disjunction
of Formulas (3) is head-cycle-free and can be simply con-
verted to normal rules by shifting (Ben-Eliyahu and Dechter
1994). Then, Formulas (1) set reachability of source vertices
and Formulas (2) ensure reachability of all the vertices in Vt
as well as the destination vertex for Vt, for every node t
of T . Formulas (3) require to choose outgoing edges (at least
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Block 1: Orderings & Reachability
rsVt
← for every t in T (1)

← ¬ry for every t in T, y ∈ Vt ∪ {dVt
} (2)

ey,x ∨ êy,x ← ry for every t in T, ey,x ∈ Et (3)
pxϵ ← ey,x for every t in T, ey,x ∈ Et, {x, y} ⊆ Vt (4)
rdVt
← ey,dVt

for every t in T, ey,dVt
∈ Et (5)

rx ← pxt′ for every t in T, φt = ∅, t′ ∈ chldr(t), x ∈ dom(ψt′) \ dom(φt′) (6)
rx ← pxroot(T ) for every x ∈ Vroot(T ) (7)

Block 2: ≤1 Outgoing Edge
oyt ← oyt′ for every t in T, t′ ∈ chldr(t), y ∈ (Vt ∩ Vt′) ∪ {sVt

| Vt = Vt′} (8)

oyt ← ey,x for every t in T, ey,x ∈ Et, y ∈ Vt (9)

← oyt′ , ey,x for every t in T, ey,x ∈ Et, t′ ∈ chldr(t), y ∈ Vt′ ∪ {sVt
| Vt = Vt′} (10)

Block 3: Testing Points
pxt ← pxt1 , . . . , p

x
to for every t in T, x ∈ Vt, φt = ∅, prev(x, t) = {t1, . . . , to}, (11)

pxt ← pxt′ ,¬qyt for every t in T, α ∈ {φt, ψt}, prev(x, t) = {t′}, {x, y} ⊆ dom(α), y ≺α x (12)

pxt ← pxt′ ,¬qxt for every t in T, α ∈ {φt, ψt}, prev(x, t) = {t′}, x has no ≺α successor (13)
Block 4: Ordering Queries
qxt ← pxt′ for every t in T, prev(x, t) = {t′}, α ∈ {φt, ψt}, x ∈ dom(α), x has no ≺α predecessor (14)

qxt ← pxt′ , q
y
t for every t in T, α ∈ {φt, ψt}, prev(x, t) = {t′}, {x, y} ⊆ dom(α), y ≺α x (15)

pxt ← qxt for every t in T, α ∈ {φt, ψt}, x ∈ dom(α) (16)
Block 5: Compatibility & SAT
← qxt , q

y
t for every t in T, α ∈ {φt, ψt}, x ∈ dom(α) has no ≺α successor, (17)

y ∈ dom(ψt) has no ≺ψt successor, It(φt) and It(ψt) incompatible
← qxt for every t in T, x ∈ dom(φt) has no ≺φt successor, It(φt) ̸|= Ft (18)
← qxt for every t in T, x ∈ dom(φt) has no ≺φt

successor, It(φt) not defined (19)

Figure 2: The reductionR that takes a formula F and a corresponding ordering-augmented TD T = (T, χ, φ, ψ) of GF .

one by Formulas (2)) from every reachable vertex y to some
vertex x. This then yields initial testing points for x by For-
mulas (4). For the destination vertices of sets Vt, such testing
points are not needed, so we immediately obtain reachability
by Formulas (5). The connection and propagation between
testing points will be achieved by Block 3. In the end, the last
testing point for a vertex x yields reachability of x. This is
ensured by Formulas (6), whenever x does not appear in an
ordering for a successor node of t′, or by Formulas (7), if x
appears in an ordering of the root node.
Block 2: ≤ 1 Outgoing Edge, Formulas (8)–(10). This
block ensures at most one outgoing edge per vertex y, where y
can be also the source vertex sVt

for a set Vt of ordering ver-
tices. The information of whether y has decided an outgoing
edge up to a node is propagated from a node t′ to its parent
node t by Formulas (8). Then, whenever in a node t an out-
going edge for y is chosen, oyt has to hold by Formulas (9).
Finally, Formulas (10) prevent choosing outgoing edges for
an atom y in a node t, if already chosen in a child node t′.
Block 3: Propagate Testing Points, Formulas (11)–(13).
The third block concerns about propagation of testing points,
if certain queries do not hold. For the case of the empty or-
dering, i.e., φt = ∅, in a node t, Formulas (11) directly prop-

agate testing points for every atom x ∈ Vt from the evidence
of testing points for x in every child node of t (or from pxϵ
if prev(x, t) = {ϵ}). Further, whenever a certain ordering
relation y ≺α x for either α = φt or predecessor α = ψt
does not hold, we still need to derive the corresponding test-
ing point, see Formulas (12), as this testing point is required
for further queries or for deriving reachability in the end, cf.,
Formulas (6), (7). This also holds for the very last element
of α, see Formulas (13). The reason why we need to cover
both orderings φt as well as ψt, is that neighboring orderings
require compatibility, which will be discussed below Block 5.
Block 4: Define Ordering Queries, Formulas (14)–(16).
This block focuses on deriving query atoms, which ensure
that certain orderings hold. The first element of any order-
ing α ∈ {φt, ψt} is derived from the previous testing point,
as given by Formulas (14). Then, whenever y ≺α x is met,
Formulas (15) enable to derive query atom qxt , which de-
pends on the previous testing point for x as well as on qyt .
This thereby ensures that the order y ≺α x is indeed pre-
served, which is in contrast to Formulas (12) and (13) above.
Finally, Formulas (16) immediately yield the corresponding
testing point pxt in case query atom qxt holds.
Block 5: Compatibility of Orderings & Satisfiability, For-
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mulas (17)–(19). The last block takes care of compatibility
and satisfiability of every clause of the formula F by ex-
cluding orderings, whose corresponding assignments do not
satisfy some clause. To this end, Formulas (17) excludes
those cases of incompatible φt and ψt, i.e., to prevent in-
consistencies, it is prohibited that query atoms qxt , q

y
t for the

last element x of φt and the last element y of ψt hold. Most
importantly, Formulas (18) ensure that the corresponding
assignment of ordering φt satisfy clauses in Ft, in case the
query atom qxt for the last element x of φt holds. Finally,
Formulas (19) avoids corner cases, where unused orderings
could be taken, which would enable bypassing satisfiability.

Example 6. Recall formula F , ordering-augmented TD
T ′=(T ′, χ′, φ, ψ), as well as φt∗ and Et∗ from Exam-
ple 5. We briefly sketch the rules generated for node t∗.
(1) rsVt∗

← (2) ← rv11 ; ← rv21 ; ← rv31 ; ← ¬rVdVt∗

(3) esVt∗ ,v
1
1
∨ êsVt∗ ,v

1
1
← rsVt∗

; ev11 ,v21 ∨ êv11 ,v21 ← rv11 ;
ev21 ,v31 ∨ êv21 ,v31 ← rv21 ; ev31 ,dVt∗

∨ êv31 ,dVt∗
← rv31

(4) p
v11
ϵ ← esVt∗ ,v

1
1
; p

v21
ϵ ← ev11 ,v21 ; p

v31
ϵ ← ev21 ,v31

(5) rv31 ← ev31 ,dVt∗

(8) o
v11
t∗ ← o

v11
t′ ; ov

2
1
t∗ ← o

v21
t′ ; ov

3
1
t∗ ← o

v31
t′ ; o

dVt∗
t∗ ← o

dVt∗
t′

(9) o
sVt∗
t∗ ← esVt∗ ,v

1
1
; o

v11
t∗ ← ev11 ,v21 ; o

v21
t∗ ← ev21 ,v31 ;

o
v31
t∗ ← ev31 ,dVt∗

(10)← o
sVt∗
t′ , esVt∗ ,v

1
1
; ← o

v11
t′ , ev11 ,v21 ; ← o

v21
t′ , ev21 ,v31 ;

← o
v31
t′ , ev31 ,dVt∗

(11) pv
1
1
t∗ ← p

v11
t′ ; p

v21
t∗ ← p

v21
t′ ; p

v31
t∗ ← p

v31
t′

(12) pv
2
1
t∗ ← p

v21
t′ ,¬q

v11
t∗ ; p

v31
t∗ ← p

v31
t′ ,¬q

v21
t∗

(13) pv
3
1
t∗ ← p

v31
t′ ,¬q

v31
t∗

(14) qv
1
1
t∗ ← p

v11
t′ (15) qv

2
1
t∗ ← p

v21
t′ , q

v11
t∗ ; q

v31
t∗ ← p

v31
t′ , q

v21
t∗

(16) pv
1
1
t∗ ← q

v11
t∗ ; p

v21
t∗ ← q

v21
t∗ ; p

v31
t∗ ← q

v31
t∗

Note that if It∗(φt∗) ̸|= Ft∗ or It∗(φt∗) is undefined (unused

ordering), Formulas (18) and (19) generate← q
v31
t∗ .

Properties and Consequences of the Reduction
Next, we show that the reduction indeed utilizes the structural
parameter treewidth, i.e., the treewidth is decreased.

Theorem 1 (Treewidth-Awareness). The reduction from a
Boolean formula F and an ordering-augmented TD T =(T,
χ, φ, ψ) of GF to normal program Π consisting of Formu-
las (1) to (19) slightly decreases treewidth. Precisely, if k is
the width of T , the treewidth of GΠ is in O( k

log(k) ).

Proof (Sketch). We construct a TD T ′ = (T, χ′) of GΠ to
show that the width of T ′ increases only slightly (compared
to k). To this end, let t be a node of T with chldr(t) =
⟨t1, . . . , tℓ⟩ and let t̂ be the parent of t (if exists). We de-
fine (i) R(t) := {rx | x ∈ Vt} ∪ {rx | x ∈ Vt′ , t

′ ∈
chldr(t)} ∪ {rsVt

, rdVt
}, (ii) E(t) := {ex,y, êx,y | ex,y ∈

Et}, (iii) P (t) := {qxt , pxt , pxt′ , pxϵ | x ∈ dom(φt) ∪

qxt1 qyt1pxt1 pyt1

qxt2 qyt2pxt2 pyt2

pxϵ pyϵ

ryrx

. .
.

. .
.

rd{x,y}

... ...rs{x,y}

Figure 3: Positive dependency graph over Blocks 1,3, and
4 of reductionR for two TD nodes t1, t2 over ordering ver-
tices Vt1=Vt2={x, y}. These blocks potentially cause cycles
(larger SCCs). The parts highlighted in blue are the atoms
in their order of derivation, assuming that y precedes x, i.e.,
y ≺φt1

x. Edges highlighted in red cannot be taken, i.e., qy2
cannot be derived, since this implies x ≺φt2

y, contradicting
y ≺φt1

x; causing a cycle of unproven atoms involving ry .

dom(ψt), t
′ ∈ prev(x, t)}, and (iv) O(t) := {oxt , o

sVt
t |

x ∈ Vt} ∪ {oxt′ , o
sV

t′
t′ | t′ ∈ chldr(t), x ∈ Vt′ ∩ Vt}.

Then, we let χ′(t) := R(t) ∪ E(t) ∪ P (t) ∪ O(t). Ob-
serve that T ′ is a TD of GΠ and by construction |χ′(t)| is
in O(|Vt|). By definition of Vt, |Vt| ≤ k′, where k′! ≥ 2k.
Then, since k′! is in 2Ω(k′·log(k′)) (see Observation 1), we
have that 2Ω(k′·log(k′)) is at least 2k and therefore k′ =
O( k

log(k′) ) = O( k
log(k)−log(log(k′)) ) = O( k

log(k) ).

Interestingly, our reduction cannot be significantly im-
proved, making further treewidth decreases unlikely.
Theorem 2 (Treewidth Decrease is Optimal). Assume a re-
duction from a formula F to a normal program Π, running in
time 2o(k) · poly(|at(F )|), where k = tw(GF ). Then, unless
ETH fails, the treewidth of GΠ cannot be in o( k

log(k) ).

Proof. Assume towards a contradiction that such a reduction,
call itR∗, exists. Then, we apply this reduction on any F , re-
sulting in program Π = R∗(F ). Then, we know that Π can be
decided (Hecher 2022) in time 2O(k′·log(k′)) · poly(|at(F )|),
where k′ is in o( k

log(k) ). As a result, we have that Π and there-

fore F can be decided in time 2o(
k

log(k)
·log(k)) ·poly(|at(F )|),

which is in 2o(k) · poly(|at(F )|), contradicting the ETH.

Correctness establishes that the reduction R encoded by
Formulas (1) to (19) indeed characterizes the satisfying as-
signments of a Boolean formula.
Theorem 3 (Correctness). The reduction from a Boolean
formula F and a TD T = (T, χ) of GΠ to a logic program Π,
consisting of Formulas (1) to (19), is correct. Concretely, for
every model of F , there is an answer set of Π. Vice versa, for
every answer set of Π, there is a unique model of F .

Example 7. Figure 3 sketches the dependency graph over the
rules of Blocks 1,3, and 4 on two simple TD nodes; showing
how incompatible queries would cause cyclic dependencies
that are unproven, which can therefore not occur.
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4 Further Insights Into Hardness of ASP
In this section, we provide deeper insights into the charac-
terization of hardness for normal logic programs. First, we
discuss consequences on the length of the largest SCC.

Are Unbounded Cycles (SCCs) Vital for Hardness?
By the construction of the reduction in Section 3 and the
observation thatR causes cycles (SCCs) in the program’s de-
pendency graph of size 2O(k·log(k)), we obtain the following
new hardness and precise lower bound result for deciding the
consistency of normal programs.

Corollary 1 (LB Largest SCC). Let Π be a normal logic
program, where the treewidth of GΠ is k such that the largest
SCC size of DΠ is in 2O(k·log(k)). Under ETH, the consis-
tency of Π can not be decided in time 2o(k·log(k)) · o(|at(Π)|).

Corollary 1 gives insights into the SCC size required
for hardness, which is in contrast to known lower bounds,
which could not bound the cycle length or SCC size in the
treewidth (Hecher 2022). Interestingly, this corollary is in
line with the corresponding upper bound of Proposition 1
(for ι = k). We do not expect that Corollary 1 can be sig-
nificantly strengthened, but we show below how for ι-tight
programs the SCC size can be decreased to 2o(k·log(ι)).

This also provides the corresponding lower bound for pro-
jected answer set counting, which was left open (Fichte and
Hecher 2019). Our reduction allows us to close the gap to the
upper bound, showing that it is expected for the problem to
be harder than plain counting on disjunctive programs.

Theorem 4 (LB Projected Counting). Let Π be a normal
logic program, P⊆at(Π) be atoms, and k be the treewidth
of GΠ, such that the largest SCC size of DΠ is in 2O(k·log(k)).
Then, under ETH, the cardinality |{M ∩ P |M |= Π}| can-
not be computed in time 22

o(k·log(k)) · poly(|at(Π)|).

An ETH-Tight Lower Bound for ι-Tight Programs
Recall the fragment of ι-tight programs, which is motivated
by the idea of providing almost tight programs that are sim-
pler to solve than normal programs. Every formula F can be
compiled into a (1-)tight program, cf., Example 1.

As a result, in the following, we generalize our reductionR
of the previous section from ι = k to the case ι ≥ 2, resulting
inR′. Intuitively, this reductionR′ allows us to decrease the
treewidth k, but not necessarily to the maximum ofO( k

log(k) )

of normal programs. Instead, ι provides a precise handle on
the tightness, thereby decreasing treewidth to O( k

log(ι) ).

Adapted Reduction. We adapt the construction of reduc-
tion R and obtain R′. To this end, we take an instance F
of SAT, i.e., a Boolean formula, and an ordering-augmented
TD T = (T, χ, φ, ψ) of GF of width k. Then, we simulate
for each node of T , the up to 2k many assignments via (ι!)

k′
ι

many orderings, where ι is any fixed 2 ≤ ι ≤ k′. So we de-
crease the treewidth from k to k′ such that (ι!)

k′
ι ≥ 2k, where

the special case of the previous section corresponds to ι = k′.
Consequently, since there are still up to k′ many elements per
bag, but we only have ι many positions, we require k′

ι many

SCCs per bag. As a result, the orderings ord(t) for a node t
are not total. So, instead of one source and destination vertex
for ordering set Vt, we require up to k′

ι reachability atoms
of the form rsjVt

, rdjVt

for every 1 ≤ j ≤ k′

ι . This requires
minor adaptions in the definition of Et, Formulas (1), (2), (5),
as well as (8) and (10), as sketched in an extended version.
One can show a generalization of Observation 1, where ι < k.

Observation 2. Let 2 ≤ ι ≤ k. Then, (ι!)
k
ι is in 2Ω(k·log(ι)).

By Observation 2, (ι!)
k′
ι is in 2Ω(k′·log(ι)), so we have

that 2Ω(k′·log(ι)) is at least 2k and therefore k′ = O( k
log(ι) ).

As a result,R′ slightly reduces treewidth to O( k
log(ι) ). Con-

sequently, for the result as given in Proposition 1 it is un-
expected that it can be significantly improved (under ETH).
More precisely, we obtain the following lower bound result.
Theorem 5 (LB ι-Tightness). Let Π be a ι-tight logic pro-
gram, where the treewidth of GΠ is k such that the largest
SCC size of DΠ is in 2O(k·log(ι)). Then, under ETH, the con-
sistency of Π cannot be decided in 2o(k·log(ι)) · o(|at(Π)|).

5 Discussion and Conclusion
The complexity of ASP has already been studied in different
facets and flavors. Recently, it has been shown that under
the exponential time hypothesis (ETH), the evaluation of
normal logic programs is expected to be slightly harder for
the structural parameter treewidth, than deciding satisfiability
(SAT) of Boolean formulas. However, the hardness proof
relies on large cycles (SCCs), unbounded in the treewidth.
Further, compared to standard reductions, see Example 1,
utilizing the “hardness” of normal ASP remained unclear.

In this paper, we address both shortcomings. The idea is to
reduce from SAT to normal ASP, thereby actively decreasing
structural dependency in the form of treewidth. We design
such a reduction that reduces treewidth from k to k

log(k) . We
show that under ETH, this decrease cannot be significantly
improved. Even further, with the help of the reduction, the
existing hardness result for normal programs and treewidth
can be improved: The constructed cycles (SCCs) are not
required to be unbounded in the treewidth; indeed, hardness
is preserved in case of a single-exponential bound in the
treewidth. Then, we further improve this bound for the class
of ι-tight programs, which allows us to close the gap to the
known upper bound, which our results render ETH-tight.

Finally, we apply our reduction for establishing further
ETH-tight lower bounds on normal logic programs. We hope
that the reduction of this work enables further consequences
and insights on hardness for logic programs. In the light of
a known result (Atserias, Fichte, and Thurley 2011) on the
correspondence of treewidth and resolution width applied in
SAT solving, this might pave the way towards such insights
for ASP. Currently, we are working on the comparison of
different reductions from SAT to ASP and how they perform
in practice. Given the unsuccessful application of directed
measures for ASP (Bliem, Ordyniak, and Woltran 2016),
structural parameters between treewidth and directed variants
could lead to new insights.
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