
General Acyclicity and Cyclicity Notions for the Disjunctive Skolem Chase

Lukas Gerlach1, David Carral2

1 Knowledge-Based Systems Group, TU Dresden, Dresden, Germany
2 LIRMM, Inria, University of Montpellier, CNRS, Montpellier, France

lukas.gerlach@tu-dresden.de, david.carral@inria.fr

Abstract

The disjunctive skolem chase is a sound, complete, and po-
tentially non-terminating procedure for solving boolean con-
junctive query entailment over knowledge bases of disjunc-
tive existential rules. We develop novel acyclicity and cyclic-
ity notions for this procedure; that is, we develop suffi-
cient conditions to determine chase termination and non-
termination. Our empirical evaluation shows that our novel
notions are significantly more general than existing criteria.

1 Introduction
Solving query entailment over knowledge bases (KBs) of
disjunctive existential rules is a relevant decision problem,
which is readily defined as follows:

• Input: a set R of disjunctive existential rules, a set F of
facts, and a boolean conjunctive query (BCQ) γ.

• Output: yes iff γ is a logical consequence of the KB
⟨R,F⟩ under standard first-order semantics.1

One approach to solve BCQ entailment in practice is to
apply the disjunctive skolem chase (Bourhis et al. 2016),
which is a materialization procedure that aims to compute a
finite universal model set for an input KB. If fully computed,
this model set can then be used to solve query entailment: a
BCQ γ is a logical consequence of a KB K iff γ is satisfied
by every model in a universal model set of K iff γ is satisfied
by every model in the output of the chase on input K.

Because the chase is sound and complete for BCQ en-
tailment, and this problem is undecidable (Beeri and Vardi
1981); the chase does not terminate on all inputs. Even
worse, we cannot decide if this procedure terminates on a
given input (Gogacz and Marcinkowski 2014; Grahne and
Onet 2018). Hence, the best one can do is to study acyclic-
ity notions; that is, sufficient conditions that confirm chase
termination. In our context, acyclicity notions are sufficient
conditions that characterize terminating rule sets: A rule set
R is terminating if the chase terminates on every KB of the
form ⟨R,F⟩. To know if our acyclicity notions are as gen-
eral as they can be, we also study cyclicity notions; that is,

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Rules, facts, and BCQs are first-order logic formulas, which
we formally define in the following section.

sufficient conditions for non-termination. In this paper, we
focus on the skolem chase variant (Marnette 2009), which
makes use of skolem terms that are used to satisfy existen-
tial restrictions when computing a universal model set.

While acyclicity notions for rule sets without disjunctions
have been around for a while (Fagin et al. 2005; Marnette
2009; Krötzsch and Rudolph 2011; Cuenca Grau et al. 2013;
Baget et al. 2014; Karimi, Zhang, and You 2021), the first
acyclicity notions for disjunctive rule sets were proposed
fairly recently (Carral, Dragoste, and Krötzsch 2017). In
their work, Carral, Dragoste, and Krötzsch extended model-
faithful acyclicity (MFA)2 for the disjunctive setting and de-
veloped the first cyclicity notion for the (disjunctive) skolem
chase, named model-faithful cyclicity (MFC). To the best of
our knowledge, these are the only existing (a)cyclicity no-
tions for non-deterministic rule sets.

We have empirically verified that MFA and MFC are quite
effective at determining (non-)termination of rule sets with-
out disjunctions: Using both notions, we are able to estab-
lish (non-)termination of around 99% of the deterministic
rule sets in our evaluation; we present these results in an ex-
tended technical report (Gerlach and Carral 2023). However,
in the presence of disjunctions, we could only establish the
termination status of around 67% of the considered rule sets
using MFA and MFC; see Section 5.

Our main goal is thus clear: We aim to develop gen-
eral (a)cyclicity notions that can be used to determine chase
(non-)termination of most real-world rule sets with disjunc-
tions. More precisely, our contributions are as follows:
• In Sections 3 and 4, we present our novel (a)cyclicity no-

tions, respectively. Moreover, we study the complexity of
checking if a rule set is (a)cyclic and the complexity of
solving BCQ entailment over KBs with acyclic rule sets.

• In Section 5, we empirically show that MFA and MFC
are significantly less general than our novel conditions,
which allow us to establish (non-)termination of many of
the (non-deterministic) rule sets in our test suite.

• In Sections 6 and 7, we discuss related research and elab-
orate on possible follow-up work, respectively.

There is a technical report (Gerlach and Carral 2023) on-
line with full proofs and further empirical results.

2MFA was originally introduced in (Cuenca Grau et al. 2013) as
a very general skolem acyclicity notion for deterministic rule sets.

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

6372

2 Preliminaries
We define Cons, Vars, Funs, and Preds to be mutually dis-
joint, finite (albeit large enough) sets of constants, variables,
function symbols, and predicates, respectively, such that ev-
ery s ∈ Funs ∪ Preds has an arity ar(s) ≥ 1. For every
i ≥ 1, let Funsi = {f | ar(f) = i} and Predsi = {P |
ar(P) = i}. The set Terms of terms includes Cons ∪ Vars
and contains f(t1, . . . , tn) for every n ≥ 1, f ∈ Funsn,
and t1, . . . , tn ∈ Terms. A term t is functional if t /∈
Cons ∪ Vars. Given a first-order formula or a term υ, and a
set X ∈ {Cons, Vars, Funs(i), Terms, Preds(i) | i ≥ 1}; let
X(υ) be the set of all elements in X that occur in υ.

We write lists t1, . . . , tn of terms as t⃗, which we often
treat as sets. For a term t, let depth(t) = 1 if t is not func-
tional and depth(t) = 1 + max(depth(s1), . . . , depth(sn))
if t is of the form f(s1, . . . , sn). A term s is a subterm of
another term t if t = s, or t is of the form f(s⃗) and s is
a subterm of some term in s⃗. For a term t, let subterms(t)
be the set of all subterms of t. A term is cyclic if it has a
subterm of the form f(s⃗) such that f ∈ Funs(s⃗).

An atom is a first-order formula of the form P (⃗t) where P
is a |⃗t|-ary predicate and t⃗ is a term list. A fact is a variable-
free atom. For a first-order formula υ, we write υ[x⃗] to indi-
cate that x⃗ is the set of all free variables that occur in υ; that
is, those variables that are not explicitly quantified in υ.
Definition 1. A (disjunctive existential) rule is a constant-
and function-free first-order formula of the form

∀w⃗, x⃗.
(
β[w⃗, x⃗] →

∨n

i=1
∃y⃗i.ηi[x⃗i, y⃗i]

)
(1)

where n ≥ 1; w⃗, x⃗, y⃗1, . . . , y⃗n are pairwise disjoint lists of
variables;

⋃n
i=1 x⃗i = x⃗; x⃗1, . . . , x⃗n are non-empty; and β,

η1, . . . , ηn are non-empty conjunctions of atoms.
A rule ρ as in (1) is deterministic if n = 1, generating if it

features at least one existential variable, and datalog if it is
deterministic and not generating. We call x⃗ the frontier of ρ
and denote it as frontier(ρ). Moreover, let body(ρ) = β and
headi(ρ) = ηi for every 1 ≤ i ≤ n. Often, we omit univer-
sal quantifiers when writing rules and treat conjunctions of
atoms, such as body(ρ), as sets.

A (boolean conjunctive) query γ is a first-order formula
of the form ∃y⃗.β[y⃗] with β a non-empty atom conjunction. A
knowledge base (KB) K is a pair ⟨R, I⟩ with R a rule set and
I an instance; that is, a function-free fact set. We write K |=
γ to denote that (the first-order formula)

∧
ρ∈R ρ ∧

∧
φ∈I φ

entails γ under standard first-order semantics. In the follow-
ing, we provide a procedural definition of query entailment
via the chase algorithm; see Proposition 1. Without loss of
generality, we assume that (†) y /∈ Vars(R\ {ρ}) for every
rule set R, every rule ρ = β →

∨n
i=1 ∃y⃗i.ηi in R, and every

y ∈
⋃n

i=1 y⃗i; that is, existentially quantified variables do not
reoccur across different rules in the same rule set.

A (ground) substitution σ is a partial function that maps
variables to terms without occurrences of variables. We use
[x1/t1, . . . , xn/tn] to denote the substitution that maps the
variable xi to the term ti for every 1 ≤ i ≤ n. For a first-
order formula υ, let υσ be the formula that results from re-
placing every occurrence of every variable x in the domain
of σ in υ with σ(x).

Consider a rule ρ as in (1) in a rule set R. For every y ∈⋃n
i=1 y⃗i, let fy ∈ Funs be a fresh |x⃗|-ary function symbol,

which is unique for ρ within R due to (†). For every 1 ≤
i ≤ n, let sk(ηi) be the conjunction obtained by replacing
every occurrence of every variable y ∈ y⃗i in ηi by fy(x⃗). Let
sk(ρ) = β →

∨n
i=1 sk(ηi) and sk(R) = {sk(ρ) | ρ ∈ R}.

A trigger λ is a pair ⟨ρ, σ⟩ with ρ a rule as in (1) and σ a
substitution with domain w⃗ ∪ x⃗. The trigger λ is loaded for
a fact set F if βσ ⊆ F ; it is active for F if sk(ηi)σ ⊈ F
for all 1 ≤ i ≤ n. Let outi(λ) = sk(ηi)σ for 1 ≤ i ≤ n;
out(λ) = {outi(λ) | 1 ≤ i ≤ n}. A fact set F is closed
under a rule ρ if no trigger with ρ is loaded and active for F .

Consider a rule set R. An R-term is a term defined using
the function symbols that occur in sk(R), some constants,
and some variables. A substitution is an R-substitution if its
range is a set of R-terms. An R-trigger is a trigger with a
rule from R and an R-substitution.
Definition 2. A (skolem) chase tree of a KB ⟨R, I⟩ is a di-
rected tree T = ⟨V,E, fct, trg⟩ such that:
1. Let V be a set of vertices, E a set of edges, fct a labeling

function that maps the vertices in V to fact sets (fact la-
bels), and trg a labeling function that maps the vertices
in V to R-triggers (trigger labels) or ϵ.

2. For the root r of T , we have fct(r) = I and trg(r) = ϵ.
3. Consider some non-leaf vertex v ∈ V with children U =

{u | ⟨v, u⟩ ∈ E}. There is an R-trigger λ that is loaded
and active for fct(v), {fct(u) | u ∈ U} = {F ∪ fct(v) |
F ∈ out(λ)}, |U | = |out(λ)|, and trg(u) = λ for each
u ∈ U . Moreover, if ρ is not datalog, then fct(v) is closed
under every datalog rule in R (that is, datalog-first).

4. Every leaf fact label is closed under all rules in R. More-
over, for every R-trigger λ, there is some k ≥ 1 such that
λ is not loaded or not active for fct(v) for every v ∈ V
of depth at least k (that is, fairness).

Consider a chase tree T = ⟨V,E, fct, trg⟩ for a KB
⟨R, I⟩. A branch B of a chase tree T is a sequence
v1, v2, . . . ∈ V such that v1 is the root of T , ⟨vi, vi+1⟩ ∈ E
for every 1 ≤ i < |B|, and if B is finite then its last element
is a leaf in T . That is, a branch is a maximal path in T .

A KB terminates if it only admits finite chase trees. A rule
set R terminates if every KB of the form ⟨R, I⟩ terminates.
It is undecidable to determine if R terminates already for
deterministic rule sets (Gogacz and Marcinkowski 2014).

The result of a chase tree T is the set of all fact sets that
can be constructed by taking the union of all fact labels in a
branch of T . Hence, the result of a finite chase tree T is the
set of fact labels of its leaves. In the presence of disjunctions,
chase trees for the same KB may yield different results:
Example 1. Consider the KB ⟨{P (x, y) → ∃z.H(y) ∧
S(y, z), P (x, y) → H(y) ∨ ∃w.P (y, w)}, {P (a, b)}⟩. We
can produce a finite chase tree by prioritizing the applica-
tion of the first rule and an infinite one by delaying it. The
former results in: {{P (a, b), H(b), S(b, fz(b))}}

Finite chase results can be used to solve query entailment:
Proposition 1. Consider the result R of some (arbitrarily
chosen) chase tree of a K. Then, K entails a query γ = ∃y⃗.β
iff F |= γ for every F ∈ R iff for every F ∈ R there is a
substitution σ with βσ ⊆ F .

6373

3 Acyclicity Notions
In Section 3.1, we recall MFA (Cuenca Grau et al. 2013). In
Section 3.2, we present disjunctive model-faithful acyclity,
based on ideas from (Carral, Dragoste, and Krötzsch 2017).

3.1 Model-Faithful Acyclicity (MFA)
To determine if a deterministic rule set R is MFA we check
the fact set MFA(R), which contains all facts that may oc-
cur in a chase tree of a KB with R modulo replacement of
constants with ⋆; we formalize this intuition in Lemma 1.
Definition 3. The critical instance I⋆ is the set of all facts
with any predicate in (the finite set) Preds and the special
constant ⋆; that is, I⋆ = {P (⋆, . . . , ⋆) | P ∈ Preds}.

For a deterministic rule set R, let MFA(R) ⊇ I⋆ be the
minimal fact set that includes out1(λ) for every (determin-
istic) R-trigger λ that is loaded for MFA(R).

Definition 4. A constant mapping g is a partial function
from Cons to Terms. For a term t, let g(t) be the term that
results from replacing every occurrence of every c in the do-
main of g in t with g(c).

We can prove the following via induction on a chase tree:
Lemma 1. For a fact label F in a chase tree of a KB with a
deterministic rule set R, we have g⋆(F) ⊆ MFA(R) where
g⋆ is the constant mapping that maps every constant to ⋆.

Consider a chase tree T for a KB ⟨R, I⟩. By Lemma 1, the
depth of the terms that occur in T is bounded by the depth
of the terms in MFA(R) since depth(t) = depth(g⋆(t)) for
every term t. Since only a finite number of terms of bounded
depth can be defined with the constants that occur in I,
finiteness of MFA(R) implies finiteness of T . Therefore:
Lemma 2. If MFA(R) is finite for some deterministic rule
set R, then R terminates.

Consider a deterministic rule set R. Then, MFA(R) is fi-
nite iff ⟨R, I⋆⟩ terminates. Gogacz and Marcinkowski have
shown that we cannot decide the latter; hence, we cannot
decide if MFA(R) is finite either. However, we can compute
this set up to the occurrence of a cyclic term.
Definition 5. A deterministic rule set R is MFA if no cyclic
term occurs in MFA(R).

The occurrence of a cyclic term indicates that a rule ρ is
applied in a chase tree to produce a descendant of a term in-
troduced to satisfy ρ. In many real-world cases, this implies
that infinitely many applications of ρ may follow.

The following theorem is a corollary of Lemma 2 and the
fact that, for a deterministic rule set R, the fact set MFA(R)
is finite if it does not feature cyclic terms:
Theorem 3. Deterministic MFA rule sets terminate.

MFA was originally defined for rule sets without dis-
junctions (Cuenca Grau et al. 2013). Carral, Dragoste, and
Krötzsch came up with a straightforward way to extend this
acyclicity notion for the disjunctive setting; see Theorem 4.
Definition 6. For a rule ρ as in (1) and a rule set R, let
ρ∧ = β → ∃y⃗1, . . . , y⃗n.

∧n
i=1 ηi and R∧ = {ρ∧ | ρ ∈ R}.

Theorem 4. A rule set R terminates if R∧ terminates.

Applying Theorems 3 and 4, we can extend MFA (and
any other deterministic skolem acyclicity notion) so it can
be applied rule sets with disjunctions:
Definition 7. A rule set R is MFA if R∧ is MFA.
Corollary 5. MFA rule sets terminate.

3.2 Disjunctive MFA (DMFA)
To determine if a (possibly non-deterministic) rule set R is
DMFA, we look for cyclic terms in the fact set DMFA(R),
which has the same property as MFA(R∧). Namely, this
fact set contains all facts that may occur in a chase tree
of a KB with R modulo replacement of all constants with
⋆; see Lemma 9. However, DMFA(R) is a tighter over-
approximation than MFA(R∧); in fact, later on we show that
DMFA(R) is a subset of MFA(R∧) for every rule set R; see
the proof of Theorem 11.

In order to minimize DMFA(R), we adjust the notion of
blockedness,3 which we use to characterize harmless trig-
gers that are never applied in any chase tree:
Example 2. Consider R = {(2–5)}, which is a slightly
simplified subset of rule set 00007.owl in the Oxford On-
tology Repository (see Section 5):

evidence(x) → ∃w.Confidence(x,w) (2)
Confidence(x, y) → confidence(y) (3)
Confidence(x, y) → ∃z.XRef(y, z) (4)

XRef(x, y) → evidence(x) ∨ confidence(x) (5)

Consider a chase tree T = ⟨V,E, fct, trg⟩ for a KB of the
form ⟨R, I⟩ and suppose for a contradiction that trg(v) =
⟨(5), [x/fw(t), y/fz(fw(t))]⟩ for some v ∈ V and a term t.
Then, Confidence(t, fw(t)) ∈ fct(p) with p the parent of v
since fw(t) may only be introduced in T via the application
of (2). Moreover, confidence(fw(t)) ∈ fct(p) since fct(p)
is closed under (3); see Item 3 in Definition 2. But then, the
trigger trg(v) is not active for fct(p)! In fact, we can use
blockedness to show that triggers such as trg(v) may never
occur as a trigger labels in a chase tree of a KB with R.

To define blockedness, we introduce the fact set U(R, λ)
for a given rule set R and a trigger λ. Intuitively, this fact set
can be “homomorphically embedded” into the fact label of
a vertex v in a chase tree T of a KB with R if λ is applied to
v in T ; see Lemma 6.
Definition 8. Let R be a rule set and t an R-term.
• If t is not functional, then U(R, t) = ∅.
• Otherwise, t is of the form fy(s⃗) and there is exactly one

rule ρ = β[w⃗, x⃗] →
∨n

i=1 ∃y⃗i.ηi[x⃗i, y⃗i] ∈ R and exactly
one 1 ≤ ℓ ≤ n with y ∈ y⃗ℓ. Then, U(R, t) = βσ ∪
outℓ(⟨ρ, σ⟩) ∪

⋃
s∈s⃗ U(R, s) where σ is a substitution

with x⃗σ = s⃗ and w⃗σ = c⃗ for fresh constants c⃗.
Consider an R-trigger λ = ⟨ρ, σ⟩. Then, let U(R, λ) be

the minimal fact set that includes body(ρ)σ and U(R, t) for
every t in the range of σ, and that is closed under every
datalog rule in R if ρ is not datalog.

3(Carral, Dragoste, and Krötzsch 2017) have introduced a very
similar notion for the restricted chase.

6374

An R-trigger λ is blocked for a rule set R if its rule is not
datalog and λ is not active for U(R, λ).
Lemma 6. Consider a chase tree T = ⟨V,E, fct, trg⟩ of
a KB ⟨R, I⟩. Then, for every v ∈ V , there is a constant
mapping g that is the identity on Cons(fct(v)) such that

A. g(U(R, t)) ⊆ fct(v) for every t ∈ Terms(fct(v)) and
B. g(U(R, trg(u))) ⊆ fct(v) for every ⟨v, u⟩ ∈ E.

Consider some trigger λ (with a non-datalog rule) that is
blocked for R and suppose for a contradiction that λ is the
trigger label of a vertex u in a chase tree T of a KB with R.
Then, λ is not active for the fact label of the parent v of u in
T by Lemma 6, which contradicts Definition 2. Therefore:
Lemma 7. If a trigger λ is blocked for R, then λ does not
occur as a trigger label in any chase tree of a KB with R.

Relying on blockedness, we can safely ignore many facts
when we define the over-approximation DMFA(R):
Definition 9. For a rule set R, let DMFA(R) ⊇ I⋆ be the
fact set that includes all sets in out(⟨ρ, σ⟩) for every R-
trigger ⟨ρ, σ⟩ such that (i) ⟨ρ, σ⟩ is loaded for DMFA(R)
and (ii) ⟨ρ, σr⟩ is not blocked for R.

In the above, let σr be a substitution such that, for every
x ∈ domain(σ), the term σr(x) is obtained by replacing ev-
ery occurrence of a constant in σ(x) with a fresh constant.4

We need σr to generalize over all possible KBs with R.
All “less general” triggers will also be blocked:
Lemma 8. For a trigger ⟨ρ, σ⟩, a rule set R, and a constant
mapping g; if ⟨ρ, σr⟩ is blocked for R, then so is ⟨ρ, g ◦ σr⟩.

Armed with Lemmas 7 and 8, we can readily show the fol-
lowing result via induction on the structure of a chase tree:
Lemma 9. For a fact label F in a chase tree of a KB ⟨R, I⟩,
we have that g⋆(F) ⊆ DMFA(R) where g⋆ is the constant
mapping that maps every constant to ⋆.

As for MFA, we simply compute DMFA(R) up to the oc-
currence of a cyclic term to check if a rule set R is DMFA:
Definition 10. A rule set R is DMFA if no cyclic term oc-
curs in DMFA(R).

Theorem 10. DMFA rule sets terminate.

A rule set R is DMFA if it is MFA since DMFA(R) is a
subset of MFA(R) by Definitions 3 and 9. Furthermore, the
rule set in Example 2 is DMFA but not MFA. Therefore:
Theorem 11. If a rule set R is MFA, then it is DMFA. More-
over, the converse of this implication does not hold.

The number of acyclic terms that one can define with the
functions in Funs(sk(R)) and ⋆ is double-exponential in R;
hence, so is |DMFA(R)|. Moreover, for an instance I, we
have that |Terms(DMFA(R))| · |Cons(I)| is an upper bound
for the number of terms in any chase tree of ⟨R, I⟩. Once we
realise these claims, we can readily show that:
Theorem 12. DMFA-membership is 2EXPTIME-complete.

Theorem 13. Deciding query entailment for a KB with an
DMFA rule set is coN2EXPTIME-complete.

4For example, σr = [x/f(b, c), y/d] if σ = [x/f(a, a), y/a].

4 Cyclicity Notions
Cyclicity notions are sufficient conditions that characterize
non-terminating rule sets. In fact, the conditions we consider
in this section imply a stronger form of non-termination:

Definition 11. A rule set R never terminates if there is a KB
⟨R, I⟩ that does not admit any finite chase tree.

In Section 4.1, we recall MFC (Carral, Dragoste, and
Krötzsch 2017). In Section 4.2, we present disjunctive
model-faithful cyclicity (DMFC), which is based on ideas
from the same authors.

4.1 Model Faithful Cyclicity (MFC)
Intuitively speaking, the idea behind MFC (Carral, Dragoste,
and Krötzsch 2017) is to check if a generating rule is reap-
plied when starting on a minimal instance that mimics a fact
label where the rule has just been applied. If the rule is in-
deed reapplied and yields a cyclic term, then it can be ap-
plied infinitely many times; see Theorem 14.

Definition 12. For a rule ρ as in (1) and some 1 ≤ k ≤
n, let Iρ,k = body(ρ)σuc ∪ outk(⟨ρ, σuc⟩) where σuc is a
substitution that maps every variable x to a fresh constant
cx. If ρ is deterministic, we define Iρ = Iρ,1.

Given a rule set R and a deterministic rule ρ ∈ R, we first
define the fact set MFC(R, ρ), which consists of facts that
appear on all branches of all chase trees of ⟨R, body(ρ)σuc⟩.
Note that we use body(ρ)σuc instead Iρ in the previous KB
because the latter may feature function symbols and hence,
it may not be an instance.

Definition 13. For a rule set R and a deterministic rule ρ ∈
R, let MFC(R, ρ) ⊇ Iρ be the minimal fact set that includes
out1(λ) for every R-trigger λ such that (i) λ is loaded for
MFC(R, ρ), (ii) the rule in λ is deterministic, and (iii) the
substitution in λ does not feature cyclic terms in its range.

Condition (iii) ensures that MFC(R, ρ) is always finite.

Definition 14. A rule set R is MFC if a ρ-cyclic term occurs
in MFC(R, ρ) for a deterministic rule ρ ∈ R. That is, a term
of the form f(s⃗) with f ∈ Funs(sk(ρ)) and f ∈ Funs(s⃗).

If R is MFC, then ⟨R, body(ρ)σuc⟩ does not terminate:

Theorem 14. MFC rule sets are never terminating.

Sketch. If a rule set R is MFC, then MFC(R, ρ) features
a ρ-cyclic term t for a deterministic rule ρ ∈ R. Hence,
there is a list of R-triggers applied during the construction
of MFC(R, ρ) that leads to t. More precisely, there is a list
λ1, . . . , λn such that, for every 1 ≤ i ≤ n: (i) λi = ⟨ρi, σi⟩,
(ii) out1(λi) ⊆ MFC(R, ρ), (iii) ρi is deterministic, (iv) λi
is loaded for Iρ ∪

⋃i−1
j=1 out1(λj), (v) out1(λn) features a ρ-

cyclic term, and (vi)
⋃n−1

j=1 out1(λj) does not. This list can
be extended into an infinite sequence: For every 1 ≤ i ≤ n

and j ≥ 1, let λji be the R-trigger ⟨ρi, g◦j−1 ◦ σi⟩ where g
is the constant mapping with σn = g ◦ σuc.5

Consider a chase tree T = ⟨V,E, fct, trg⟩ of the KB K =
⟨R, body(ρ)σuc⟩. Then, for every branch v1, v2, . . . ∈ V of

5Note that g◦0 = idTerms, g◦1 = g, g◦2 = g ◦ g, and so on.

6375

T , we can show via structural induction that the following
holds: For every 1 ≤ i ≤ n and j ≥ 1, the trigger λji is
loaded for fct(vk) for some k ≥ 1 and out1(λ

j
i) ⊆ fct(vℓ)

for some ℓ ≥ k. Hence, every branch of T is infinite by (v)
and (vi) and hence, K does not admit finite chase trees.

The induction step at the end of the previous sketch is easy
to show once one realizes that:
Lemma 15. Consider a vertex v in a branch B of a chase
tree T = ⟨V,E, fct, trg⟩ of a KB ⟨R, I⟩, and an R-trigger
λ. If λ features a deterministic rule and is loaded for fct(v),
then fct(v) ∪ out1(λ) ⊆ fct(u) for some u ∈ B.

Intuitively, this means that, once a deterministic trigger is
loaded for a vertex v in a chase tree, every branch with v
includes the output of this trigger. Note that such a result
does not hold for non-deterministic triggers; see Example 2.

4.2 Disjunctive Model-Faithful Cyclicity (DMFC)
We ignore non-deterministic rules when deciding MFC
membership (see Definition 13). Hence, this notion fails to
characterise non-terminating rule sets such as:
Example 3. Consider the rule set R = {R(x, y) → A(y)∨
B(y), A(x) → ∃y.R(x, y)}, which never terminates since
every chase tree for ⟨R, {A(c)}⟩ features (exactly) one infi-
nite branch. However, R is not MFC; to establish never ter-
mination we need to take the disjunctive rule into account.

We consider head-choices to deal with disjunctive rules:
Definition 15. A head-choice is a function hc that maps ev-
ery rule β →

∨n
i=1 ∃y⃗i.ηi to some 1 ≤ j ≤ n. For a trigger

λ = ⟨ρ, σ⟩, let outhc(λ) = outhc(ρ)(λ).
Later on, we show that some rule sets are not terminating

by focusing on the branch in a tree induced by a head-choice:
Definition 16. For a chase tree T = ⟨V,E, fct, trg⟩ and
a head-choice hc, let branch(T, hc) = v1, v2, . . . be the
branch of T such that fct(vi+1) = outhc(trg(vi+1))∪fct(vi)
for every 1 ≤ i < |branch(T, hc)|.

To use disjunctive rules to witness non-termination, we
identify triggers that need to be applied once they are loaded.
To do so, we define unblockable triggers6 λ = ⟨ρ, σ⟩ for a
rule set R and a head-choice hc, which satisfy the following:

I. Consider a chase tree T of a KB with R. If λ becomes
loaded in branch(T, hc), then outhc(λ) is eventually in-
cluded in branch(T, hc); that is, Lemma 16.

II. Unblockability propagates across an infinite family of
triggers. Namely, if a constant mapping g is reversible
(see Definition 18), then the trigger ⟨ρ, g ◦ σ⟩ is also
unblockable; that is Lemma 17.

Definition 17. Let R be a rule set and t an R-term.
• If t is not functional, then H(R, t) = ∅.
• Otherwise, t is of the form fy(s⃗) and there is exactly one

rule ρ = β[w⃗, x⃗] →
∨n

i=1 ∃y⃗i.ηi[x⃗i, y⃗i] ∈ R and ex-
actly one 1 ≤ ℓ ≤ n with y ∈ y⃗ℓ. Then, H(R, t) =
outℓ(⟨ρ, σ⟩) ∪

⋃
s∈s⃗ H(R, s) where σ is a substitution

with x⃗σ = s⃗.
6Again, (Carral, Dragoste, and Krötzsch 2017) introduced a

very similar notion for the restricted chase.

Consider an R-trigger λ = ⟨ρ, σ⟩. Then, let H(R, λ)
be the minimal fact set that includes H(R, t) for every t
in the range of σ restricted to variables in frontier(ρ). Ad-
ditionally, let the term-skeleton of λ be skeletonR(λ) =
Terms(H(R, λ)) ∪ Cons({σ(x) | x ∈ frontier(ρ)}).

For a rule ρ = β →
∨n

i=1 ∃y⃗i.ηi, let star(ρ) = β →∨n
i=1 η

′
i be the (non-generating) rule where η′i is the con-

junction that results from replacing every occurrence of ev-
ery y ∈ y⃗i in ηi with ⋆.

For a rule set R, a head-choice hc, and an R-trigger λ,
let O(R, hc, λ) be the minimal fact set that includes:

• The set H(R, λ).
• The set of all facts that can be defined using any predicate

and constants in Cons(skeletonR(λ)) ∪ {⋆}.
• The set outhc(⟨star(ρ), σ⟩) for every R-trigger ⟨ρ, σ⟩

loaded for O(R, hc, λ) with outhc(λ) ̸= outhc(⟨ρ, σ⟩).
The trigger λ is unblockable for R and hc if it features a

deterministic rule or if it is active for O(R, hc, λ).
Lemma 16. Consider a chase tree T = ⟨V,E, fct, trg⟩ of a
KB ⟨R, I⟩, a head-choice hc, some v ∈ branch(T, hc), and
an R-trigger λ. If λ is loaded for fct(v), and it is unblock-
able for R and hc; then fct(v)∪outhc(λ) ⊆ fct(u) for some
u ∈ branch(T, hc).

Sketch. For a term t, let hλ(t) = t if t ∈ skeletonR(λ)
and hλ(t) = ⋆ otherwise. We have that, if outhc(λ) ⊈
fct(w) for some w ∈ branch(T, hc), then hλ(fct(w)) ⊆
O(R, hc, λ). That is, O(R, hc, λ) “over-approximates” fact
labels in branch(T, hc) that do not include outhc(λ).

Assume that the premise of the lemma holds. If ρ is de-
terministic, the claim holds by Lemma 15. Otherwise, λ is
active for the “over-approximation” O(R, hc, λ). Hence, λ
remains active for the fact labels in branch(T, hc) up until
its corresponding output is included in the branch.

Definition 18. Consider a set T of terms that includes
subterms(t) for every t ∈ T . A constant mapping g is re-
versible for T if (i) the domain of g includes Cons(T), (ii)
t ̸= s implies g(t) ̸= g(s) for every t, s ∈ T , and (iii) for
every c ∈ Cons(T) and every s ∈ subterms(g(c)), there is
no functional term u ∈ T with g(u) = s.

Lemma 17. Consider a rule set R, a head-choice hc, an
R-trigger ⟨ρ, σ⟩, and a constant mapping g that is re-
versible for skeletonR(⟨ρ, σ⟩). If ⟨ρ, g ◦ σ⟩ is an R-trigger
and ⟨ρ, σ⟩ is unblockable for R and hc, then so is ⟨ρ, g ◦ σ⟩.

Sketch. Assume that the premise of the lemma holds.
If ρ is deterministic, the claim holds by Definition 17.
Otherwise, ⟨ρ, σ⟩ is active for O(R, hc, ⟨ρ, σ⟩). Hence,
⟨ρ, g ◦ σ⟩ is also active for O(R, hc, ⟨ρ, g ◦ σ⟩) since
h(O(R, hc, ⟨ρ, g ◦ σ⟩)) ⊆ O(R, hc, ⟨ρ, σ⟩) with h the func-
tion defined as follows: For a term t, let h(t) = s if there is
a term s that occurs in skeletonR(⟨ρ, σ⟩) with g(s) = t,
and h(t) = ⋆ otherwise. Note that h is well-defined because
g is reversible (see (ii) in Definition 18), and the inclusion
holds because O(R, hc, ⟨ρ, σ⟩) contains all facts that can be
defined with constants in skeletonR(⟨ρ, σ⟩) and ⋆.

We are ready to define DMFC and prove it sound:

6376

Definition 19. Consider a rule set R, a head-choice hc,
and a rule ρ ∈ R. Then, let DMFC(R, hc, ρ) ⊇ Iρ,hc(ρ)
be the fact set that includes outhc(λ) for every R-trigger
λ = ⟨ψ, σ⟩ such that (i) λ is loaded for DMFC(R, hc, ρ),
(ii) λ is unblockable for R and hc, (iii) there are no cyclic
terms in the range of σ, (iv) there is a frontier variable
x ∈ frontier(ψ) with σ(x) being functional if ψ is non-
datalog, and (v) σ is injective if ψ = ρ.
Definition 20. A rule set R is DMFC if DMFC(R, hc, ρ)
features a ρ-cyclic term for a ρ ∈ R and a head-choice hc.
Theorem 18. DMFC rule sets are never terminating.

Sketch. If a rule set R is DMFC, then DMFC(R, hc, ρ) fea-
tures a ρ-cyclic term t for some head-choice hc and some
ρ ∈ R. Then, there is a list λ1, . . . , λn of unblockable R-
triggers applied during the construction of DMFC(R, hc, ρ)
that yields t. More precisely; for every 1 ≤ i ≤ n; let
λi = ⟨ρi, σi⟩; outhc(λi) ⊆ DMFC(R, hc, ρ); the trigger
λi is unblockable for R and hc, and is loaded for Iρ ∪⋃i−1

j=1 outhc(λj); the function σn is injective; and outhc(λn)

features a ρ-cyclic term and
⋃n−1

j=1 outhc(λj) does not. As in
Theorem 14, we extend this list into an infinite sequence: For
every 1 ≤ i ≤ n and every j ≥ 1, let λji = ⟨ρi, g◦j−1 ◦ σi⟩
where g is the constant mapping with σn = g ◦ σuc.

Let F = Iρ,hc(ρ) ∪
⋃

j≥1

⋃n
i=1 outhc(λ

j
i) and as-

sume (for now) that g is reversible for Terms(F). We
show that branch(T, hc) is infinite for every tree T of
⟨R, body(ρ)σuc⟩. First, Iρ,hc(ρ) occurs in some fact label
in branch(T, hc); otherwise, λn would not be unblockable.
Then, by induction, for every 1 ≤ i ≤ n and j ≥ 1, the
trigger λji is loaded for some fact label in branch(T, hc) and
hence, some fact label in the branch includes outhc(λ

j
i) by

Lemma 16. We can apply this lemma here because g is re-
versible and hence, λji is unblockable by Lemma 17.

It remains to show that g is reversible for Terms(F) to
complete our proof. First, we show the claims below:

a. There are no ρ-cyclic terms in
⋃n−1

j=1 outhc(λj). There-
fore, for every constant c in F , the term g(c) does not
feature nested function symbols from sk(ρ).7

b. By (iv) in Definition 19: For every functional term t oc-
curring in DMFC(R, hc, ρ), there is some subterm s of t
that is also functional and that occurs in Iρ,hc(ρ); that is, s
is of the form f(c⃗) with f ∈ Funs(sk(ρ)) and c⃗ a list con-
taining every constant in σuc(frontier(ρ)). We can extend
this claim to all functional terms in F via induction.

c. There is some constant c ∈ σuc(frontier(ρ)) such that
g(c) features a function symbol from sk(ρ). Otherwise
outhc(λn) would not feature a ρ-cyclic term.

d. By (b) and (c): For every functional term t in F , the term
g(t) features nested function symbols from sk(ρ).

To verify that g is reversible for the terms in F we sep-
arately prove (i), (ii), and (iii) from Definition 18. The first
one holds since the domain of g is Cons(Iρ,hc(ρ)).

7The term fy(fz(c)) features nested function symbols from
sk(A(x) → ∃y, z.R(x, y, z)) while fw(fy(c), fz(d)) does not.

To show (ii), we check that g(t) ̸= g(s) for every t, s ∈
Terms(F) with t ̸= s via structural induction on t. Regard-
ing the base case, we consider two cases: If t and s are con-
stants, then g(t) ̸= g(s) since (σn and) g are injections. If
t is a constant and s is functional, then g(s) features nested
function symbols from sk(ρ) by (d) and g(t) does not by
(a). Regarding the induction step, we again consider two
cases: If t and s are functional terms of the form f (⃗t) and
h(s⃗), respectively, with f ̸= h; then g(t) ̸= g(s) since
g(t) = f(g(⃗t)) and g(s) = h(g(s⃗)). If t and s are func-
tional terms of the form f(t1, . . . , tn) and f(s1, . . . , sn), re-
spectively; then ti ̸= si for some 1 ≤ i ≤ n since t ̸= s,
g(ti) ̸= g(si) by induction hypothesis, and g(t) ̸= g(s).

Finally, we show that (iii) holds by contradiction. Con-
sider a functional term t ∈ Terms(F) with g(c) = t for
some constant c and assume that there is a functional term u
and a subterm s of t such that g(u) = s. By (a), the term t
does not feature nested function symbols from sk(ρ); hence,
s does not feature them either. However, s features nested
functional symbols from sk(ρ) by (d)!

Because of (iv) and (v) in Definition 19, DMFC is not
more general than MFC. However, in our experiments, we
did not find a single rule set that is MFC but not DMFC.

Regarding complexity, checking MFC and DMFC is dom-
inated by the number of acyclic terms, which is double-
exponential in the size of the given rule set (Cuenca Grau
et al. 2013; Carral, Dragoste, and Krötzsch 2017).

Theorem 19. (D)MFC-membership is 2EXPTIME-comp.

5 Evaluation
We present experiments to show the generality of our no-
tions in practice. We describe our implementation, the rule
sets we use, and the results of our experiments. The tools,
rule sets, and results of the evaluation are available online.8
Further information on the concrete steps to reproduce the
evaluation steps is also provided there.

To avoid an exponential number of checks, we consider a
simplified version of DMFC in our implementation:

Definition 21. For a rule ρ = β →
∨n

j=1 ∃z⃗j .ηj and some
i ≥ 1, let hci(ρ) = n if i > n and hci(ρ) = i if i ≤ n. A
rule set R is DMFCs if, for some ρ ∈ R and some i ≥ 1,
the fact set DMFC(R, ρ, hci) features a ρ-cyclic term.

By definition, DMFCs implies DMFC so it ensures never
termination. We consider an improvement of DMFA in our
implementation, which guarantees termination by Lemma 9:

Definition 22. A rule set R is DMFAk for some k ≥ 1 if
DMFA (R) does not feature any k-cyclic term; that is, a term
with k + 1 nested occurrences of the same function symbol.

We obtain the rule sets in the evaluation from OWL on-
tologies via normalization and translation into rules; see
Section 6 in (Cuenca Grau et al. 2013). We drop OWL ax-
ioms with “at-most restrictions” and “nominals” because

8https://doi.org/10.5281/zenodo.7375461 Gerlach and Carral

6377

#∃ # tot. # fin. MFA DMFA DMFA2 MFC DMFCs

O
X

FD

1–19 37 36 21 28 28 4 8
20–99 18 17 3 3 3 10 14
100+ 82 26 4 6 6 14 19
1+ 137 79 28 (35%) 37 (46%) 37 (46%) 28 (35%) 41 (51%)

O
R

E
15

1–19 103 98 51 66 66 18 31
20–99 119 105 32 33 35 54 69

100–999 278 219 5 6 119 89 100
1–999 500 422 88 (20%) 105 (24%) 220 (52%) 161 (38%) 200 (47%)

M
O

W
L 1–19 1361 1283 676 725 732 173 515

20–99 894 740 104 114 121 301 610
100–299 448 254 25 25 111 103 143
1–299 2703 2277 805 (35%) 864 (37%) 964 (42%) 577 (25%) 1268 (55%)

Table 1: Skolem Chase Termination: Non-Deterministic Rule Sets

their translation requires the use of equality; one can in-
corporate this feature via axiomatisation (Carral and Ur-
bani 2020). The ontologies come from the Oxford Ontol-
ogy Repository (OXFD),9 the dataset of the OWL Reasoner
Evaluation 2015 (ORE15),10 and the Manchester OWL
Corpus (MOWL).11 Here, we only consider rule sets with
at least one disjunctive and one generating rule. Determinis-
tic rule sets are covered largely by MFA and MFC already;
we include results for these rule sets in our technical report
(Gerlach and Carral 2023).

We count the number of rule sets that are MFA, DMFA(2),
MFC, and DMFCs and present our results in Table 1. We set
a timeout of 30 minutes for each check and only consider
rule sets for which all checks finished; we indicate the num-
ber of attempted vs finished rule sets by # tot. and # fin.,
respectively. We group results by the number of generating
rules, indicated by #∃. For instance, in the second row in
Table 1 we indicate: There are 18 rule sets in the OXFD
corpus with at least 20 but at most 99 generating rules; all
checks finished for 17 of these; 3 of these are MFA; etc.

If we use MFA and MFC, the percentage of finished rule
sets that are fully classified (i.e., sets that are MFA or MFC)
for OXFD, ORE15, and MOWL are 70%, 58%, and 60%,
respectively. Our improved notions are significantly more
general; if we apply them, we can now classify 97%, 99%,
and 97% of the finished rule sets in these repositories. More-
over, the use of DMFA2 allows us to detect that many (hith-
erto unclassified) rule sets terminate for the skolem chase!

6 Related Work
Leclère et al. and Calautti, Gottlob, and Pieris showed that
checking chase termination for linear and guarded determin-
istic rule sets, respectively, is decidable.
Definition 23. A rule ρ is linear if it features a single atom
in its body; it is guarded if it features an atom in its body that
contains all of the universally quantified variables in ρ.

9https://www.cs.ox.ac.uk/isg/ontologies/
10https://doi.org/10.5281/zenodo.18578 Parsia et al.
11https://doi.org/10.5281/zenodo.16708 Matentzoglu et al.

Note that all linear rules are guarded, and that over half
of the rule sets in Table 1 are not guarded since they con-
tain rules of the form

∧n
i=1Ri(xi−1, xi) → R(x0, xn) with

n ≥ 2. In the extended technical report (Gerlach and Car-
ral 2023), we present separate results for non-guarded rules,
which are quite similar percentage-wise to those in Table 1.

Theorem 4 allows us to extend any deterministic skolem
acyclicity notions for non-deterministic rule sets. Instead of
MFA, we could consider the following:
Definition 24. For a computable function δ over the nat-
urals, a rule set R is δ-bounded if the depth of terms in
MFA(R) is bounded by δ(|R|).

For a computable function δ over the naturals, we can de-
cide δ-bounded membership and this property implies termi-
nation (Zhang, Zhang, and You 2015). Alternatively, instead
of considering δ-boundedness, one can simply increase the
number k in Definition 22 to achieve a similar effect. In fact,
we ran some tests and only found 2 rule sets that are DMFA5

but not DMFA2. Hence, we have decided to not publish re-
sults for k > 2 and believe that using δ-boundedness would
not result in a big increase in performance in practice.

7 Conclusions and Future Work
We present novel (a)cyclicity notions that allow us to estab-
lish the termination status of most rule sets in our test suite.

As for immediate future work, we plan to extend our no-
tions to the restricted chase and investigate why some rule
sets are not classified as (non)-terminating. Potentially, we
fail to capture these because they are “sometimes” non-
terminating; that is, they may occur in KBs that admit fi-
nite and infinite chase trees. We would also like to develop
a normalisation procedure that preserves both query entail-
ment and chase termination.

As a long term goal, we would like to adapt our notions so
they can be applied in other areas of knowledge representa-
tion and reasoning. For instance, we believe that we can use
our ideas to (i) show if an ASP program with function sym-
bols does or does not admit a finite solution or (ii) determine
if DPLL(T) algorithms used in automated theorem proving
will terminate or not for many real-world inputs.

6378

Acknowledgments
Lukas is funded by Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) in project 389792660
(TRR 248, Center for Perspicuous Systems), by the Bun-
desministerium für Bildung und Forschung (BMBF, Federal
Ministry of Education and Research) under European ITEA
project 01IS21084 (InnoSale, Innovating Sales and Planning
of Complex Industrial Products Exploiting Artificial Intelli-
gence), by BMBF and DAAD (German Academic Exchange
Service) in project 57616814 (SECAI, School of Embedded
and Composite AI), and by the Center for Advancing Elec-
tronics Dresden (cfaed).

David is funded by the ANR project CQFD (ANR-18-
CE23-0003).

References
Baget, J.; Garreau, F.; Mugnier, M.; and Rocher, S. 2014.
Extending Acyclicity Notions for Existential Rules. In
Schaub, T.; Friedrich, G.; and O’Sullivan, B., eds., ECAI
2014 - 21st European Conference on Artificial Intelligence,
2014, Czech Republic - Including Prestigious Applications
of Intelligent Systems (PAIS 2014), volume 263 of Frontiers
in Artificial Intelligence and Applications, 39–44. IOS Press.

Beeri, C.; and Vardi, M. Y. 1981. The Implication Problem
for Data Dependencies. In Even, S.; and Kariv, O., eds.,
Automata, Languages and Programming, 8th Colloquium,
Israel, 1981, Proceedings, volume 115 of Lecture Notes in
Computer Science, 73–85. Springer.

Bourhis, P.; Manna, M.; Morak, M.; and Pieris, A. 2016.
Guarded-Based Disjunctive Tuple-Generating Dependen-
cies. ACM Trans. Database Syst., 41(4): 27:1–27:45.

Calautti, M.; Gottlob, G.; and Pieris, A. 2015. Chase Termi-
nation for Guarded Existential Rules. In Milo, T.; and Cal-
vanese, D., eds., Proceedings of the 34th ACM Symposium
on Principles of Database Systems, PODS 2015, Australia,
2015, 91–103. ACM. ISBN 978-1-4503-2757-2.

Carral, D.; Dragoste, I.; and Krötzsch, M. 2017. Restricted
Chase (Non)Termination for Existential Rules with Disjunc-
tions. In Sierra, C., ed., Proceedings of the 26th Inter-
national Joint Conference on Artificial Intelligence, IJCAI
2017, Australia, 2017, 922–928. ijcai.org.

Carral, D.; and Urbani, J. 2020. Checking Chase Termina-
tion over Ontologies of Existential Rules with Equality. In
The 34th AAAI Conference on Artificial Intelligence, AAAI
2020, The Thirty-Second Innovative Applications of Artifi-
cial Intelligence Conference, IAAI 2020, The Tenth AAAI
Symposium on Educational Advances in Artificial Intelli-
gence, EAAI 2020, USA, 2020, 2758–2765. AAAI Press.

Cuenca Grau, B.; Horrocks, I.; Krötzsch, M.; Kupke, C.;
Magka, D.; Motik, B.; and Wang, Z. 2013. Acyclicity No-
tions for Existential Rules and Their Application to Query
Answering in Ontologies. J. Artif. Intell. Res., 47: 741–808.

Fagin, R.; Kolaitis, P. G.; Miller, R. J.; and Popa, L. 2005.
Data exchange: semantics and query answering. Theor.
Comput. Sci., 336(1): 89–124.

Gerlach, L.; and Carral, D. 2022. General Acyclicity and
Cyclicity Notions for the Disjunctive Skolem Chase - Eval-
uation Material. https://doi.org/10.5281/zenodo.7375461.
Accessed: 2022-12-01.
Gerlach, L.; and Carral, D. 2023. General Acyclicity
and Cyclicity Notions for the Disjunctive Skolem Chase
(Extended Technical Report). https://iccl.inf.tu-dresden.de/
web/Inproceedings3348. Accessed: 2023-03-01.
Gogacz, T.; and Marcinkowski, J. 2014. All-Instances
Termination of Chase is Undecidable. In Esparza, J.;
Fraigniaud, P.; Husfeldt, T.; and Koutsoupias, E., eds., Au-
tomata, Languages, and Programming - 41st Int. Collo-
quium, ICALP 2014, Denmark, 2014, Proc., Part II, vol-
ume 8573 of Lecture Notes in Computer Science, 293–304.
Springer.
Grahne, G.; and Onet, A. 2018. Anatomy of the Chase. Fun-
dam. Informaticae, 157(3): 221–270.
Karimi, A.; Zhang, H.; and You, J. 2021. Restricted Chase
Termination for Existential Rules: A Hierarchical Approach
and Experimentation. Th. Pract. Log. Program., 21(1): 4–
50.
Krötzsch, M.; and Rudolph, S. 2011. Extending Decidable
Existential Rules by Joining Acyclicity and Guardedness. In
Walsh, T., ed., IJCAI 2011, Proceedings of the 22nd Inter-
national Joint Conference on Artificial Intelligence, Spain,
2011, 963–968. IJCAI/AAAI.
Leclère, M.; Mugnier, M.; Thomazo, M.; and Ulliana, F.
2019. A Single Approach to Decide Chase Termination on
Linear Existential Rules. In Barceló, P.; and Calautti, M.,
eds., 22nd International Conference on Database Theory,
ICDT 2019, 2019, Portugal, volume 127 of LIPIcs, 18:1–
18:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik.
Marnette, B. 2009. Generalized schema-mappings: from ter-
mination to tractability. In Paredaens, J.; and Su, J., eds.,
Proceedings of the 28th ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, PODS 2009,
2009, USA, 13–22. ACM.
Matentzoglu, N.; Tang, D.; Parsia, B.; and Sattler, U. 2014.
The Manchester OWL Repository: System Description. In
Horridge, M.; Rospocher, M.; and van Ossenbruggen, J.,
eds., Proceedings of the ISWC 2014 Posters & Demonstra-
tions Track a track within the 13th International Semantic
Web Conference, ISWC 2014, Italy, 2014, volume 1272 of
CEUR Workshop Proceedings, 285–288. CEUR-WS.org.
Parsia, B.; Matentzoglu, N.; Gonçalves, R. S.; Glimm, B.;
and Steigmiller, A. 2016. The OWL Reasoner Evaluation
(ORE) 2015 Resources. In Groth, P.; Simperl, E.; Gray, A.
J. G.; Sabou, M.; Krötzsch, M.; Lécué, F.; Flöck, F.; and Gil,
Y., eds., The Semantic Web - ISWC 2016 - 15th International
Semantic Web Conference, Japan, 2016, Proc, Part II, vol-
ume 9982 of Lecture Notes in Computer Science, 159–167.
Zhang, H.; Zhang, Y.; and You, J. 2015. Existential Rule
Languages with Finite Chase: Complexity and Expressive-
ness. In Bonet, B.; and Koenig, S., eds., Proceedings of the
Twenty-Ninth AAAI Conference on Artificial Intelligence,
2015, USA, 1678–1685. AAAI Press.

6379

