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Abstract

Answer Set Programming (ASP) is a prominent modeling and
solving framework. An inconsistent core (IC) of an ASP pro-
gram is an inconsistent subset of rules. In the case of inconsis-
tent programs, a smallest or subset-minimal IC contains cru-
cial rules for the inconsistency. In this work, we study find-
ing minimal ICs of ASP programs and key fragments from a
complexity-theoretic perspective. Interestingly, due to ASP’s
non-monotonic behavior, also consistent programs admit ICs.
It turns out that there is an entire landscape of problems in-
volving ICs with a diverse range of complexities up to the
fourth level of the Polynomial Hierarchy. Deciding the exis-
tence of an IC is, already for tight programs, on the second
level of the Polynomial Hierarchy. Furthermore, we give en-
codings for IC-related problems on the fragment of tight pro-
grams and illustrate feasibility on small instance sets.

1 Introduction
Answer set programming (ASP) is a declarative program-
ming paradigm with roots in non-monotonic reasoning and
logic programming (Brewka, Eiter, and Truszczyński 2011).
It has many applications in knowledge representation, arti-
ficial intelligence, and planning and supports compact prob-
lem modeling (Baral 2003; Pontelli et al. 2012). In ASP,
a problem is encoded as a set of rules, called a logic pro-
gram, and evaluated under the stable model semantics (Gel-
fond and Lifschitz 1988, 1991), where solutions are called
answer sets. Solvers such as clingo (Gebser et al. 2011,
2014), WASP (Alviano et al. 2015a), or DLV (Alviano et al.
2017) have been developed.

A well-known concept for ASP are unsatisfiable cores,
which are also widely used for guiding the search for op-
timal answer sets (Alviano, Dodaro, and Ricca 2015; Al-
viano et al. 2015b, 2018a). An unsatisfiable core of a given
program Π is a subset C of literals that make the pro-
gram Π ∪ {← ¬ℓ | ℓ ∈ C} under the (literal) assump-
tions C inconsistent. Besides core-guided optimization, as-
sumptions and unsatisfiable cores are relevant for cautious
reasoning (Alviano et al. 2018b), explainability (Alviano
et al. 2019), belief revision (Garcia et al. 2018), and forget-
ting rules (cf. Gonçalves, Knorr, and Leite 2021). However,
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the concept of an unsatisfiable core is quite strict as it does
not support identifying the source of inconsistency in terms
of rules but only in terms of atoms. Therefore, we consider
the more general concept of an inconsistent core (IC), which
for a given program Π is a subset of rules Π′ ⊆ Π that is al-
ready inconsistent.

In the context of SAT, the counterpart of ICs are unsat-
isfiable subsets. There, one is mainly interested in finding
minimal unsatisfiable subsets (MUSes) of a CNF formula F ,
which are subsets F ′ ⊆ F of clauses that are unsatisfiable,
but F ′ \ {c} is satisfiable for any clause c ∈ F ′. MUSes
are actively used in product configuration, knowledge-based
validation, and hardware and software design and verifica-
tion (McCarthy 1980; Schlobach et al. 2007; Andraus, Liffi-
ton, and Sakallah 2008; Soh and Inoue 2010; Bendı́k and
Meel 2020; Endriss 2020). Finding MUSes is among the
standard solving repertoires in the SAT community, with a
long list of works on extracting them (Nadel 2010; Marques-
Silva and Lynce 2011; Belov, Manthey, and Marques-Silva
2013; Lagniez and Biere 2013; Belov, Heule, and Marques-
Silva 2014; Mencı́a et al. 2019).

In SAT, the complexity of finding and recognizing MUSes
is well studied (Papadimitriou and Wolfe 1988; Szeider
2004; Fleischner, Kullmann, and Szeider 2002). For in-
stance, deciding whether a formula is an MUS is DP-com-
plete. However, the complexity of problems involving ICs in
the setting of ASP is primarily unexplored, despite plenty of
investigations on ASP problems of higher complexity (Bo-
gaerts, Janhunen, and Tasharrofi 2016; Amendola, Ricca,
and Truszczynski 2019) and considerations on strong incon-
sistency in ASP (Mencı́a and Marques-Silva 2020).

Contributions. Here, we chart the complexity map of var-
ious computational problems arising from ICs. It turns out
that there is an entire landscape of problems involving ICs
with a diverse range of complexities up to the fourth level of
the Polynomial Hierarchy (PH). Our main contributions are:

1. We establish the computational complexity of finding
ICs, minimal inconsistent cores (MICs), and smallest
ICs for ASP. Additionally, we provide ASP encodings
to compute the respective set of rules for the considered
problems.

2. We present detailed complexity results for reasoning
problems using ICs, namely, credulous and skeptical
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Existence Problems Reasoning Problems

Fragment IC, EIC, RIC, MIC, SMIC CREDMIC CREDSMIC SKEPMIC SKEPSMIC

SAT / non-negative ASP co-NP ΣP
2 ΘP

2 ΠP
2 ΘP

2
normal / tight ASP ΣP

2 ΣP
3 ΘP

3 ΠP
3 ΘP

3
disjunctive ASP ΣP

3 ΣP
4 ΘP

4 ΠP
4 ΘP

4

Table 1: Overview of our complexity results for existence and reasoning problems involving inconsistent cores. Each row shows
results regarding a specific class of formulas or programs, respectively, denoted in the first column. The definitions of the classes
are as usual and can be found in Section 2; for the less-known fragment of non-negative programs, disjunctions in the rule
heads are allowed, and atoms in the negative body are forbidden. Problems consider ICs (inconsistent cores), EICs (essential
inconsistent cores), MICs (minimal EICs), RICs (relevant EICs), and SMICs (smallest MICs), as defined in Section 3.

reasoning when querying for a subset of the rules. An
overview of our complexity results is provided in Table 1.

3. We illustrate the feasibility of our encodings for ICs and
MICs on a small set of instances.

Our results reveal that computing ICs can be significantly
harder than MUSes: non-monotonicity causes an additional
source of complexity. In fact, hardness is not caused by cy-
cles (Lifschitz and Razborov 2006); instead, basic proper-
ties of non-monotonic reasoning, inherent in the definition
of ASP, result in higher complexity. We can already see a
significant gap between tight ASP and SAT. Based on that,
non-monotonicity motivates the need for further flexibility
that allows us to distinguish between rules that should al-
ways be in ICs of interest and optional rules.

2 Preliminaries
Computational Complexity. We assume familiarity with
standard notions in computational complexity (Papadim-
itriou 1994), usual complexity classes and the Polynomial
Hierarchy. In particular, ΣP

0 = ΠP
0 = ∆P

0 = P and for i ≥ 1

we use ΣP
i := NPΣP

i-1 , ΠP
i := co-NPΠP

i-1 , and ∆P
i := PΣP

i-1 .
Interestingly, there is also a complexity class be-

tween ΣP
i-1/Π

P
i-1 and ∆P

i for i ≥ 2. This class is sometimes
denoted by ΘP

i or ∆
P[log(n)]
i and therefore seems similar

to ∆P
i , but only permits O(log(n)) many ΣP

i-1-oracle calls
for every instance of size n.

Quantified Boolean Formulas (QBFs). We define propo-
sitional formulas in the usual way; literals are variables
or their negations. For a propositional formula F , we de-
note by var(F ) the set of variables of F . Logical opera-
tors ∧,∨,¬,→,↔ are used in the usual meaning. A term is
a conjunction of literals, and a clause is a disjunction of liter-
als. F is in conjunctive normal form (CNF) if F is a conjunc-
tion of clauses and F is in disjunctive normal form (DNF)
if F is a disjunction of terms. In both cases, we identify F
by its set of clauses or terms, respectively. We assume that
a propositional formula is in CNF, unless stated otherwise.
Let ℓ ≥ 0 be an integer. A quantified Boolean formula Q is
of the form Q1V1.Q2V2. · · ·QℓVℓ.F where Qi ∈ {∀, ∃} for
1 ≤ i ≤ ℓ and Qj ̸= Qj+1 for 1 ≤ j ≤ ℓ − 1; and where
the Vi are disjoint, non-empty sets of propositional variables
with

⋃ℓ
i=1 Vi = var(F ) and F is a propositional formula.

We call ℓ the quantifier depth of Q and let matrix(Q) := F .

An assignment is a mapping ι : X → {0, 1} de-
fined on a set X of variables. Consider a propositional for-
mula F and an assignment ι on var(F ). Then, for F in
CNF, F [ι] is the propositional formula obtained by remov-
ing every c ∈ F with x ∈ c and ¬x ∈ c if ι(x) = 1 and
ι(x) = 0, respectively, and by removing from every remain-
ing clause c ∈ F literals x and ¬x with ι(x) = 0 and
ι(x) = 1, respectively. Analogously, for F in DNF values
0 and 1 are swapped. For a given QBF Q and an assign-
ment ι : X → {0, 1}, Q[ι] is the QBF obtained from Q,
where variables x ∈ X are removed from preceding quan-
tifiers accordingly, and matrix(Q[ι]) := (matrix(Q))[ι]. A
propositional formula F evaluates to true if there exists an
assignment ι for var(F ) such that F [ι] = ∅ if F is in CNF
or F [ι] = {∅} if F is in DNF. A QBF Q with Q1 = ∃
evaluates to true (or is valid) if and only if there exists an
assignment ι : V1 → {0, 1} such that Q[ι] evaluates to true.
If Q1 = ∀, then Q[ι] evaluates to true if for every assign-
ment ι : V1 → {0, 1}, Q[ι] evaluates to true. QSATℓ refers
to the problem of deciding validity for a given a QBF Q of
quantifier depth ℓ. The problem is ΣP

ℓ -complete if Q1 = ∃,
and ΠP

ℓ -complete if Q1 = ∀ (Kleine Büning and Lettman
1999; Papadimitriou 1994; Stockmeyer and Meyer 1973).

Answer Set Programming (ASP). We follow stan-
dard definitions of propositional ASP (Brewka, Eiter, and
Truszczyński 2011; Janhunen and Niemelä 2016). Let ℓ,
m, n be non-negative integers such that ℓ ≤ m ≤ n and
a1, . . . , an be distinct propositional atoms. Moreover, we re-
fer by literal to a propositional variable (atom) or the nega-
tion thereof. A (logic) program Π is a set of rules of the form
a1∨· · ·∨aℓ ← aℓ+1, . . . , am,¬am+1, . . . ,¬an. For a rule r,
we let Hr := {a1, . . . , aℓ}, B+

r := {aℓ+1, . . . , am}, and
B−

r := {am+1, . . . , an}. We denote the sets of atoms occur-
ring in a rule r or in a program Π by at(r) := Hr∪B+

r ∪B−
r

and at(Π) :=
⋃

r∈Π at(r), respectively. A rule r is normal
if |Hr| ≤ 1; r is non-negative if |B−

r | = 0. Then, a pro-
gram Π is normal (non-negative) if all its rules r ∈ Π are
normal (non-negative). The dependency digraph DΠ of Π is
the directed graph defined on atoms

⋃
r∈Π Hr ∪B+

r , where
for every rule r ∈ Π atoms a ∈ B+

r and b ∈ Hr are joined
by an edge (a, b). A program Π is tight if there is no directed
cycle in DΠ (Fages 1994).

An interpretation I is a set of atoms. I satisfies a rule r if
(Hr ∪B−

r )∩ I ̸= ∅ or B+
r \I ̸= ∅. I is a model of Π if it sat-
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isfies all rules of Π, in symbols I |= Π. For brevity, we view
propositional formulas as sets of formulas (e.g., clauses) that
need to be satisfied, and analogously use the notion of inter-
pretations, models, and satisfiability. The Gelfond-Lifschitz
(GL) reduct of Π under I is the program ΠI obtained from
Π by first removing all rules r with B−

r ∩ I ̸= ∅ and
then removing all ¬z where z ∈ B−

r from the remaining
rules r (Gelfond and Lifschitz 1991). I is an answer set of a
program Π if I is a minimal model of ΠI . A program is con-
sistent if it has at least one answer-set, otherwise it is incon-
sistent. CONSISTENCY, the problem of deciding whether an
ASP program is consistent, is ΣP

2 -complete (Eiter and Gott-
lob 1995). If the input is restricted to normal programs, the
complexity drops to NP-completeness (Bidoı́t and Froide-
vaux 1991; Marek and Truszczyński 1991). The answer sets
of a tight program can be represented by the models of a
propositional formula, obtainable in linear time via, e.g.,
Clark’s completion (Clark 1977).

3 Minimal Inconsistent Cores (MIC)
Driven by the definition of unsatisfiable cores and corre-
sponding practical considerations for ASP (Andres et al.
2012; Alviano and Dodaro 2017; Saikko et al. 2018), we for-
mally define the concept of inconsistent cores and the central
problems that are the focus of this work.

Definition 1 (Inconsistent Core (IC)). Let Π be a given pro-
gram. Then, an inconsistent core (for Π) is an inconsistent
subset Π′ ⊆ Π.

Bear in mind that semantics of logic programs is non-
monotonic, which has the consequences briefly shown be-
low.

Example 2. Consider the programs {← ¬a} ⊆ {a ←;←
¬a} and observe that the first is inconsistent while the sec-
ond is consistent.

So, a program might be consistent, but a subset of the rules
can form an IC. This is different from propositional formu-
las and stems from the non-monotonicity of logic programs,
indicating that compared to the answer sets of a program, we
might obtain additional answer sets after adding rules to the
program. However, the converse is not true: if a program is
an IC, then obviously, some subset is an IC as well.

Interestingly, the non-monotonicity is precisely, why ev-
ery subset has to be analyzed for finding an IC, already for a
normal (and even tight) logic program, which, surprisingly,
is in stark contrast to finding unsatisfiable subsets of propo-
sitional CNF formulas. This result is established in the fol-
lowing theorem.

Theorem 3. The problem of deciding whether a tight logic
program Π admits an IC is ΣP

2 -complete.

Proof (Sketch). Membership: We sketch an algorithm that
shows ΣP

2 membership. First, we guess a set R ⊆ Π. Then,
we check whether R is inconsistent, which can be done
in co-NP, i.e., it requires one call to the NP oracle. Con-
sequently, the algorithm is in ΣP

2 .

1Proofs for theorems marked by “⋆” are in an extended version.

Hardness: We reduce from the ΣP
2 -complete problem

QSAT2. Take any instance I = ∃V1.∀V2.F with F =
{d1, . . . , dn} in DNF. From this, we define a program Π,
constructed below using fresh variables u, u1, . . . , un as
well as ã for every variable a ∈ V2. We define Π := { a ←
| a ∈ V1 } ∪ { b← ¬b̃; b̃← ¬b | b ∈ V2 } ∪ {ui ← l̄j | 1 ≤
i ≤ n, di = l1 ∧ . . . ∧ lo, 1 ≤ j ≤ o } ∪ {u ← u1, . . . , un}
∪{← ¬u} with l̄ := a if l = ¬a for some a ∈ var(F )
and otherwise, if l ∈ V1 then l̄ := ¬a and l̄ := ã
if l ∈ V2. Then, we briefly sketch that ∃V1.¬∃V2.¬F is
valid if and only if Π is inconsistent for a selection of
rules a←. =⇒: Let α : V1 → {0, 1} be an assignment such
that (∃V1.¬∃V2.¬F )[α] evaluates to true. Then we have
that Π \ { a ← | a ∈ V1, α(a) = 0 } is inconsistent.⇐=:
Assume that Π admits an IC Π′ ⊆ Π. From this, we define
an assignment α, where for every a ∈ V1 we set α(a) := 1
whenever {a ←} ∈ Π′ and α(a) := 0 otherwise. Then,
assuming that (∃V1.¬∃V2.¬F )[α] evaluates to false contra-
dicts that Π′ is an IC.

Observe that when slightly adapting the decision problem,
such that affirmative answers are expected for inconsistent
programs only, instead of ΣP

2 -completeness as in Theorem 3,
we obtain co-NP-completeness. So, in this case, checking
inconsistency suffices.

The non-monotonicity of ASP motivates also the need for
further flexibility that allows us to distinguish between rules
that should always be in ICs of interest and rules that are op-
tional. Let therefore Π be a given program, E ⊆ Π a subset
of (essential) rules, and Π′ ⊆ Π an IC. Then, if E ⊆ Π′, we
call Π′ an essential IC (EIC).

Among essential ICs, one might be curious about find-
ing a minimal one. We study different notions of minimal-
ity. We say Π′ is a minimal EIC (MIC) if every strict subset
Π′′ ⊊ Π′ with Π′′ ⊇ E is consistent. Further, we say Π′ is a
relevant EIC (RIC) if Π′ is a EIC of Π, but Π′ \ {r} is con-
sistent for every r ∈ Π′ \ E. Finally, Π′ is a smallest MIC
(SMIC) if there is no EIC Π′′ of Π and E with |Π′′| < |Π′|.
Example 4. Consider the program Π := {a ← b,¬c; b ∨
d ←; d ∨ a ←;← a,¬c;← d; c ←}. Observe that Π is
consistent, since {a, b, c} is an answer set, i.e., there is no
EIC of Π containing E = Π. However, Π admits an IC,
e.g., Π \ {c ←}. There are two MICs of Π containing {←
d}, namely Π1 = {a ← b,¬c; b ∨ d ←;← a,¬c;← d}
and Π2 = {d ∨ a←;← a,¬c;← d}. However, the latter is
the only SMIC. There is no EIC of Π containing {c←}.
Corollary 5 (⋆). The problem of deciding whether a tight
logic program Π admits an (S)MIC for a set E ⊆ Π is ΣP

2 -
complete.

SAT– A Monotonic ASP Fragment. The difference be-
tween SAT and ASP in terms of the computation of
unsatisfiable subsets/inconsistent cores reveals that non-
monotonicity can significantly harden the computation and
cause an additional source of complexity. Therefore, since
there is already a gap between tight ASP and SAT, we study
our problems of interest also for SAT. To this end, propo-
sitional formulas in CNF can be viewed as the fragment of
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non-negative programs, i.e., where negation is not permit-
ted1. Consequently, we capture propositional formulas by
also considering the fragment of non-negative programs.
Observation 6 (⋆). A propositional formula can be repre-
sented as a non-negative program such that there is a bijec-
tion between the models and the answer sets.

Interestingly, for the fragment of non-negative programs,
deciding the existence of an inconsistent core is easier.
Observation 7 (⋆). The problem of deciding whether a non-
negative program Π admits an IC is co-NP-complete.

Characterizing the Computation of MICs
We define decision problems that express different reason-
ing problems involving MICs for a given program Π. Cred-
ulous and skeptical reasoning problems ask whether some
or all (S)MIC, respectively, contain certain rules Q ⊆ Π of
interest, called the query.

Definition We define credulous and skeptical reasoning
problems as follows.

Problem: CRED(S)MIC
Input: Program Π, E ⊆ Π, query Q ⊆ Π
Output: Does there exist an (S)MIC Π′ ⊇

E of Π, where Π′⊇Q holds?

Problem: SKEP(S)MIC
Input: Program Π, E ⊆ Π, Q ⊆ Π
Output: Does every (S)MIC Π′ ⊇ E of Π

fulfill Π′⊇Q?

Example 8. Credulous and skeptical reasoning enables rea-
soning based on the computation of certain MICs of interest
(fulfilling a query). Recall Π, Π1, and Π2 from Example 4.
Assume E := {a ← b,¬c}. Then, the problem CREDSMIC
for Π1, E and query Π1 actually is answered affirmatively,
since E ̸⊆ Π2. Further, observe that every IC of Π relies on
the rule {← d}. Consequently, the problem SKEPMIC for Π
and query {← d} is also answered affirmatively.

Interestingly, non-monotonicity as briefly discussed
in Example 2 is also the reason, why CRED(S)MIC
and SKEP(S)MIC are harder for a given non-empty query Q.
So, in case a non-empty query is used (see Section 4), these
problems are harder compared to the case when using a triv-
ial query. Observe that, therefore, the query Q in general is
crucial; it is different from the set E of essential rules and
cannot be merged into E.

Encodings for Normal Programs
In this section, we present ASP encodings for computing
MICs and SMICs. First, we start with the case of tight pro-
grams, which can then be extended to normal programs as
well. Unfortunately, due to the hardness of the studied prob-
lems, it is not possible to further lift these encodings to dis-
junctive programs, which we discuss in the next section.

1Disjunctions in the fragment of non-negative programs can be
analogously turned into rules without disjunction using negation
(shifting). However, their behavior for IC-problems is different.

Computing EICs. With ASP-Core-2 (Calimeri et al.
2020), an extended syntax for ASP that is supported by main
solvers, we can easily compute EICs. Note that the plain
(decision) problem of deciding whether there exists an IC
for a propositional formula boils down to deciding unsat-
isfiability, which is co-NP-complete. However, as already
discussed in Theorem 3, the situation is completely differ-
ent for normal (or tight) logic programs, due to the non-
monotonicity and without restriction to inconsistent pro-
grams.

Listing 1 shows an encoding for tight logic programs.
We assume that the given program Π is specified using
the binary predicates body and head, where body(r, l) or
head(r, a) indicate that the body of r contains literal l or
its head contains atom a, respectively. Further, the essential
rules are given using e, i.e., e(r) specifies that r ∈ Π is
essential. Then, the output of Listing 1 is given using predi-
cate ic, which is a unary predicate giving a rule r part of the
computed IC. The idea of this encoding is to guess ICs that
contain essential rules. Then, we guess among all assign-
ments and ensure that every assignment does not satisfy the
guessed IC, which uses saturation (Eiter and Gottlob 1995).

% INPUT: Program using body/2, head/2 and
essential rules by means of e/1.

% OUTPUT: IC using ic/1.

% Auxiliary predicates, ‘‘;’’ denotes ‘‘or’’
rule(R) ← body(R,_) ; head(R,_).
atom(|A|) ← body(_,A) ; head(_,A).

% Pick essential rules
ic(R) ← e(R).
% Pick subset of rules
{ ic(R) : rule(R) }.

% Guess assignment
assign(A) ∨ assign(-A) ← atom(A).

% Check inconsistency
sat(R, A) ← head(R,A).
sat(R,-A) ← body(R,A).
bodyusat(R) ← assign(-X), body(R,X).
incons ← ic(R), assign(-X) : sat(R,X).
incons ← assign(X), X>0, bodyusat(R) :

ic(R),head(R,X).
← not incons.
% Saturate
assign(A) ← incons, atom(A).
assign(-A) ← incons, atom(A).
#show ic/1.

Listing 1: Encoding for EICs of tight programs

Computing RICs. By slightly modifying the encoding of
Listing 1, we compute relevant ICs. Therefore, we need to
add the following encoding to the listing above. The idea of
Listing 2 is to check that when we remove an arbitrary rule
from the IC, it is not an IC any more.

% IC atoms
iat(|A|) ← atom(A), body(R,A) : ic(R).
iat(|A|) ← atom(A), head(R,A) : ic(R).
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% Guess assignment for IC without R
assign(A,R) ∨ assign(-A,R) ← iat(A), ic(R).
% Check consistency for IC without R
← ic(R), ic(R2), R ̸= R2,

assign(-A,R) : sat(R2,A).
% Check provability for IC without R
← assign(X,R), X > 0, bodyusat(R2) :

ic(R2),R2̸=R,head(R2,X).

Listing 2: Encoding for RICs of tight programs

Computing SMICs. For computing an SMIC, we take
the encoding of Listing 1 and the following line to minimize
the cardinality of computed ICs. This can be achieved using
cost minimization (Gebser et al. 2012; Calimeri et al. 2020),
an extension that can reach problems up to ∆P

3 .

% Minimize the IC -> SMIC
#minimize{ 1,C : ic(C)}.

Listing 3: Obtain SMICs by Listing 1 and Minimizing ICs

Extending Encodings to Normal Programs. The encod-
ings above can be extended to normal programs by using
level mappings (e.g., Lin and Zhao 2004; Janhunen 2006).
There are known implementations for converting normal
programs to tight programs, see, e.g., lp2lp or lp2atomic2.

Extending to Credulous and Skeptical Reasoning. The
encodings above also address the problems CREDSMIC
and SKEPSMIC, since the query Q can be directly addressed
via credulous and skeptical reasoning over the answer sets,
respectively. Thereby, the query needs to be specified on top
of atoms over the ic predicate and one asks whether Q is con-
tained in some answer set or any answer set for CREDSMIC
or SKEPSMIC, respectively.

4 Complexity Landscape
Next, we present detailed complexity results for the reason-
ing problems above. Thereby, we give an analysis of credu-
lous reasoning, which we then extend to skeptical reasoning.

Credulous reasoning
SAT and Normal ASP. First, we show the complexity for
reasoning problems on propositional satisfiability and the re-
lated ASP fragment of non-negative programs.

Proposition 9 (⋆). The problem CREDMIC for a proposi-
tional formula F , a set E⊆F , and a query Q⊆F is ΣP

2 -
complete.

Corollary 10 (⋆). The problem CREDMIC for a non-negative
program Π, a set E⊆Π, and a query Q⊆Π is ΣP

2 -complete.

Interestingly, for normal (and tight) programs, credulous
reasoning is on the third level of the Polynomial Hierarchy.

Theorem 11 (⋆). The problem CREDMIC for a normal logic
program Π, a set E⊆Π, and a query Q⊆Π is ΣP

3 -complete.

Computing SMICs is even slightly harder, as shown below.

2See http://www.tcs.hut.fi/Software/lp2sat/.

Theorem 12. The problem CREDSMIC for a normal logic
program Π, set E ⊆ Π and query Q ⊆ Π is ΘP

3 -complete.

Proof (Sketch). Membership is obtained using binary search
over the costs 1, . . . , n, which in the worst case re-
quires O(log n) many ΣP

2 oracle calls. In each call with
cost k, we need to guess a set R with E ⊆ R ⊆ Π such
that |R| = k + |E|, and check whether R is an IC. This is
indeed in ΣP

2 , cf. Theorem 3. If we found the smallest cost k,
where R is an IC, we again search via a ΣP

2 oracle call an
IC R′ with E ⊆ R′ ⊆ Π and |R| = k + |E|, but such
that Q ⊆ R′. If such an R′ exists, we answer affirmatively,
otherwise the answer is no.

Hardness: We show hardness by reducing from
PARITY(QSAT2), where we have been given a sequence
of QBF formulas I1, . . . , In each of the form ∃V i

1 .∀V i
2 .Fi

with Fi being in DNF and consisting of at most ni terms
such that var(Ij) ∩ var(Ik) = ∅ for 1 ≤ j < k ≤ n.
This sequence is a positive instance of PARITY(QSAT2),
whenever there is an i that is odd with 1 ≤ i ≤ n − 1
such that I1, . . . , Ii are satisfiable, and Ii+1, . . . , In are
unsatisfiable. This problem PARITY(QSAT2) is known to
be ΘP

3 -complete (Eiter and Gottlob 1997; Wagner 1987).
Without loss of generality, we assume n to be even,
which can be easily obtained by adding a trivial invalid
formula In+1 at the end, if this is not the case. Further,
we assume that I1 is valid, which can be achieved by
adding two trivially valid formulas at the beginning of the
sequence. We refer by V := var(F1 ∪ . . . ∪ Fn) and use
auxiliary variables ṽ for every v ∈ V \ {V i

1 | 1 ≤ i ≤ n }
as well as si and ui to indicate validity and invalidity for
instance Ii with 1 ≤ i ≤ n. We construct a program E by:

v ∨ ṽ ← for every v ∈ V \ {V i
1 | 1 ≤ i ≤ n },

si ← l1, . . . , lo for every 1 ≤ i ≤ n, (l1 ∧ . . . ∧ lo) ∈ Ii,
Then, we define rules P for obtaining invalidity, which

have a strong “penalty” that depends on the number of
rules U defined afterwards. The set P consist of the follow-
ing rules, using penalty atoms pki for every 1 ≤ i ≤ n as
well as 1 ≤ k ≤ 2 |U | − i.
ui ← p1i , . . . , p

k
i , si−1 for every 2 ≤ i ≤ n, k = 2 |U |−i,

ui ← p1i , . . . , p
k
i , ui−1 for every 2 ≤ i ≤ n, k = 2 |U |−i,

pki ← for every 1 ≤ i ≤ n, 1 ≤ k ≤ 2 |U | − i.
Finally, we define U consisting of the following rules,

which use penalty atoms p1 and p2.
v ← for every v ∈ V i

1 , 1 ≤ i ≤ n,
← sn;← un, si,¬sj , sk for every 1 ≤ i < j < k ≤ n,
← un, si, ui+1 for every 1 ≤ i ≤ n, i = 2k,
← un, p1, p2, and p1 ←; p2 ←.
We define Π := E ∪ U ∪ P ∪ Q with Q := {←

un, p1, p2}. The construction is such that under every de-
cision v ← for v ∈ V i

1 we prefer those that derive less
atoms ui and those of larger index i. So, whenever the
same number of atoms ui is derived, we “prefer” those of
larger index. Then, the remaining rules of U ensure that it
is cheaper (due to penalty atoms p1, p2) to obtain a nega-
tive (“no”) instance. In other words, the only case where the
SMIC contains Q is, if indeed the instance is a positive in-
stance. So, we have that I1, . . . , In is a positive instance,
whenever Q is required in an SMIC of Π containing E.
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Proposition 13 (⋆). The problem CREDSMIC for a proposi-
tional formula F , set E ⊆ F , and a query Q ⊆ F is ΘP

2 -
complete.

Disjunctive ASP. For arbitrary programs including dis-
junctions, already the decision of whether the program ad-
mits an IC is on the third level of the Polynomial Hierarchy.

Theorem 14 (⋆). The problem of deciding whether a logic
program Π admits an IC is ΣP

3 -complete.

Then, the complexity of reasoning on top of minimal
MICs is increased by one level.

Theorem 15 (⋆). The problem CREDMIC for a logic pro-
gram Π, a set E ⊆ Π, and a query Q ⊆ Π is ΣP

4 -complete.

Again, computing smallest MICs is slightly harder.

Theorem 16. The problem CREDSMIC for a logic pro-
gram Π, a set E ⊆ Π, and query Q ⊆ Π is ΘP

4 -complete.

Proof (Sketch). Membership: Showing membership works
analogously to Theorem 12.

Hardness: Let I1, . . . , In be an instance of
PARITY(QSAT3) each of the form ∃V i

1 .∀V i
2 .∃V i

3 .Fi,
where Fi consists of ni clauses. Then, I1, . . . , In is positive
whenever there is an i that is odd with 1 ≤ i ≤ n − 1
such that I1, . . . , Ii are valid, and Ii+1, . . . , In are invalid.
We refer by V := var(F1 ∪ . . . ∪ Fn) and use auxiliary
variables ṽ for every v ∈ V \ {V i

1 | 1 ≤ i ≤ n } as well
as si and ui to indicate validity and invalidity for instance Ii
with 1 ≤ i ≤ n. Further, for every ui, we use auxiliary
variable fi for storing that the evaluation of ∀V i

2 .∃V i
3 .Fi is

false, i.e., that we have ∃V i
2 .∀V i

3 .¬Fi. Similar to the proof
of Theorem 12, we construct program E as follows.
v ∨ ṽ ← for every v ∈ V \ {V i

1 | 1 ≤ i ≤ n },
fi ← l̄1, . . . , l̄o for every 1 ≤ i ≤ n, (l1 ∨ . . . ∨ lo) ∈ Ii,

where for l = ¬a: l̄ := a, for l ∈ V i
1 : l̄ := ¬a, and l̄ := ã

if l ∈ V \ V i
1 ,

v ← fi for every 1 ≤ i ≤ n, v ∈ V i
3 ,

ṽ ← fi for every 1 ≤ i ≤ n, v ∈ V i
3 , and

si ← ¬fi for every 1 ≤ i ≤ n.
Then, similar to above, we define rules P for obtaining

invalidity, with a “penalty” that depends on the number of
rules U defined thereafter. The set P consist of the following
rules, using penalty atoms pki for every 1 ≤ i ≤ n as well
as 1 ≤ k ≤ 2 |U | − i.
ui ← p1i , . . . , p

k
i , si−1 for every 2 ≤ i ≤ n, k = 2 |U |−i,

ui ← p1i , . . . , p
k
i , ui−1 for every 2 ≤ i ≤ n, k = 2 |U |−i,

pki ← for every 1 ≤ i ≤ n, 1 ≤ k ≤ 2 |U | − i.
Finally, we define U consisting of the following rules,

which use penalty atoms p1 and p2.
v ← for every v ∈ V i

1 , 1 ≤ i ≤ n,
← sn;← un, si,¬sj , sk for every 1 ≤ i < j < k ≤ n,
← un, si, ui+1 for every 1 ≤ i ≤ n, i = 2k,
← un, p1, p2, and p1 ←; p2 ←.
We define Π := E ∪ U ∪ P ∪ Q with Q := {←

un, p1, p2}. Similar to the proof of Theorem 12, I1, . . . , In
is a positive instance whenever Q is required in an SMIC
of Π that contains E.

Instance Set Prob t[s] tavg[s] size

(S1): reach EIC 10672.9 8.1 632
RIC 10658.8 8.1 632
SMIC 10823.3 8.3 84

(S2): edge col EIC 16038.8 13.4 1352
RIC 16040.9 13.4 1352
SMIC 16260.4 13.6 207

(S3): vertex col EIC 5996.9 5.0 272
RIC 5996.3 5.0 272
SMIC 6010.1 5.0 63

Table 2: Solved instances by instance set and problem. t[s]
refers to the total running time on the solved instances in
hours, tavg[s] refers to the average running time of an in-
stance, and size refers to the median size of the found IC.

Complexity for Skeptical SMIC
For skeptical reasoning, we obtain the following results.
Theorem 17 (⋆). The problem SKEPMIC for a normal logic
program Π, a set E⊆Π, and a query Q⊆Π is ΠP

3 -complete.
For arbitrary programs, complexity increases by one level.
Theorem 18 (⋆). The problem SKEPMIC for a logic pro-
gram Π, a set E⊆Π and a query Q⊆Π is ΠP

4 -complete.
Further, skeptical reasoning on smallest MICs also in-

creases by one level compared to tight or normal programs.
Theorem 19 (⋆). The problem SKEPSMIC for a (normal)
program Π, E⊆Π, and query Q⊆Π is (ΘP

3 ) ΘP
4 -complete.

5 Preliminary Empirical Results
Our primary interest is to obtain a basic understanding and
an initial practical indicator for the hardness and solvabil-
ity of the various problem versions arising from inconsistent
cores in ASP. To study whether one can obtain inconsistent
cores, we evaluated our encodings as given in Listings 1–
3 using the solver clingo3 We follow standard guidelines
for empirical evaluations (van der Kouwe et al. 2018).

Design of Experiment. We study three questions:
Q1 are solvers capable of outputting EICs, RICs, and

SMICs on tight/normal instances using our encodings?
Q2 is there a notable difference in computing SMICs over

RICs in terms of runtime vs. size on these instances? and
Q3 how large are the computed cores?

Solver, Encodings, and Instances. In contrast to SAT,
e.g., (Belov, Manthey, and Marques-Silva 2013; Lagniez
and Biere 2013), no dedicated solvers or instances for IC-
related problems exist. For tight/normal programs, we use
our encoding from Section 3 in combination with level map-
pings (Lin and Zhao 2004; Janhunen 2006) and a state-of-
the-art ASP solver such as clingo, which we use in ver-
sion 5.5.1. We refrain from establishing alternative encod-
ings or using other solvers for performance comparison be-
cause we aim for a starting point to find ICs and not to es-
tablish the most competitive solving technique. Our focus

3See https://github.com/daajoe/asp micer for more details.
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Figure 1: Comparing individually the size of solved in-
stances for RICs and SMICs on Set (S1). The dashed line
states identity, below the line indicates that SMIC is smaller.

on selecting a set of input programs is to consider (a) a suf-
ficiently large number of tight/normal instances and avoid
compilations of extended rules and (b) show ASP-specific
features. Therefore, we take as instances three encodings on
real-world graphs of public transport networks from all over
the world, used in the PACE’16 and ’17 challenges (Dell
et al. 2017) and recent works on ASP (Eiter, Hecher, and
Kiesel 2021). Set (S1) consists of grounded instances on
an encoding of a prototypical ASP domain with reachability
and use of transitive closure; (S2) an edge coloring encod-
ing; and (S3) a vertex coloring encoding. In total, the transit
instances consist of 561 full networks and 2553 subgraphs.
For each instance, we assume the station with the smallest
and largest index to be the start and end stations, respec-
tively. We restricted the input to instances of at most 5KB
due to a potentially high number of cycles, resulting in 1310
instances in total for (S1) and 1199 instances in total for
(S2) and (S3). We selected essential rules based on struc-
tural properties. For (S1), we selected the rules on choices
for edges and for (S2) and (S3) we picked choices for edges
or vertices. Consideration (a) from above prevents us from
using ASP competition instances. Instances from early com-
petitions are likely not large enough to see notable differ-
ences between the problems (Gebser et al. 2007); later com-
petition instances widely employ optimization or focus on
ASP systems (Gebser, Maratea, and Ricca 2015).

Platform, Measure, and Resource Enforcements. We
gathered results on RHEL7.7 Linux with kernel 3.10.0-
1127.19.1.el7. We evaluated the encodings on machines
with 2 sockets equipped with Intel E5-2680v3 CPUs of 12
physical cores and 64GB RAM each at 2.50GHz base fre-
quency. We run at most 10 solvers on one node, set a timeout
of 600s, and limited available RAM to 6GB per instance and
solver. Note that we excluded grounding times to exceed the
600s and did not restrict the runtime for the grounder as we
are primarily interested in the runtime of the solving process.

Experimental Results. We list our results in Table 2 as
the number of solved instances, runtime, and size of the ob-

tained ICs. For the set (S1), we can obtain results for all
instances and see only a small difference between the dif-
ferent problems. This is expected as we restrict instances to
smaller ones. We see a small difference between the number
of solved instances between problems, but grounding time
increases significantly, whereas the size of ICs drops to 1/10
when computing SMICs. For the sets (S2) and (S3), we ob-
serve that we require higher total runtime but only a slightly
higher individual runtime. Grounding time increases no-
tably. Again, the size of the ICs is much larger than SMIC,
and while the running times of RIC and SMIC are similar,
the size is almost one order lower. These results answer our
Q1 affirmatively, and we can obtain a notable number of ICs,
RICs, and SMICs using the presented encoding and state-
of-the-art ASP solvers. To address Q3, we turn our attention
again to Table 2. We can see that the median size depends
on the problem. To answer Q3, we directly compare runtime
and size of RICs for Set (S1) in Figure 1. The runtime for
finding RICs and SMICs are overall quite similar. However,
SMICs can be notably smaller.

Summary. Our results provide an initial idea on the hard-
ness of computing EICs, RICs, and SMICs. The practi-
cal results align with theoretical expectations; encodings for
EIC are easier to solve than RIC and SMIC. Similar to
the theoretical complexity, we see that runtimes of RIC and
SMIC are in similar range. For future experiments, consid-
ering additional instances and more fine-tuned encodings or
using QBF solvers to obtain solutions for higher-level prob-
lems might be interesting.

6 Conclusion and Future Work
We introduced the notions of inconsistent cores (ICs) of an
ASP program and studied their computational complexity.
We expect that inconsistent cores can be useful for debug-
ging programs, where smallest inconsistent cores contain-
ing certain essential rules are required. Further, computing
the smallest inconsistent core containing required facts can
be interesting when investigating large search spaces. Find-
ing minimal ICs of ASP programs is far more complex than
SAT, even for key fragments of programs with close connec-
tions to SAT. Interestingly, deciding the existence of an IC
is already for tight programs on the second level of the PH.
Due to the non-monotonic behavior of ASP, also consistent
programs admit ICs. From this property, an entire landscape
of problems involving ICs naturally arises. We see a diverse
range of complexities up to the fourth level of the PH. In
addition, we give encodings for problems on the fragment
of tight programs and illustrate feasibility on small instance
sets. Our results are summarized in Table 1.

We believe that our initial analysis provides only a start-
ing point and asks for more detailed investigations into the
computational complexity of ICs in ASP. We expect inter-
esting insights from considering restricted classes of pro-
grams similar to the detailed trichotomy of decision and rea-
soning problems in answer set programming by Truszczyn-
ski (2011). There are also stronger notions of inconsistent
cores, dealing with non-monotonicity differently (Ulbricht,
Thimm, and Brewka 2020), where we expect synergies.
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Perri, S.; Ricca, F.; Veltri, P.; and Zangari, J. 2017. The ASP
System DLV2. In Procs. of the 14th International Confer-
ence on Logic Programming and Nonmonotonic Reasoning
(LPNMR’17), volume 10377 of LNCS, 215–221. Springer.
Alviano, M.; and Dodaro, C. 2017. Unsatisfiable Core
Shrinking for Anytime Answer Set Optimization. In Procs.
of the Twenty-Sixth International Joint Conference on Arti-
ficial Intelligence (IJCAI 2017), 4781–4785. ijcai.org.
Alviano, M.; Dodaro, C.; Fichte, J. K.; Hecher, M.; Philipp,
T.; and Rath, J. 2019. Inconsistency Proofs for ASP: The
ASP – DRUPE Format. TPLP, 19(5-6): 891—907.
Alviano, M.; Dodaro, C.; Järvisalo, M.; Maratea, M.; and
Previti, A. 2018a. Cautious reasoning in ASP via minimal
models and unsatisfiable cores. TPLP, 18(3-4): 319–336.
Alviano, M.; Dodaro, C.; Järvisalo, M.; Maratea, M.; and
Previti, A. 2018b. Cautious reasoning in ASP via mini-
mal models and unsatisfiable cores. Theory and Practice
of Logic Programming, 18(3-4): 319–336.
Alviano, M.; Dodaro, C.; Leone, N.; and Ricca, F. 2015a.
Advances in WASP. In Proc. of the 13th Int. Conf. on Logic
Programming and Nonmonotonic Reasoning (LPNMR’15),
40–54. Springer.
Alviano, M.; Dodaro, C.; Marques-Silva, J.; and Ricca, F.
2015b. Optimum stable model search: algorithms and im-
plementation. J. Logic Comput., 30(4): 863–897.
Alviano, M.; Dodaro, C.; and Ricca, F. 2015. A MaxSAT
algorithm using cardinality constraints of bounded size. In
Procs. of the 24th International Joint Conference on Artifi-
cial Intelligence (AAA’15).
Amendola, G.; Ricca, F.; and Truszczynski, M. 2019. Be-
yond NP: Quantifying over Answer Sets. Theory and Prac-
tice of Logic Programming, 19(5-6): 705–721.
Andraus, Z. S.; Liffiton, M. H.; and Sakallah, K. A. 2008.
Reveal: A Formal Verification Tool for Verilog Designs. In
Logic for Programming, Artificial Intelligence, and Reason-
ing, 343–352. Springer.
Andres, B.; Kaufmann, B.; Matheis, O.; and Schaub, T.
2012. Unsatisfiability-based optimization in clasp. In Tech-
nical Communications of the 28th International Conference
on Logic Programming, ICLP 2012, September 4-8, 2012,

Budapest, Hungary, volume 17 of LIPIcs, 211–221. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik.
Baral, C. 2003. Knowledge representation, reasoning and
declarative problem solving. Cambridge University Press,
Cambridge. ISBN 0-521-81802-8.
Belov, A.; Heule, M. J. H.; and Marques-Silva, J. 2014.
MUS Extraction Using Clausal Proofs. In Theory and Appli-
cations of Satisfiability Testing – SAT 2014, 48–57. Springer.
Belov, A.; Manthey, N.; and Marques-Silva, J. 2013. Parallel
MUS Extraction. In Theory and Applications of Satisfiabil-
ity Testing – SAT 2013, 133–149. Springer. ISBN 978-3-
642-39071-5.
Bendı́k, J.; and Meel, K. S. 2020. Approximate Counting
of Minimal Unsatisfiable Subsets. In Computer Aided Veri-
fication, 439–462. Springer International Publishing. ISBN
978-3-030-53288-8.
Bidoı́t, N.; and Froidevaux, C. 1991. Negation by default
and unstratifiable logic programs. Theoretical Computer
Science, 78(1): 85–112.
Bogaerts, B.; Janhunen, T.; and Tasharrofi, S. 2016. Stable-
unstable semantics: Beyond NP with normal logic programs.
Theory and Practice of Logic Programming, 16(5-6): 570–
586.
Brewka, G.; Eiter, T.; and Truszczyński, M. 2011. Answer
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