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Abstract

Dynamical systems are general models of change or move-
ment over time with a broad area of applicability to many
branches of science, including computer science and AI. Dy-
namic topological logic (DTL) is a formal framework for
symbolic reasoning about dynamical systems. DTL can ex-
press various liveness and reachability conditions on such
systems, but has the drawback that the only known axio-
matisation requires an extended language. In this paper, we
consider dynamic topological logic restricted to the class of
scattered spaces. Scattered spaces appear in the context of
computational logic as they provide semantics for provability
and enjoy definable fixed points. We exhibit the first sound
and complete dynamic topological logic in the original lan-
guage of DTL. In particular, we show that the version of
DTL based on the class of scattered spaces is finitely axio-
matisable, and that the natural axiomatisation is sound and
complete.

Introduction
In a nutshell, dynamical systems are mathematical models
of movement in space over time. The interaction between
space and time is a fundamental aspect of reality, making
such models ubiquitous in many scientific disciplines, ran-
ging from physics to economics. Artificial intelligence is no
exception, which should not be surprising given the temporal
aspect of processes and the deep connections between topo-
logy and computation, as demonstrated by abstract models
of computation such as the well-known Scott domains (Scott
1982).

There are many recent examples from pure and applied
work in artificial intelligence involving dynamical systems.
Lin and Antsaklis (2014) use hybrid dynamical systems in
the research of artificial intelligence and computer-aided
verification. Brunton and Kutz (2019) proposed approach-
ing data-related problems and machine learning through dy-
namical systems, and Weinan (2017) suggested modelling
nonlinear functions implemented in machine learning using
dynamical systems. Mortveit and Reidys’s (2007) sequential
dynamical systems generalise cellular automata and provide
a framework for studying dynamical processes in graphs.

*These authors contributed equally.
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Dynamical systems are also found in their linear form in
the shape of Markov chains, linear recurrence sequences
and linear differential equations. It is therefore not surpris-
ing that connections have been established between dynam-
ical systems and algorithms. Such links can be found for
example in the work of Hanrot, Pujol and Stehlé (2011), and
in the work of Chu (2008). Dynamical reasoning can also be
found in the study of Modal Logic in, for example, spatio-
temporal knowledge representation (Galton 2009) and in
the study of liveness (Alpern and Schneider 1985), relating
some algorithmic properties to topology and hints at formal
languages. This list is by no means exhaustive.

The applications above warrant the need for an effect-
ive formal reasoning framework about topological dynam-
ics, i.e. the action of a (typically continuous) function on a
topological space. Modal logic was first suggested to serve
that purpose in the 1990s by Artemov et al. (1997), who
envisioned dynamic topological logic as a bimodal logic
for reasoning about topological dynamics. They defined the
logic S4C and showed that it possesses desirable proper-
ties such as a natural axiomatisation and the finite model
property. Kremer and Mints (2005) suggested that includ-
ing a third modality, ‘henceforth’ from linear temporal lo-
gic (LTL), would lead to a logic powerful enough to reason
about the asymptotic behaviour of dynamical systems, pos-
sibly leading to applications in automated theorem prov-
ing. They dubbed the resulting system dynamic topological
logic (DTL). They proposed a natural axiomatisation for
DTL and conjectured it to be sound and complete for the
class of dynamical systems. However, the situation turned
out to be much more intricate than that of S4C, as DTL is
not finitely axiomatisable (Fernández-Duque 2014). Instead,
Fernández-Duque proposed an extension of DTL, denoted
by DTL∗, which enriches the original language with topo-
logical fixed points known as tangled operators; given sub-
setsA1, . . . , An of a topological spaceX , their tangled clos-
ure, c∞{A1, . . . , An}, is the largest subspace of X within
which every Ai is dense. Fernández-Duque (2012) showed
that DTL∗ has a natural infinite axiomatisation.

In order to overcome this difficulty, we restrict our at-
tention to a specific class of dynamical systems, namely,
those based on scattered spaces. Scattered spaces are topolo-
gical spaces where every nonempty subspace has an isolated
point. They have gathered attention lately in the context of
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computational logic, as they may be used to model provabil-
ity in formal theories (Abashidze 1985), leading to applica-
tions in characterising their provably total computable func-
tions (Beklemishev 2004). Modal logic on scattered spaces
enjoys definable fixed points (Sambin and Valentini 1982),
connecting it to the topological µ-calculus (Baltag, Bezhan-
ishvili, and Fernández-Duque 2021). The latter is particu-
larly relevant to us, as the expressive power gained by to-
pological fixed points, including the tangled operators of
DTL∗, is absent in this setting. As the logic of scattered
spaces is the Gödel-Löb modal logic GL, we refer to the
dynamic topological logic of scattered spaces as dynamic
Gödel-Löb logic (DGL). Moreover, we base our semantics
on the Cantor derivative rather than the topological closure,
since the former is known to be more expressive (Kudinov
and Shehtman 2014).

Our goal is to demonstrate that the standard finite axio-
matisation of DGL is sound and complete, leading to the
first completeness result of this kind, as well as the first
such logic combining the Cantor derivative with the infin-
itary ‘henceforth’ from LTL. The proof of completeness
employs various advanced techniques from modal logic, in-
cluding an application of Kruskal’s theorem in the spirit of
the work of Gabelaia et al. (2006).

Preliminaries
Before recalling the definition of dynamic topological lo-
gic, let us review some notions from topology and dynam-
ical systems, including the Cantor derivative in a topological
space.

Topology
Definition 1 (topological space). A topological space is a
pair X = (X, τ) where X is a set of points and τ ⊆ ℘(X)
is a subset satisfying the following conditions:

1. X,∅ ∈ τ ;
2. If U, V ∈ τ then U ∩ V ∈ τ ;
3. If U ⊆ τ then

⋃
U ∈ τ .

The elements of τ are called open sets and τ is called a topo-
logy on X . Complements of open sets are called closed sets.
If x ∈ U ∈ τ , we say that U is a neighbourhood of x.

We can view partial orders (posets) of the form (X,≺) as
topological spaces with the downset topologies, where each
set of the form ↓ x := {y : y ≼ x}, for some x ∈ X , is a ba-
sic open set (as usual, ≼ denotes the reflexive closure of ≺).
Equivalently, a set U ⊆ X is open iff it is downward closed
under ≺. Topologies of this form are Alexandroff topologies,
which have the property that arbitrary intersections of open
sets are open. Note that in this paper we represent posets via
their strict ordering, i.e. with a transitive, irreflexive relation
≺, since it better accommodates our semantics.

Topological spaces can be viewed as an abstract repres-
entation of space. Indeed, the Euclidean spaces Rn are the
most standard examples of topological spaces. Here, open
sets are all U ⊆ Rn for which every x ∈ U has ε > 0 such
that d(x, y) < ε implies y ∈ U , where d(x, y) denotes the
Euclidean distance.

A topology on X allows us to define concepts related to
limits. In particular, x is a limit point of A ⊆ X if every
neighbourhood of x, with respect to the topology onX , con-
tains at least one point a ∈ A distinct from x. This leads to
the notion of the Cantor derivative of a subset of X .

Definition 2 (Cantor derivative). Let X = (X, τ) be a topo-
logical space. Given A ⊆ X , the Cantor derivative of A is
the set d(A) of all limit points of A.

Given subsets A,B ⊆ X , the Cantor derivative satisfies
the following properties:

1. d(∅) = ∅;
2. d(A ∪B) = d(A) ∪ d(B);
3. dd(A) ⊆ A ∪ d(A).

Note that if X is a topological space and A ⊆ X , we do
not always have that A ⊆ d(A); elements of A \ d(A) are
called isolated points of A. Cantor observed that if we it-
eratively remove isolated points of X , we eventually reach
the largest subspace X∞ ⊆ X without isolated points. The
subspace X∞ may be empty: spaces with this property are
known as scattered spaces. They can be defined without ref-
erence to X∞ as follows:

Definition 3 (scattered space). A topological space (X, τ)
is scattered if every nonempty subset has an isolated point.

Movement in space over discrete time can be modelled
by equipping topological spaces with a transition function,
which is assumed to be continuous. Recall that if (X, τX)
and (Y, τY ) are topological spaces, then f : X → Y is con-
tinuous if whenever U ⊆ Y is open, then f−1(U) is open.

Definition 4 (dynamic topological system). A dynamic to-
pological system is a triple S = (X, τ, f), where (X, τ) is a
topological space and f : X → X is a continuous function.

In this paper, we will mostly be concerned with dynamic
topological systems based on a scattered space (or scattered
dynamical systems for short). It is useful to observe that if
(X,≺) is a poset, then f : X → X is continuous iff x ≼ y
implies f(x) ≼ f(y). The class of all topological spaces
will be denoted by TOP and the class of all dynamical sys-
tems by CTOP. In addition, the class of scattered spaces will
be denoted by SCT and the class of all scattered dynamical
systems by CSCT. Our goal is to axiomatise the dynamic
topological logic of the systems in CSCT, as defined in the
following subsection.

It would be useful to share some of the motivation for
discussing dynamic topological systems based on scattered
spaces by providing two examples; the second of which will
come later in the paper, after we establish some basic results.

Example 1 (first example of scattered dyanmics). Consider
an algorithm that computes a number (say pi) with some de-
gree of precision input by the user. This algorithm is guar-
anteed to terminate, but the actual computation time is de-
termined by the initial input. This can be modelled using
a scattered dynamical system as follows: Consider the or-
dinal ω + 1. This is the natural numbers with a limit point
at infinity. The ‘continuous predecessor’ function takes the
predecessor of n + 1, and is the identity on 0 and ω. The
initial state of the algorithm is ω, which ‘jumps’ to some
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value n after the user’s input. Computations of this algorithm
are modelled by our dynamical system, where each orbit
x, f(x), f(f(x)), . . . is a computation.

In addition, there are some specific applications of
scattered spaces to AI. For instance, in (Luo and Schulte
2006) it is shown that a class of languages is mind-change
bounded (a notion related to learning theory) iff it is
scattered in a suitable topology. Another example related
to learning theory is the use of scattered spaces in situ-
ations where an agent can be ”surprised”, i.e. learn unex-
pected information (Baltag, Bezhanishvili, and Fernández-
Duque 2022). Constructive reasoning is another avenue
where scattered spaces are used. Intuitionistic logic enjoys
topological semantics and can be seen as a subsystem of
either S4 or GL. Moreover, full intuitionistic LTL has
not been axiomatised. Our framework embeds systems like
Maier’s (2004) in a way that has a more natural axiomatisa-
tion than S4, providing a better ‘modal companion’ for such
logics.

Dynamic Topological Logic
We introduce the language with which we will be work-
ing with throughout the paper. Given a nonempty set PV
of propositional variables, the language of the logic DGL
is defined recursively as follows:

φ ::= p | φ ∧ φ | ¬φ | ♢φ |  φ | ♦φ,

where p ∈ PV. It consists of the Boolean connectives ∧ and
¬, the temporal modalities ‘next’  and ‘eventually’ ♦ with
its dual ‘henceforth’ ■ := ¬♦¬, and the spatial modality
♢ for the Cantor derivative with its dual the co-derivative
□ := ¬♢¬. We define other connectives (e.g. ∨, →) in the
usual way.

This language will be denoted from this point onward by
L♦•
♢ while the language without the henceforth operator, the

language of the logic GLC (Gödel-Löb logic with Continu-
ity), will be denoted by L•♢.

Definition 5 (semantics). A dynamic topological model is a
tuple M = (X, τ, f, ν), where (X, τ, f) is a dynamic topo-
logical system and ν : PV → ℘(X) is a valuation function.
Given φ ∈ L♦•

♢ , we define the truth set JφK ⊆ X of a for-
mula φ as follows:

• JpK = ν(p);
• J¬φK = X\JφK;
• Jφ ∧ ψK = JφK ∩ JψK;

• J♢φK = d(JφK);
• J φK = f−1(JφK);
• J♦φK =

⋃
n≥0 f

−n(JφK).

We write M, x |= φ if x ∈ JφK and M |= φ if JφK = X .
We may also denote a specific truth assignment by J·KM or
J·Kν if we deal with more than one possible model or valu-
ation.

Axiomatisation
It was shown by Esakia (1981) and Simmons (1975) that the
logic GL, whose characteristic axiom is □(□φ → φ) →
□φ, is the logic of all scattered spaces with respect to the
topological semantics where ♢ is interpreted as the Cantor

derivative operation. Aside from this change and a modified
continuity axiom, our axiomatisation of DGL is very sim-
ilar to Kremer and Mints’ axiomatisation (2005) and con-
sists of the following axiom schemes:
• Taut := All propositional tautologies
• K := □(φ→ ψ) → (□φ→ □ψ)
• L := □(□φ→ φ) → □φ
• Next¬ := ¬ φ↔  ¬φ
• Next∧ :=  (φ ∧ ψ) ↔  φ ∧ ψ
• C := ( φ ∧ □φ) → □ φ
• K■ := ■(φ→ ψ) → (■φ→ ■ψ)
• Fix■ := ■φ→ (φ ∧ ■φ)
• Ind■ := ■(φ→  φ) → (φ→ ■φ)

It also has the following inference rules:

• MP :=
φ φ→ ψ

ψ

• Nec□ :=
φ

□φ

• Nec :=
φ

 φ

• Nec■ :=
φ

■φ

We write DGL ⊢ φ or simply ⊢ φ if φ is derivable using
these rules and axioms.

Given a dynamic topological system S = (X, τ, f),
the intuition behind the axioms above can be stated briefly
as follows: the axiom L expresses transitivity and well-
foundedness (Segerberg 1971), and in the case of a topology
τ , it expresses that τ is a scattered space (Esakia 1981).
Lemma 6. A topological space X = (X, τ) is scattered if
and only if X |= L.

The two operators Next¬ and Next∧ express the func-
tionality of the map f : X → X , and the axiom C expresses
that f is continuous. Finally, the two axioms Fix■ and Ind■
express the properties of fixed-point and successor induction
of ■, which dictate the behaviour of the ‘henceforth’ oper-
ation. Each of these axioms is proven sound in either (Kre-
mer and Mints 2005) or (Fernández-Duque and Montacute
2022), yielding the following:
Proposition 7 (soundness). The axiomatisation above is
sound for the class of scattered dynamical systems.

The logic GLC is the same as DGL, but as its language
lacks the ‘henceforth’ operator the corresponding axioms
are omitted. When a formula φ is derivable in GLC we
may write GLC ⊢ φ, although, as mentioned, ⊢ without
a specified logic refers to derivability in DGL. Neverthe-
less, our proof of completeness will use the following result
by Fernández-Duque and Montacute (2022).
Theorem 8 (GLC completeness). The logic GLC is com-
plete and has the finite model property with respect to the
class of scattered dynamical systems.
In particular, note that every validity in GLC is syntactic-
ally derivable. This will become very useful in our proof of
completeness for DGL, which can be stated as follows:
Theorem 9 (completeness). CSCT |= φ implies ⊢ φ, i.e all
formulas valid on the class of scattered dynamical system
are syntactically derivable in DGL.
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The rest of the paper is devoted to this result. It involves
several elements, so it will be useful to sketch their role in
the proof.

The general idea is to adapt a proof of completeness for
linear temporal logic (Lichtenstein and Pnueli 2000). For
readers familiar with completeness proofs of LTL, we re-
call two standard approaches. The first is to construct the
(infinite) canonical model and then perform filtration to ob-
tain a finite model. Filtration is needed since in the canonical
model the relation used for interpreting ♦ is not necessarily
the real transitive, reflexive closure of the successor func-
tion. While this property does hold in the filtrated model
(obtained by taking a suitable quotient), the drawback is that
after filtration, the modality  is no longer interpreted via a
function. We remedy this by ‘unwinding’; that is, choosing a
path [w0], [w1], . . . of elements of the filtrated model, where
[w] denotes the equivalence class of w. In the terminology
of the present paper, such a path is a realising path.

This approach does not work in our setting since filtra-
tion destroys the continuity condition (which does hold in
the canonical model of DGL). Instead, we follow some-
thing closer to the second approach, where we begin with a
structure that looks like the final filtrated model, but might
include ‘too many’ points. To this end, fix a finite set Σ of
DGL-formulas closed under subformulas and single neg-
ations (typically, the subformulas of some ‘target formula’
φ). In the LTL setting, a ‘point’ of this model would be a
type Θ, i.e. a subset of Σ respecting Booleans: in particular,
¬ψ ∈ Θ iff ψ /∈ Θ, for ψ ∈ Σ. Other conditions may be im-
posed on types, e.g. ■ψ ∈ Θ implies ψ ∈ Θ. Let TΣ denote
the set of all Σ-types. Using the truth conditions of the tenses
 and ♦, we may define a ‘successor relation’ SΣ on the set
of Σ-types, so that for example if Θ SΣ ∆ and  ψ ∈ Θ,
then ψ ∈ ∆. As was the case with the canonical model,
♦ψ ∈ Θ does not necessarily imply that there is n and ∆
such that Θ Sn

Σ ∆ and ψ ∈ ∆. But in this case, rather than
a quotient, we should take a subset of TΣ. Say that a type Θ
is consistent if χ(Θ) :=

∧
Θ is consistent with respect to

the axioms and rules of LTL. Let WΣ be the restriction of
(TΣ, SΣ) to the set of consistent types. Then, much as was
the case for the filtrated canonical model, WΣ does interpret
♦ correctly, but SΣ is not functional. As before, we obtain a
proper LTL model by choosing a realising path on WΣ.

Our proof of completeness of DGL grosso modo follows
this second proof sketch. The biggest change is that types
must be replaced by more complex objects. Conceptually,
we may think of types as describing the state of affairs (rel-
ative to Σ) at a given moment in time. However, in the setting
of dynamical systems, this involves not only stating which
propositions hold, but also describing the ‘local’ topological
structure. As the purely topological fragment of DGL is just
GL (i.e. the logic of scattered spaces), and GL is sound and
complete for finite (strict) posets, we will let Σ-states be fi-
nite posets labelled by types: formally, a Σ-state is a struc-
ture w = (|w|,≺w, ℓw, 0w), where (|w|,≺w) is a strict, fi-
nite poset with a root 0w, and ℓw assigns a Σ-type ℓw(w)
to each w ∈ |w|, satisfying some constraints to mimic the
semantics of ♢.

The set of all Σ-states forms a structure which we denote

by UΣ, and plays the role of (TΣ, SΣ) in the LTL com-
pleteness proof. As was the case in the LTL proof, UΣ con-
tains ‘too many’ points, and so we must eliminate those Σ-
states that are ‘inconsistent’. This involves describing a Σ-
state w within our formal language. It is well known that fi-
nite frames can be described up to bisimulation in the modal
language, but as it turns out, we need to describe states up
to simulation (rather than bisimulation). The simulation for-
mula for w is denoted by Sim(w) and plays the role of χ(Θ)
in the LTL completeness proof.

The existence of the formulas Sim(w) is precisely where
the scatteredness assumption plays a role. In general topolo-
gical spaces such formulas do not exist in the basic modal
language and require tangled operators (Fernández-Duque
2011). However, such operators are modally definable over
the class of scattered spaces since the logic GL enjoys defin-
able fixed points (Sambin and Valentini 1982). Thus our
completeness proof can be entirely carried out in the original
trimodal language of DTL.

With this, we define WΣ, the restriction of UΣ to the set of
consistent Σ-states, i.e. those Σ-states w such that Sim(w)
is consistent with our axiomatisation of DGL. The structure
WΣ does satisfy the required properties to ensure satisfiab-
ility. To be precise, WΣ is a quasimodel, a labelled strict
poset which, aside from having a non-deterministic trans-
ition relation rather than a function, respects all semantic
clauses of L♦•

♢ . Quasimodels are quite general, with WΣ be-
ing only a special case, and as such they are defined much
earlier. As it was in the case of LTL, a proper model may be
obtained by extracting realising paths from any quasimodel
Q. The major difference in our setting is that now we must
simultaneously consider all realising paths and transform
a quasimodel into a model via an ‘unwinding’ procedure
(Fernández-Duque 2009). By defining the topology of Q⃗ in
the right way, we in fact obtain a scattered dynamical system
satisfying all formulas that were already satisfied in Q.

As a final remark, note that contrary to the LTL setting,
the structure WΣ for DGL is not finite. As we often need
to consider disjunctions or conjunctions of formulas of the
form Sim(w), and formulas are finite objects, this is a delic-
ate issue when adapting the LTL proof. Fortunately, at each
point in the proof, we may restrict our attention to finite sets
of Σ-states: this is a deep fact that relies on an application of
Kruskal’s theorem pioneered by Gabelaia et al. (2006). This
will come into play when we show that WΣ indeed respects
the semantics of ♦.

As the treatment of quasimodels does not depend on the
construction of UΣ and WΣ, we postpone it until later in the
paper and first focus our attention on a general treatment of
quasimodels.

Quasimodels
In this section, we introduce quasimodels, which are similar
to scattered dynamical systems based on an Aleksandroff
space (represented as the downset topology induced by a
strict partial order). The only difference is that the transition
function of quasimodels is replaced with a non-deterministic
relation. These structures will be useful in our completeness
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proof, as quasimodels are easier to construct than proper
models. In order to maintain the validity of expressions such
as  (p∨ q) ↔  p∨ q, we equip each quasimodel Q with
a labelling function ℓQ that assigns a type to each point. In
the main result of this section we show that every formula
satisfiable on a quasimodel Q is satisfiable on a scattered
dynamical model.

Given a formula φ, we denote by S(φ) the set of subfor-
mulas of φ, and we define S±(φ) = S(φ) ∪ {¬ψ : ψ ∈
S(φ)}.

Definition 10 (type). A set Φ ⊆ L♦•
♢ is a type if the follow-

ing conditions are satisfied:

1. There is no formula φ such that φ ∈ Φ and ¬φ ∈ Φ;
2. If ¬¬φ ∈ Φ then φ ∈ Φ;
3. If φ ∧ ψ ∈ Φ then φ,ψ ∈ Φ;
4. If ¬(φ ∧ ψ) ∈ Φ then ¬φ ∈ Φ or ¬ψ ∈ Φ;
5. If ■φ ∈ Φ then φ ∈ Φ.

The set of all types is denoted by T. If Σ is a set of formulas
closed under subformulas and single negations, we say that
Φ is a Σ-type if Φ ⊆ Σ and, for every φ ∈ Σ, either φ ∈ Φ or
¬φ ∈ Φ (identifying φ with its double negation as needed).
We denote by TΣ the set of all Σ-types. Often we will as-
sume that Σ is finite: when Σ ⊆ L♦•

♢ is finite and closed
under subformulas and single negations, we write Σ ⋐ L♦•

♢ .

Definition 11 (labelled poset). A labelled poset is a triple
A = (|A|,≺A, ℓA), where |A| is a set of points, ≺A is a
strict partial order on |A|, and ℓA : |A| → TΣ is a labelling
function such that

• ♢φ ∈ ℓA(w) implies ∃v(v ≺ w & φ ∈ ℓA(v)).
• □φ ∈ ℓA(w) implies ∀v(v ≺ w ⇒ φ ∈ ℓA(v)).

If Σ is a set of formulas and the range of ℓA is contained in
TΣ, we say that A is a Σ-labelled poset.

In the context of posets, a relation S ⊆ |A| × |B|
between orders A and B is called continuous if it satisfies
the forward-confluence property, i.e. if w ≼A w′ and wSv,
then there is v′ such that w′Sv′ and v ≼B v′.

Definition 12 (sensibility). Suppose that Φ,Ψ ∈ T. The
ordered pair (Φ,Ψ) is sensible if

1.  φ ∈ Φ implies that φ ∈ Ψ and ¬ φ ∈ Φ implies that
¬φ ∈ Ψ;

2. ♦φ ∈ Φ implies that φ ∈ Φ or ♦φ ∈ Ψ;
3. ■φ ∈ Φ implies that ■φ ∈ Ψ.

Accordingly, a pair of points (w, v) in a labelled poset A
is sensible if (ℓ(w), ℓ(v)) is sensible. A continuous relation
S ⊆ |A| × |A| is sensible if every pair in S is sensible.
Moreover, S is ω-sensible if it is serial and whenever ♦φ ∈
ℓ(w), there is n ≥ 0 and there is a point v such that wSnv
and φ ∈ ℓ(v).

We now have everything we need in order to provide the
definition of a quasimodel. Below, a poset (W,≺) is locally
finite if ↓w is finite for all w ∈W .

Definition 13 (quasimodel). A weak quasimodel is a tuple
Q = (|Q|,≺Q, SQ, ℓQ), where (|Q|,≺Q, ℓQ) is a locally

finite labelled poset and SQ ⊆ |Q| × |Q| is a sensible rela-
tion. If in addition SQ is ω-sensible, then Q is said to be a
quasimodel, and if the range of ℓQ is contained in TΣ, we
say that Q is a Σ-quasimodel (or weak Σ-quasimodel, if Q
is not ω-sensible).

We adopt the general convention that subscripts in
e.g. ≺Q or ℓQ will be dropped when this does not lead to
confusion. Nevertheless, the subscripts will be useful when
multiple structures are involved.
Example 2. Let φ = ■(□p ∧ p) → □■p. The follow-
ing structure is a quasimodel, under the labelling given by
ℓQ(w) = {¬p, . . .}, ℓQ(v) = {□p ∧ p,¬■p, . . .} and
ℓQ(u) = {■(□p ∧ p),¬□■p,¬φ, . . .} (where ‘. . .’ indic-
ates formulas omitted for simplicity).

u

SQ

v

SQ

SQ

≺
Q

w

SQ

This quasimodel falsifies φ at u, but it is known that the
formula φ is valid on every Aleksandroff topological space
(Kremer and Mints 2005). We will see that the quasimodel
above witnesses that φ is not a theorem of GLC.
Example 3. Quasimodels generalise dynamic poset models
(i.e. dynamic topological models with the downset topology)
in the following sense: Suppose that M is such a model, and
let Σ be any set of formulas closed under subformulas. For
w ∈ |M|, let ℓΣ(w) = {φ ∈ Σ : w ∈ JφKM}. Then, it is not
hard to check that (|M|,≺M, SM, ℓΣ) is indeed a (determ-
inistic) Σ-quasimodel. Henceforth, we will tacitly identify
dynamic poset models with their associated quasimodel.
Theorem 14. Every formula satisfiable on a quasimodel is
satisfiable on a scattered dynamical model.

We can now discuss a second example for a dynamic to-
pological system based on a scattered space.
Example 4 (second example of scattered dynamics). This
example is reminiscent of the dynamical systems considered
by Mortveit and Reidys (2008). An AI agent is presented
with a DNA sample, and it must answer ‘Yes’ or ‘No’, ac-
cording to whether it matches the culprit’s. After answer-
ing, the program runs one of two deterministic procedures
(a criminal prosecution or an acquittal). This is modelled in
a quasimodel with three states, ‘yes’, ‘no’, ‘maybe’, and the
dynamical system itself consists of the computation paths
through the automaton.

Our strategy for the remainder of the completeness proof
will therefore be to show that if φ is consistent, then it is
satisfiable on a quasimodel: from Theorem 14, this suffices
to ensure that it is indeed satisfiable on the class of scattered
dynamical systems.
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Simulating States and Simulation Formulas
In this section we introduce the notion of Σ-states, which
are local descriptions of quasimodels very similar to finite
Σ-labelled posets but with a root. The Σ-states form the uni-
verse |UΣ| of the universal state space UΣ = (|UΣ|,≺, 7→
, ℓ) of Σ, which will be used in order to establish the con-
nection between our semantic framework and the syntactic
derivations in DGL.

The structure UΣ is universal in the sense that every model
can be simulated by a Σ-state w ∈ |UΣ|. Simulations are
the correct notion of ‘embedding’ from the point of view
of modal logic, just as bisimulations are the correct notion
of ‘isomorphism.’ In the context of labelled structures, this
notion is defined as follows.
Definition 15 (labelled simulation). Given two labelled
posets A and B, a relationR ⊆ |A|×|B| is strictly forward-
confluent if a′ ≺A a and aRb implies that there is b′ ≺B b
such that a′Rb′. A labelled simulation is a strictly forward-
confluent relation χ ⊆ |A| × |B| such that wχv implies
ℓA(w) = ℓB(v).

After defining Σ-states, we will show that for each Σ-state
w there is a formula Sim(w) defining the property of being
simulated by w. We will then prove that certain derivations
in regards to Sim(w) are possible whenever some relevant
conditions on w hold. This part relies on the completeness
and finite model property of GLC (Theorem 8). We later
use this information to define the consistent restriction of UΣ

and to show that this restriction is a ‘canonical’ quasimodel.

Simulating States
We first define the ‘worlds’ of our universal structure, which
we call ‘states’.
Definition 16 (state). A state is a tuple

w = (|w|,≺w, ℓw, 0w),

where (|w|,≺w, ℓw) is a finite labelled poset and 0w is a
distinguished point such that v ≺ 0w for all v ∈ |w|.

If Σ is a set of formulas such that the range of ℓw is con-
tained in TΣ, we say that w is a Σ-state.

The set of all states is infinite, but it is essential that each
individual state be finite. The following definition provides
a useful way to measure the size of each state.
Definition 17 (norm). Given a Σ-state w we denote by
hgt(w) the maximum length of a ≺-sequence of points in
|w|. Moreover, we denote by wdt(w) the maximumN such
that there exists w ∈ |w| with N daughters which are pair-
wise ≺-incomparable.

The norm of w is then defined as

∥w∥ = max(hgt(w),wdt(w)).

Being labelled structures, the notion of simulation readily
applies to states, with the caveat that all simulations must be
root-preserving in this context.
Definition 18 (simulations between states). Let w and v be
Σ-states. We say that w simulates v if there exists a labelled
simulation χ ⊆ |w| × |v| such that 0wχ0v. We write w ◁ v
if w simulates v.

Note that compositions of simulations are simulations,
given that compositions of strictly forward-confluent rela-
tions are also strictly forward-confluent. Thus the relation
◁ is transitive. Since the identity is a simulation, it is also
reflexive. Thus ◁ is a quasiorder on the set of states. This
relation will be essential in controlling the size of states we
must consider, as when w ◁ v, it is often the case that v can
be replaced by w as far as satisfiability is concerned, even
when the latter is much smaller.

The Universal State Space
Given a set of formulas Σ, the set of Σ-states forms a weak
Σ-quasimodel. In order to see this, we first need to equip the
set of Σ-states with a suitable strict partial order.

Below, we say that a Σ-state v is a generated substructure
of a Σ-state w if |v| is a downward-closed subset of |w| with
respect to ≺w, such that ≺v = ≺w∩ (|v|× |v|) and ℓv(v) =
ℓw(v) for all v ∈ |v|.
Definition 19 (substate). Let w and v be Σ-states. We call
v a substate of w and denote it by v ≺ w if 0w ̸= 0v ∈ |w|
and v is a generated substructure of w.

We write w 7→ v if there exists a sensible relation R ⊆
|w|× |v| such that 0wR0v. We say that v is a bounded future
of w and denote it by w 7⇝ v, if w 7→ v and in addition the
following inequality is satisfied:

∥v∥ ≤ ∥w∥+
∣∣∣ ⋃
w∈|w|

{♢φ ∈ ℓw(w)}
∣∣∣.

Definition 20 (universal state space). Let Σ ⋐ L♦•
♢ and fix

K ≥ 0. We define |UK
Σ | to be the set of all Σ-states w for

which ∥w∥ ≤ (K + 1) · |Σ|.
We denote by |UΣ| the union

⋃
k<ω |Uk

Σ|, and we use it to
define the universal state space

UΣ = (|UΣ|,≺, 7→, ℓ),

where ℓ(w) = ℓw(0w).

Simulation Formulas
Next, we introduce the formulas Sim(w), which define the
property of being simulated by w. Recall from Example 3
that if M is a model, then for x ∈ |M| we defined ℓΣ(x) =
{φ ∈ Σ : x ∈ JφKM}, and that M is thus identified with
the corresponding quasimodel. Thus the proposition below
applies to both models and (weak) quasimodels.
Proposition 21 (simulation formulas). Let w be a Σ-state.
Then there exists a formula Sim(w) such that for every
scattered dynamic model M and x ∈ |M|, we have that

x ∈ JSim(w)KM ⇔ w ◁ (M, x).

There are a few important derivable properties that hold in
relation to simulation formulas and that should be discussed
before we proceed to the main part of the proof. Below, re-
call that Σ ⋐ L♦•

♢ means that Σ is finite and closed under
subformulas and single negations.

Lemma 22. Let Σ ⋐ L♦•
♢ and let w = (|w|,≺, ℓ, 0w) be

a Σ-state. Then the formula Sim(w) satisfies the following
properties:
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1. If φ ∈ ℓ(w), ⊢ Sim(w) → φ;
2. If v ◁ w, ⊢ Sim(w) → Sim(v);
3. If v ≺ w, ⊢ Sim(w) → ♢Sim(v);
4. If φ ∈ Σ, ⊢ φ→

∨
{Sim(w) : w ∈ U0

Σ, φ ∈ ℓ(w)};

5. For all w ∈ UΣ, ⊢ Sim(w) →  
∨

{Sim(v) : w 7⇝ v}.

Canonical Quasimodels
In this section we focus on constructing a canonical
quasimodel for Σ. We denote it by WΣ, which we tempor-
arily dub the canonical structure of Σ. It is the restriction of
UΣ to consistent states, i.e. states w for which ⊢ Sim(w).
We prove that WΣ is a quasimodel by showing that 7→ is
serial and ω-sensible.

Once we have all the required results, we can conclude
that DGL is complete by showing that every consistent
formula φ yields a consistent state w ∈ WΣ, where Σ =

S±(φ). Since WΣ is a quasimodel, Q⃗Σ |= φ. Since Q⃗Σ is a
scattered dynamical model, the logic DGL is complete with
respect to such models.

The Canonical Structure
We say that a Σ-state w is inconsistent if ⊢ ¬Sim(w); other-
wise it is consistent. The set of consistent Σ-states is denoted
by Cons(Σ).

Definition 23 (canonical structure). For a set of formulas
Σ, we define the canonical structure of Σ as the quadruple
WΣ = (|WΣ|,≺WΣ

, 7→WΣ
, ℓWΣ

), where

• |WΣ| = Cons(Σ);
• ≺WΣ

= ≺UΣ
∩ (Cons(Σ)× Cons(Σ));

• 7→WΣ
= 7⇝UΣ

∩ (Cons(Σ)× Cons(Σ));
• ℓWΣ = ℓUΣ ∩ (Cons(Σ)× ℘(L♦•

♢ )).

Lemma 24. Let Σ ⋐ L♦•
♢ . Then |WΣ| is open in |UΣ| and

7→WΣ is serial.

Efficiency and ω-Sensibility
There is a point of tension that we need to address before
proceeding. We need to be able to determine when a formula
of the form ♦φ will be realised, which becomes difficult as
there is an infinite number of Σ-states to consider. We deal
with this by showing that it is sufficient to consider a finite
set of efficient paths, which allows us to only consider fi-
nitely many states when evaluating each instance of ♦φ.

In the following, we let w⃗ = (wn)n≤α denote a finite path
of Σ-states.

Definition 25 (efficiency). A finite path w⃗ is called efficient
if the following conditions are satisfied:

1. For all n < α, wn 7⇝ wn+1;
2. For all i < j and states wi,wj in the path w⃗, wi ̸◁ wj .

With this we define a notion of reachability which refines
the transitive, reflexive closure of 7⇝.

Definition 26 (efficient reachability). Let w be a Σ-state.
A Σ-state v is efficiently reachable from w if there exists
a finite efficient path p⃗ = (p0, . . . , pα) of consistent states
such that p0 = w and pα = v.

We denote by ϱ(w) the set of states that are efficiently
reachable from w. The following is a deep consequence of
Kruskal’s tree theorem.
Lemma 27. For every w ∈ |WΣ|, the set ϱ(w) is finite.

We will use this result to ensure that the formulas in
Lemma 28 and Lemma 29 below have finite disjunctions and
hence are well defined.

The following derivation is required for showing that
7→WΣ is ω-sensible:
Lemma 28. Let w ∈ |WΣ|. Then

⊢
∨

v∈ϱ(w)

Sim(v) →  
∨

v∈ϱ(w)

Sim(v). (1)

We are now ready to prove that 7→WΣ is ω-sensible.
Lemma 29 (ω-sensibility). Let w ∈ |WΣ| and ♦φ ∈ ℓ(w).
Then there is v ∈ ϱ(w) such that φ ∈ ℓ(v).

Putting together the above results, we conclude that WΣ

is always a quasimodel.

Corollary 30. Given Σ ⋐ L♦•
♢ , the canonical structure WΣ

is a quasimodel.
We now have all the tools needed to prove completeness

for DGL.

Proof of Theorem 9. Recall that a logic Λ is complete if and
only if every Λ-consistent formula is satisfied on a Λ-model.

Let φ ∈ L♦•
♢ be a consistent formula, i.e. ̸⊢ ¬φ. Let Σ =

S±(φ). By Proposition 22.4, there must be some w ∈ |WΣ|
such that φ ∈ ℓ(w). By Corollary 30, WΣ is a quasimodel
satisfying φ, so that, by Theorem 14, there exists a scattered
dynamical model that satisfies φ.

Conclusion
We have exhibited the first finitely axiomatisable dynamic
topological logic in the original trimodal language. The tech-
niques employed here can be applied to related logics which
may or may not be topologically inspired, including ex-
panding products of modal logics (Gabelaia et al. 2006).
In particular, dynamic Grzegorczyk logic (DGrz) could be
treated in the same fashion, where ♢ is interpreted as closure
rather than Cantor derivative. Note, however, that the Cantor
derivative can define the topological closure, so complete-
ness for DGrz should also follow from embedding it into
DGL using proof-translation techniques.

In fact, tangle-free logics may be applicable to a wider
class of topological spaces by modifying the underlying
Boolean algebra. Instead of considering the powerset of X ,
one may consider subalgebras (i.e. regular open or closed
sets). In this setting, the tangled operators could also be trivi-
alised, eliminating the need for such operators without re-
stricting the class of topological spaces at one’s disposal.

Finally, there is the question of axiomatising the dynamic
topological logic of Aleksandroff spaces. Chopoghloo and
Moniri (2020) provided an infinitary proof system for this
class, and the results of Fernández-Duque (2014) apply in
this setting as well and rule out a finite axiomatisation. How-
ever, it is possible that a natural, finitary proof system can be
found in this setting (albeit with infinitely many axioms).
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