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Abstract

Splitting a logic program allows us to reduce the task of com-
puting its stable models to similar tasks for its subprograms.
This can be used to increase solving performance and to prove
the correctness of programs. We generalize the conditions un-
der which this technique is applicable, by considering not
only dependencies between predicates but also their argu-
ments and context. This allows splitting programs commonly
used in practice to which previous results were not applicable.

Introduction
Answer set programming (ASP; Lifschitz 2008) is a declar-
ative logic programming paradigm well-suited for solving
knowledge-intensive search problems. Its success relies on
the combination of a rich knowledge representation lan-
guage with efficient solvers for finding solutions to prob-
lems expressed in this language (Lifschitz 2019). Solutions
for logic programs in ASP are called “stable models”. Lifs-
chitz and Turner (1994) introduced a fundamental splitting
method (or, simply, splitting) in the theory of ASP. Often,
splitting is used to reduce the task of computing the stable
models of a logic program to the task of computing these
of its subprograms. Also, the splitting is used to understand
the meaning of a program in terms of its smaller compo-
nents and it has become a key instrument in constructing
proofs of correctness for logic programs (Cabalar, Fandinno,
and Lierler 2020). The original condition required to split a
logic program was generalized by Oikarinen and Janhunen
(2008) in the context of propositional programs. Also, when
stable models were defined for arbitrary first-order formu-
las (Pearce and Valverde 2005; Ferraris, Lee, and Lifschitz
2007) and infinitary propositional formulas (Truszczyński
2012), the splitting method was extended to these new set-
tings (Ferraris et al. 2009; Harrison and Lifschitz 2016).
However, when dealing with first-order formulas (logic pro-
grams with variables are often identified with first-order for-
mulas of a restricted syntactic form), the splitting condition
is not sufficiently general for some applications.

For instance, consider the following simplified fragment
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of the blocks world encoding (Lifschitz 2002):

on(B,L, T + 1)← on(B,L, T ), not non(B,L, T + 1) (1)
on(B,L, T + 1)← move(B,L, T ) (2)

non(B,L′, T )← on(B,L, T ), location(L′), L 6= L′ (3)

We are interested in splitting this fragment so that one sub-
program contains instances of these rules for all time points
before a (positive) threshold t and another contains rules
corresponding to the time points at or after t. This form
of splitting will help, for example, understanding iterative
solving of planning problems (Gebser et al. 2019) and argu-
ing correctness of action descriptions (that frequently result
in rules of the form presented in our blocks world exam-
ple). However, the proposed splitting is impossible under the
currently available Splitting Theorem for first-order formu-
las (Ferraris et al. 2009). The splitting relies on identifying
“non-circularly” dependent rules of a program. Ferraris et al.
(2009) define dependencies in terms of predicate symbols.
In our example, on/3 depends on itself in rule (1).

Here, we formulate a more general condition for the ap-
plicability of the splitting method that considers a refined
version of the dependency graph that takes into account not
only the predicate dependencies but also their arguments and
context. Among others, this makes it applicable to the dis-
cussed example. The notion of intensionality statement in-
troduced in this work is of key importance. This is a re-
finement of the idea of intensional and extensional predi-
cates (Ferraris, Lee, and Lifschitz 2011) originally stemming
from databases. It provides us with means for specifying ar-
guments of the predicates for which these are seen as inten-
sional or extensional. Thus, the same predicate symbol may
be both intensional and extensional depending on its context.
This refinement is the basis for a new Splitting result.

The rest of the paper is organized as follows. After re-
viewing some preliminaries, we introduce the notion of in-
tensionality statement. Then, we present the key ideas for
the new Splitting Theorem in the context of logic programs.
Finally, we generalize this result to first-order theories.

Preliminaries
We start by reviewing a many-sorted first-order language.
The use of a many-sorted language is motivated by its abil-
ity to formalize commonly used features of logic programs
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such as arithmetic operations (Fandinno et al. 2020; Lifs-
chitz 2021) and aggregate expressions (Fandinno, Hansen,
and Lierler 2022). We follow the presentation by Fandinno
and Lifschitz (2022, Appendix A). After the presentation
of many-sorted language, the review the logic of here-and-
there follows. Syntax and semantics of disjunctive logic pro-
grams concludes this section.

Many-sorted first-order theories. A (many-sorted) sig-
nature consists of symbols of three kinds—sorts, function
constants, and predicate constants. A reflexive and transi-
tive subsort relation is defined on the set of sorts. A tu-
ple s1, . . . , sn (n ≥ 0) of argument sorts is assigned to
every function constant and to every predicate constant; in
addition, a value sort is assigned to every function con-
stant. Function constants with n = 0 are called object con-
stants. We assume that for every sort, an infinite sequence
of object variables of that sort is chosen. Terms over a
(many-sorted) signature σ are defined recursively as usual.
Atomic formulas over σ are either (i) expressions of the form
p(t1, . . . , tn), where p is a predicate constant and t1, . . . , tn
are terms such that their sorts are subsorts of the argument
sorts s1, . . . , sn of p, or (ii) expressions of the form t1 = t2,
where t1 and t2 are terms such that their sorts have a com-
mon supersort. (First-order) formulas over signature σ are
formed from atomic formulas and the 0-place connective ⊥
(falsity) using the binary connectives ∧, ∨,→ and the quan-
tifiers ∀, ∃. The other connectives are treated as abbrevi-
ations: ¬F stands for F → ⊥ and F ↔ G stands for
(F → G) ∧ (G→ F ).

An interpretation I of a signature σ assigns

• a non-empty domain |I|s to every sort s of I , so that
|I|s1 ⊆ |I|s2 whenever s1 is a subsort of s2,

• a function f I from |I|s1 × · · · × |I|sn to |I|s to every
function constant f with argument sorts s1, . . . , sn and
value sort s, and

• a Boolean-valued function pI on |I|s1×· · ·×|I|sn to ev-
ery predicate constant p with argument sorts s1, . . . , sn.

If I is an interpretation over a signature σ then by σI we
denote the signature obtained from σ by adding, for every
element d of domain |I|s, its name d∗ as an object constant
of sort s. The interpretation I is extended to σI by defin-
ing (d∗)I = d. The value tI assigned by an interpretation I
of σ to a ground term t over σI and the satisfaction rela-
tion (denoted, |=) between an interpretation of σ and a sen-
tence over σI are defined recursively, in the usual way (Lif-
schitz, Morgenstern, and Plaisted 2008, Section 1.2.2). An
interpretation is called a model of a theory – a (possibly in-
finite) set of sentences – when it satisfies every sentence in
this theory. Some of the examples considered contain inte-
gers, function constants such as + and comparison predicate
constants such as ≤ or > (used utilizing infix notation com-
mon in arithmetic). We call these function and predicate con-
stants arithmetic. In these examples, we assume that (i) the
underlying signature contains a sort integer and (ii) interpre-
tations of special kind are considered so that they interpret
arithmetic function and predicate constants as customary in
arithmetic (see, for example, treatment of the integer sort

by Fandinno et al. (2020) and Lifschitz (2021)). If d is a tu-
ple d1, . . . , dn of domains elements of I then d∗ stands for
the tuple d∗1, . . . , d

∗
n of their names. If t is a tuple t1, . . . , tn

of ground terms then tI is the tuple tI1, . . . , t
I
n of values as-

signed to them by I .

Here-and-there. The first-order logic of here-and-there,
introduced by Pearce and Valverde (2004, 2005), forms a
monotonic base for stable model semantic (Gelfond and
Lifschitz 1988, 1991). The many-sorted case was recently
studied by Fandinno and Lifschitz (2022). By At(I) we
denote the set of ground atoms of the form p(d∗) such
that I |= p(d∗), where p is a predicate symbol and d is a
tuple of elements of domains of I . An HT-interpretation
of σ is a pair 〈H, I〉, where I is an interpretation of σ, and
H is a subset of At(I). (In terms of Kripke models with
two worlds, H describes the predicates in the here-world
and I captures the there-world). The satisfaction relation |=

ht

between HT-interpretation 〈H, I〉 of σ and a sentence F
over σI is defined recursively:
• 〈H, I〉 |=

ht
p(t), if p((tI)∗) ∈ H

• 〈H, I〉 |=
ht
t1 = t2 if tI1 = tI2;

• 〈H, I〉 |=
ht
F ∧G if 〈H, I〉 |=

ht
F and 〈H, I〉 |=

ht
G;

• 〈H, I〉 |=
ht
F ∨G if 〈H, I〉 |=

ht
F or 〈H, I〉 |=

ht
G;

• 〈H, I〉 |=
ht
F → G if (i) 〈H, I〉 6|=

ht
F or 〈H, I〉 |=

ht
G, and

(ii) I |= F → G;
• 〈H, I〉 |=

ht
∀X F (X) if 〈H, I〉 |=

ht
F (d∗) for each

d ∈ |I|s, where s is the sort of X;
• 〈H, I〉 |=

ht
∃X F (X) if 〈H, I〉 |=

ht
F (d∗) for some

d ∈ |I|s, where s is the sort of X .
If 〈H, I〉 |=

ht
F holds, we say that 〈H, I〉 satisfies F and that

〈H, I〉 is an HT-model of F . If two formulas have the same
HT-models then we say that they are HT-equivalent.

It is easy to see that (At(I), I) is an HT-model of a sen-
tence F whenever I is a model of F . About a model I of
a theory Γ, we say it is stable if, for every proper subset H
of At(I), HT-interpretation 〈H, I〉 does not satisfy Γ. In ap-
plication to theories of a single sort, this definition is equiva-
lent to the original definition by Pearce and Valverde (2004,
2005). In addition, if the theory is finite, then this defini-
tion of a stable model is also equivalent to the definition of
such model in terms of the operator SM (Ferraris, Lee, and
Lifschitz 2007, 2011), when all predicate are considered to
be intensional. We generalize the distinction between inten-
sional and extensional predicates in the next section.

Disjunctive logic programs. A disjunctive rule is a for-
mula of the form Head ← Body where Head is a list of
atomic formulas and Body is a list of literals, that is, atomic
formulas possibly preceded by one or two occurrences of
negation not. A disjunctive program is a (possibly infinite)
set of disjunctive rules. We identify each rule Head ← Body
with the universal closure of the formula B → H , where B
is the conjunction of all literals in Body after replacing not
by ¬; and H is the disjunction of all atomic formulas
in Head . We often write rules as formulas B → H omitting
the reference to the universal closure. For instance, rule (1)
is understood as the universal closure of formula

on(B,L, T ) ∧ ¬non(B,L, T )→ on(B,L, T + 1). (4)
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We may also write rule (1) in this form. We assume that
variable T in rules (1-3) is of sort integer. In examples, we
assume that any variable that is used as argument of an arith-
metic function is of this sort. Under these assumptions, the
definition of stable models of sets of sentences stated earlier
also applies to (possible infinite) disjunctive logic programs
with arithmetic. Note that these assumptions are enough to
showcase all examples in this paper. For a more general
characterization of how sorts are assigned to variables, we
refer to Fandinno et al. (2020) and Lifschitz (2021).

Stable Models with Intensionality Statements
The distinction between extensional and intensional predi-
cates (Ferraris, Lee, and Lifschitz 2011) describes the inher-
ent meaning of a group of rules in a precise way; and it is
similar to the distinction between input and non-input atoms
by Oikarinen and Janhunen (2008). It is sometimes conve-
nient to treat words extensional and intensional as synony-
mous to words input and defined, respectively. Intuitively,
the meaning of input predicate symbols is not fixed within
the considered group of rules; these rules may constrain the
interpretations of such predicate symbols but they do not
“define” them. To the contrary, intensional predicate sym-
bols can be viewed as defined by the group. For instance,
consider rules (1-3) that we denote as Πblock . Let us elab-
orate on the meaning of Πblock . Intuitively, Πblock captures
the behavior of the property on/3 that changes when rele-
vant movement occurs and otherwise it obeys the common-
sense law of inertia (i.e., that things stay as they are unless
forced to change). To obtain such a reading of Πblock pred-
icates move/3 and location/3 should be declared as exten-
sional. On the other hand, predicates on/3 and non/3 should
be declared as intensional as their behavior is defined by
rules in Πblock . It looks as such separation of predicate sym-
bols allows us to identify Πblock with its intuitive meaning
and yet the devil is in the details. The reading that we have
stated fails to mention the special case of the initial situation.
At the initial state, i.e., when T = 0, we do not assume that
rules in Πblock define on/3, rather that these values are spec-
ified elsewhere. Thus, we would like to declare that on/3 is
extensional in the initial situation (when T = 0) and inten-
sional in all other situations (when T 6= 0). However, the
granularity desired for this example is not currently possible
because the distinction between extensional and intensional
by Ferraris, Lee, and Lifschitz (2011) is made at the predi-
cate level, disregarding the context provided by their argu-
ments. We address this issue here.

We generalize the idea of distinguish between extensional
and intensional predicate symbols by allowing the possibil-
ity to declare circumstances under which a predicate symbol
is considered to be intensional (if these circumstances are
not the case the predicate symbol is considered extensional).
This is achieved by associating a first-order formula with
each predicate constant. For instance, in Πblock associating
predicate symbol on/3 with the formula T 6= 0 will result
in proper treatment of its rules respecting not only their core
meaning but also the corner case of the initial situation.

Formally, we identify each predicate symbol p/n with
an atom of the form p(X1, . . . , Xn), where X1, . . . , Xn

are pairwise distinct variables of appropriate sorts. An in-
tensionality statement λ over a signature σ is a func-
tion mapping each predicate symbol p/n in σ to a for-
mula F (X1, . . . , Xn) such that
• X1,. . .,Xn are the only free variables in F (X1,. . .,Xn),
• every predicate symbol q/m in F satisfies λ(q/m) ≡ ⊥.

We abbreviate λ(p/n)(X1,. . ., Xn) as λp(X1,. . ., Xn) when
arity n is clear from the context. We say that a predicate sym-
bol is (purely) intensional/extensional when it is associated
with a valid/unsatisfiable formula, respectively.

Consider, for instance, predicate symbol on/3 and let
λon(B,L, T ) be formula T 6= 0. Intuitively, this intension-
ality statement states that all ground atoms formed by pred-
icate constant p with the third argument different from 0
are intensional; if the third argument is 0, then they are ex-
tensional. The complete intensionality statement, which we
call β, for our motivating example follows:

βon(B,L, T ) is T 6= 0

βnon(B,L, T ) is >
βmove(B,L, T ) is ⊥

βlocation(L) is ⊥
β≺(X1, X2) is ⊥ for any comparison ≺

(5)

It states that predicate move and all comparison symbols are
purely extensional, non is purely intensional and on is in-
tensional under all circumstances except the initial situation.

Let σ be a signature and λ be an intensionality statement
over σ. By EM (λ), we denote the set consisting of a sen-
tence of the form

∀X (¬λp(X)→ p(X) ∨ ¬p(X))

for every predicate symbol p/n in σ, where X is a tuple of
variables of the appropriate length and sort (in the sequel we
adopt this convention and use X to denote tuples of vari-
ables). For a theory Γ over σ, we say that an interpretation I
is λ-stable if it is a stable model of Γ∪EM (λ). Note that, if
every predicate symbol is intensional in λ, then the λ-stable
models coincide with the stable models.

For example, let F be the rule
p(X, 1)→ p(X, 2) (6)

and let λp(X1, X2) be formula X2 = 2 (we assume both ar-
guments of p/2 be of sort integer). The intensionality state-
ment formula EM (λ) is the universal closure of

¬(X2 = 2)→ p(X1, X2) ∨ ¬p(X1, X2).

The following sets of ground atoms correspond to the four
λ-stable models of F with domain {1, 2}

∅ {p(1, 1), p(1, 2)} {p(2, 1), p(2, 2)}
{p(1, 1), p(2, 1), p(1, 2), p(2, 2)},

where we list the atoms that are true in these models (as
customary in logic programming). As a more elaborated ex-
ample, we can see that an interpretation I that satisfies

locationI = {l1, l2} moveI = {(b, l2, 0)}
onI = {(b, l1, 0)} ∪ {(b, l2, t′) | t′ > 0}

nonI = {(b, l2, 0)} ∪ {(b, l1, t′) | t′ > 0}
is a β-stable model of Πblock .
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Strong Equivalence with Intensionality
Statements

Informally, two programs are strongly equivalent if one can
replace the other in any context without changing the sta-
ble models of the program (Lifschitz, Pearce, and Valverde
2001, 2007). Let Γ1 and Γ2 be theories over the same sig-
nature σ. We say that sets Γ1 and Γ2 are strongly equiva-
lent with respect to an intensionality statement λ (or, sim-
ply λ-strongly equivalent) if Γ1 ∪ ∆ and Γ2 ∪ ∆ have the
same λ-stable models for any theory ∆ over σ.

By definition of λ-stable model, we immediately obtain
the following sufficient condition for λ-strong equivalence.
Proposition 1 If Γ1 ∪ EM (λ) and Γ2 ∪ EM (λ) have the
same HT-models, then Γ1 and Γ2 are λ-strongly equivalent.
Proposition 1 allows us to conclude that we can replace,
without changing the β-stable models, rule (1) in Πblock by
rules

on(B,L, T + 1)← on(B,L, T ), (7)
not non(B,L, T + 1), T < t

on(B,L, T + 1)← on(B,L, T ), (8)
not non(B,L, T + 1), T ≥ t

where t is any positive integer. Note that (7) and (8) are ob-
tained from rule (1) by respectively adding T < t and T ≥ t
to its body. In fact (1) is λ-strong equivalent to to {(7), (8)}
for every λ where comparison symbols are extensional.
Analogous rewritings can be performed on the remaining
rules of Πblock . By Π<

block we denote the program obtained
from Πblock by adding T < t to the body of rules (1) and (2),
and adding T ≤ t to the body of rule (3). By Π>

block we de-
note the program obtained from Πblock by adding T ≥ t to
the body of rules (1) and (2), and adding T > t to the body of
rule (3). Programs Πblock and Π<

block ∪Π>
block are β-strongly

equivalent. We use program Π<
block ∪Π>

block to showcase our
Splitting method in the following section. In particular, the
proposed method allows us to split this program into its two
subcomponents Π<

block and Π>
block .

Splitting Theorem with Intensionality
Statements

To make the key results of this work comprehensible, we
describe our Splitting method using two settings. First, we
introduce the core ideas of the method in a restricted context,
where considered theories are composed of disjunctive rules.
Then, we generalize the method to arbitrary theories.

Splitting Disjunctive Programs
The statement of the proposed Splitting Theorem refers to
the concept of the predicate dependency graph defined be-
low. This definition, requires the notion of a partition of an
intensionality statement. Formally, given two intensionality
statement, λ1 and λ2, over a signature σ by λ1 t λ2 we de-
note the intensionality statement defined as
(λ1 t λ2)p(X1, . . . , Xn) = λp

1(X1, . . . , Xn) ∨ λp
2(X1, . . . , Xn).

for every predicate symbol p in the signature. By λ1 u λ2, we
denote the intensionality statements defined as
(λ1 u λ2)p(X1, . . . , Xn) = λp

1(X1, . . . , Xn) ∧ λp
2(X1, . . . , Xn).

for every predicate symbol p. Intensionality statements λ1

and λ2 are equivalent if the universal closure of formula

λp1(X1, . . . , Xn)↔ λp2(X1, . . . , Xn)

is logically valid for every predicate symbol p. If λ1

and λ2 are equivalent, then we write λ1 ≡ λ2. By λ>
and λ⊥ we denote the intensionality statements where
all predicate symbols are intensional and extensional, re-
spectively. Intensionality statements λ1 and λ2 are called
disjoint if λ1 u λ2 ≡ λ⊥. A set of intensionality state-
ments {λ1, . . . , λk} is called a partition of some intension-
ality statement λ if λ1 t . . . t λk ≡ λ and λi u λj ≡ λ⊥ for
all i 6= j. For instance, we can see that {β1, β2} is a partition
of intensionality statement β, where β1 and β2 are obtained
from β by modifying the formulas associated with predicate
constants on and non as follows:

βon
1 (B,L, T ) is T 6= 0 ∧ T ≤ t

βnon
1 (B,L, T ) is T ≤ t
βon

2 (B,L, T ) is T > t

βnon
2 (B,L, T ) is T > t.

(9)

An occurrence of a predicate constant, or any other subex-
pression, in a formula is called negated if it occurs in the
scope of negation (i.e in the antecedent of any implication of
the form F → ⊥); nonnegated otherwise. As an example,
predicate constant on occurs nonnegated in the antecedent
of (4), while non does not. Given a program Π (understood
as a set of sentences) and a partition Λ of some intension-
ality statement λ, the (directed) graph of dependencies with
respect to Λ, denoted GΛ(Π), is defined as follows:
• Its vertices are pairs (p, λi) such that p is a predicate sym-

bol occurring in Π, λi ∈ Λ is an intensionality statement
and ∃Xλpi (X) is satisfiable.

• It has an edge from (p, λi) to (q, λj) when for some
rule B → H of Π,
– p(t) occurs in H , and
– there is a nonnegated occurrence of q(r) in B and
– the following sentence is satisfiable

∃X
(
B ∧ p(t) ∧ λpi (t) ∧ λqj(r)

)
, (10)

where X are the free variables in B → H .
We say that a partition Λ = {λ1, . . . , λk} is separable
(on GΛ(Π)) when

every infinite walk v1, v2, . . . of GΛ(Π) visits at most
one λi infinitely many times, that is, there is some i ∈
{1, . . . , k} s.t {l | vl =(p, λj)} is finite for all j 6= i.

Note that, if (the signature of) Π is finite, every possible in-
finite walk must contain a cycle and, thus, this condition
is equivalent to saying that every cycle is confined to one
component of the partition. In general, checking cycles is
not enough for infinite programs, even when these programs
contain no variables (Harrison and Lifschitz 2016).

Continuing with our running example, let Π′block =
Π<

block ∪ Π>
block and Λblock = {β1, β2} be partition of β.

Then, graph GΛblock
(Π′block ) consists of vertices

(on, β1), (on, β2), (non, β1), (non, β2)
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and contains five edges: one leading from (on, β1) to it-
self, another one leading from (on, β2) to itself, one lead-
ing from (on, β2) to (on, β1) — induced by rule (8) — and
two leading from (non, βi) to (on, βi) with 1 ≤ i ≤ 2. Note
that there is no edge from (on, β1) to (on, β2). For in-
stance, we can see that rules (7) and (8) do not induce such
edge because the sentence of the form (10) corresponding to
these rules contain conjuncts T + 1 ≤ t and T > t, which
make them unsatisfiable. Conjunct T + 1 ≤ t is obtained
from βon

1 (B,L, T+1) corresponding to the head occurrence
of on/3. The other conjunct is obtained from βon

2 (B,L, T )
corresponding to its body occurrence. Therefore, parti-
tion Λblock is separable.

A program Π is negative on some intensionality state-
ment λ if, for every rule B → H of Π and every atom p(t)
occurring in H , the following sentence is unsatisfiable

∃X (B ∧ p(t) ∧ λp(t)),

where X are the free variables inB → H . For instance, pro-
grams Π<

block and Π>
block are negative on β2 and β1, respec-

tively. We provide a part of an argument for the claim that
Π<

block is negative on β2. In particular, we argue that rule (7)
is negative on β2. This rule has on(B,L, T + 1) in its head
and T < t in its body. It is sufficient to show that a formula
of the form

∃BLT (F ∧ T < t ∧ βon
2 (B,L, T + 1)),

is unsatisfiable. Recall that βon
2 (B,L, T + 1) is T + 1 > t.

Theorem 1 (Splitting disjunctive programs) Let Π=Π1∪
. . .∪Πnbe a disjunctive program and Λ={λ1, . . . , λn} be a
partition of λ such that
• Λ is separable on GΛ(Π); and
• each Πi is negative on λj for all j 6= i.

Then, for any interpretation I , the following two statements
are equivalent
• I is a λ-stable model of Π, and
• I is a λi-stable model of Πi for all 1 ≤ i ≤ n.

Recall that partition Λblock is separable on GΛblock
(Π′block )

and that programs Π<
block and Π>

block are negative on β2

and β1, respectively. Therefore, the theorem on Splitting dis-
junctive programs allows us to conclude that the β-stable
models of Π′block are those interpretations that are at the
same time β1-stable models of Π<

block and β2-stable mod-
els of Π>

block . As a final note, recall that Πblock and Π′block
are β-strongly equivalent and, thus, they have the same
β-stable models. Hence, the statement that we can split pro-
gram Πblock into programs Π<

block and Π>
block is a conse-

quence of these two facts stemming from presented Theo-
rem 1 and Proposition 1, respectively.

Splitting Arbitrary Theories
We now generalize Theorem 1 on Splitting disjunctive pro-
grams to the case of arbitrary sets of sentences. We start
by motivating this generalization and then proceed to its
formalization. Complex formulas not fitting into the syn-
tax of disjunctive rules naturally appear as a result of trans-
lating some common constructs of logic programs into

first-order formulas. These constructs include basic arith-
metic operations such as division, which are part of the
ASP-Core-2 (Calimeri et al. 2012), and more advanced
features such as intervals, or conditional literals Intervals
and conditional literals are part of the language of the
solver clingo (Gebser et al. 2015) and are commonly used
in practice. For instance, the following rule contains a con-
ditional literal holds(B) : body(R,B) in its body:

holds(H)← head(R,H), holds(B) : body(R,B). (11)

Hansen and Lierler (2022) showed that this rule can be un-
derstood as an abbreviation for the following first-order sen-
tence containing a nested universal quantifier and a nested
implication

∀RH
(
head(R,H)∧

∀B
(
body(R,B)→ holds(B)

)
→ holds(H)

)
. (12)

Rules of this kind are common in what is called meta-
programming (Kaminski et al. 2021), where reification of
constructs is utilized to build ASP-based reasoning engines
that may go beyond ASP paradigm itself. Kaminski et al.
(2021) presented multiple examples of meta-programming.
Here, we use rule (11) to showcase a simple use of this tech-
nique. Indeed, it can be used to express the meaning of a def-
inite rule – a disjunctive rule whose Head consists of single
atomic formula and Body contains no occurrences of nega-
tion not – encoded as a set of facts. For example, definite
program

a← b
b← c

(13)

can be encoded by the following facts complemented with
rule (11)

head(r1, a) body(r1, b) (14)
head(r2, b) body(r2, c). (15)

Clearly, we can split the program listed in (13) into two sub-
programs, each consisting of a single rule. We may expect
the possibility of splitting its respective meta encoding as
well. Consider sentences

∀X
(
head(r1, X)∧
∀W

(
body(r1,W )→ holds(W )

)
→ holds(X)

) (16)

∀X
(
head(r2, X)∧
∀W

(
body(r2,W )→ holds(W )

)
→ holds(X)

) (17)

corresponding to a “partially instantiated” portion of meta
encoding of program (13). Ideally, the program correspond-
ing to sentences (14-17) would be “identified” with subpro-
grams (14,16) and (15,17) by splitting. Yet, Theorem 1 can-
not support such a claim as (16) and (17) are not disjunc-
tive rules. This claim is also not supported by other Split-
ting Theorems in the literature (Ferraris et al. 2009; Har-
rison and Lifschitz 2016) due to the “positive nonnegated”
dependency induced by these rules in the predicate hold/1
(we define the concept of positive nonnegated dependency
below).

6342



Formalization The first thing to note is that one direction
of the Splitting Theorem always holds without need to in-
spect the dependency graph.

Proposition 2 Let Γ=Γ1∪. . .∪ Γnbe a theory and let Λ=
{γ1, . . . , γn} be a partition of λ. If I is a λ-stable model of Γ,
then I is a γi-stable model of Γi for all 1 ≤ i ≤ n.

For the other direction, we have to generalize the notions
of separability and of being negative to the case of arbitrary
sentences. Similar to the Splitting Theorem by Ferraris et al.
(2009), this generalization relies on the notions of strictly
positive, positive nonnegated, and negative nonnegated oc-
currence of an expression. An occurrence of an expressions
is called positive if the number of implications containing
that occurrence in the antecedent is even; and strictly posi-
tive if that number is 0. It is called negative if that number
is odd. As in the case of logic programs, an occurrence of
an expressions is called negated if it belongs to a subfor-
mula of the form ¬F (that is, F → ⊥); and nonnegated
otherwise. A rule is a strictly positive occurrence of a for-
mula of the form B → H . Therefore, the rules of a set of
disjunctive rules are exactly all its disjunctive rules, but this
definition also covers arbitrary nested rules. For instance,
sentence (c→ (a→ b)) ∨ d) contains two occurrences of
rules, namely, a→ b and c→ (a→ b).

To extend Theorem 1 to arbitrary formulas, we use these
notions to make the construction of a counterpart of sen-
tence (10) recursive over the formula. In addition, we ought
to incorporate in this construction a context that carries in-
formation about the rest of the program. To observe the
need for this context, note that whether rules (16) and (17)
can be separated into differ subprograms depends on the
extension of head/2 and body/2. For instance, adding the
fact body(r2, a) to our program creates a dependency that
cannot be broken. In fact, this new program has the same
meaning as a non-splittable program consisting of rules
a← b and b← c, a.

Given a formula F with free variables X and a theory Ψ,
by FΨ we denote formula F itself if Ψ ∪ {∃XF} is satis-
fiable; and ⊥ otherwise. Let now p(t) be a strictly positive
(resp. positive nonnegated or negative nonnegated) “distin-
guished” occurrence of predicate p in F and Y a list of
variables not occurring in F of the same length and sorts
as t. We recursively build formula SpΨ(F ) (resp. PnnΨ(F )
and NnnΨ(F )) for this occurrence as described next; the
construction of these three formulas only differs in the case
of implication, so we use the metavariable FunΨ(F ) for the
common cases:

• If Ψ ∪ {∃XF} is unsatisfiable, then FunΨ(F ) = ⊥.
• If Ψ∪{∃XF} is satisfiable and the distinguished occur-

rence p(t) does not occur in F , then FunΨ(F ) = F .

Otherwise,

• FunΨ(p(t)) = p(t) ∧Y = t;
• FunΨ(F1 ∧ F2) = FunΨ(F1) ∧ FunΨ(F2);
• FunΨ(F1 ∨ F2) = FunΨ(Fi) with Fi containing the oc-

currence (i is 1 or 2);
• FunΨ(∀XF ) = FunΨ(∃XF ) = ∃X

(
FunΨ(F )

)
;

• SpΨ(F1 → F2) = FΨ
1 ∧ SpΨ(F2);

• PnnΨ(F1 → F2) ={
NnnΨ(F1) if F1 contains the occurrence
FΨ

1 ∧ PnnΨ(F2) otherwise
;

• NnnΨ(F1 → F2) ={
PnnΨ(F1) if F1 contains the occurrence
FΨ

1 ∧NnnΨ(F2) otherwise
.

Note that PnnΨ(F ) and NnnΨ(F ) are mutually recursive
due to the case of implication. Examples illustrating the con-
struction of these formulas follow the next definition.

Given theories Γ and Ψ and a partition Λ of some in-
tensionality statement λ, the (directed) graph of positive
dependencies with respect to Λ and under context Ψ, de-
noted GΛ,Ψ(Γ), is defined as follows:

• Its vertices are pairs (p, λi) such that p is a predicate
symbol, λi ∈ Λ is an intensionality statement and the-
ory Ψ ∪ {∃Xλpi (X)} is satisfiable.

• It has an edge from (p, λi) to (q, λj) when for some
rule B → H of Γ, the following conditions hold

– there is a strictly positive occurrence p(t) in H ,
– there is a positive nonnegated occurrence of q(r) inB,
– the theory below is satisfiable,

Ψ ∪
{
∃XYZ

(
PnnΨ(B) ∧ SpΨ(H) ∧ λq

j(Y) ∧ λp
i (Z)

)}
,

where X are the free variables in B → H , and Y
and Z respectively are the free variables in formu-
las PnnΨ(B) and SpΨ(H) that are not in X; in the
construction of SpΨ(H) and PnnΨ(B) we consider
occurrences p(t) in H and q(r) in B, respectively.

Take sentence F1 = q ∨ (r ∧ p) and rule F1 → p. Note
that p occurs positively nonnegated in F1. We consider this
occurrence p when constructing formulas Pnn(·)(F1) be-
low. Assume that p is intensional in λ (i.e., λp ≡ >) and
that Λ is a partition of λ. On the one hand, if we consider
the empty context, then Pnn∅(F1) is r ∧ p and the depen-
dency graph of F1 → p with respect to Λ and the empty
context contains a reflexive edge on vertex (p, λ). On the
other hand, if we take context Ψ1 = {¬r}, then PnnΨ1

(F1)
is ⊥ and the dependency graph with respect to Λ and Ψ1

is empty. This example shows that, even on propositional
formulas, the use of context leads to less dependencies than
previous approaches such as (Ferraris et al. 2009; Harrison
and Lifschitz 2016). This leads to the fact that the Splitting
Theorem introduced in the sequel is applicable to more the-
ories as it relies on this new notion of dependencies. This
difference may appear even using the empty context. Take
a theory consisting of formula

(
q ∨ (⊥ ∧ p)

)
→ p. It turns

out that p never contributes any edge in our approach under
any context. For the same theory, p always forms a depen-
dency in the earlier papers. Consider now a small variation.
Let p be a unary predicate and let F2 = q ∨ ∃X

(
r ∧ p(X)

)
.

Note that Pnn∅(F2) = ∃X(r ∧ p(X) ∧ Y = X) and
PnnΨ1

(F2) = ⊥, where we construct these formulas for
occurrence p(X). Under the empty context, analogously to
the previous example, the dependency graph of F2 → p(1)
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contains a reflexive edge on vertex (p, λ). Under context Ψ1,
the dependency graph is empty.

Construction of SpΨ(F ), PnnΨ(F ) and NnnΨ(F ) ref-
erence a “distinguished” occurrence, as there may be mul-
tiple occurrences of the same atomic formula. For in-
stance, there are two occurrences of formula p(X) in sen-
tence F3 defined as ∃X(X=a∧p(X))∨(X=b∧p(X));
for this sentence Pnn∅(F3) is ∃X(X=a∧p(X)∧Y =X),
when the first occurrence of p(X) is considered;
and ∃X(X=b∧p(X)∧Y =X), when the second one is
considered. Take Ψ2 to be the theory containing sen-
tence ¬p(b) only, then PnnΨ2(F3) remains unmodified for
the first occurrence of p, but becomes ⊥ for the second one.
As a consequence, in a context where p(b) is false, the first
occurrence may generate an edge in the dependency graph,
while the second occurrence does not generate any. Note
that in all considered examples so far, Sp(·)(·) is the same
as Pnn(·)(·) due to the lack of implications.

We now explore the meta encoding example introduced
earlier. Let B denote the antecedent of rule (16) and H
denote its consequent holds(X). Under the empty context,
Pnn∅(B) for the only occurrence of holds/1 in B is

head(r1, X) ∧ ∃W
(
body(r1,W ) ∧ holds(W ) ∧ Y = W

)
;

and Sp∅(H) for the only occurrence of holds/1 in H
is holds(X)∧X = Z. Let γ1 and γ2 be intensionality state-
ments where head and body are extensional and

γholds1 (X1) is X1 = a γholds2 (X1) is X1 = b.

Then, the singleton theory with the existential closure of

Pnn∅(B) ∧ Sp∅(H) ∧ γholdsj (Y ) ∧ γholdsi (Z) (18)

is satisfiable for any i, j ∈ {1, 2}. For a theory containing
rule (16), the graph of positive dependencies with respect to
{γ1, γ2} and under the empty context contains an edge from
vertex (holds , γ1) to vertex (holds , γ2), and vice-versa; to-
gether with reflexive edges in both vertices. Let Ψ3 be the
theory consisting of the universal closures of formulas

head(r1, X)↔ X = a head(r2, X)↔ X = b

body(r1, X)↔ X = b body(r2, X)↔ X = c.

Then, SpΨ3
(H) = Sp∅(H) and PnnΨ3

(B) = Pnn∅(B).
The union of Ψ3 and the singleton theory consisting of
the existential closure of formula (18) is satisfiable only
with i = 1 and j = 2. Therefore, under this context, the
graph of positive dependencies from the previous example
contains an edge from (holds , γ1) to (holds , γ2) but not
vice-versa. There are no reflexive edges either. In fact, un-
der this context the positive dependency graph of (16-17)
only contains this edge.

Let us now generalize the notion of being a negative oc-
currence to the case of arbitrary theories. We say that a
theory Γ is Ψ-negative on some intensionality statement λ
if, for every rule B → H of Γ and every strictly positive
occurrence p(t) in H , the following theory is unsatisfiable
Ψ ∪ {∃XY (B ∧ SpΨ(H) ∧ λp(Y))}, where X consists of
the free variables inB → H; Y consists of the free variables

in SpΨ(H) that do not occur in X; and we consider occur-
rence p(t) in H in the construction of SpΨ(H). We also say
that theory Ψ is an λ-approximator of Γ if all the λ-stable
models of Γ are models of Ψ.
Theorem 2 (Splitting Theorem) Let Γ = Γ1∪ . . . ∪ Γn, λ
be an intensionality statement, and Ψ be an λ-approximator
of Γ. Let Λ={λ1, . . . , λn} be a partition of λ such that
• Λ is separable on GΛ,Ψ(Γ); and
• each Γi is Ψ-negative on λj for all j 6= i.

Then, the following two statements are equivalent
• I is a λ-stable model of Π, and
• I is a model of Ψ and a λi-stable model of Πi for all
i ∈ {1, 2, 3}.

Continuing with our meta encoding example, in addition
to γ1 and γ2, we define γ3 to be the intensionality state-
ment where head/2, body/2 are intensional and holds/1 is
extensional. Let γ be γ1 t γ2 t γ3. It is easy to see that
{γ1, γ2, γ3} is a partition of γ. Let Γ1 and Γ2 be the single-
ton theories consisting of (16) and (17), respectively; let Γ3

consist of facts in (14-15), and let Γ denote Γ1 ∪ Γ2 ∪ Γ3.
Partition Λ = {γ1, γ2, γ3} is separable on GΛ,Ψ3

(Γ). We
also can see that Γi is negative on γj under context Ψ3 for
all j 6= i. Therefore, by Theorem 2, the γ-stable models
of Γ are the models of Ψ3 that are γi-stable models of Γi for
all i ∈ {1, 2, 3}. The intent of context Ψ3 is to carry informa-
tion from one part of the theory into another. In our example
all models of Ψ3 are γ3-stable models of Γ3. Hence, we can
simply say that the γ-stable models of Γ are the interpreta-
tions that are γi-stable models of Γi for all i ∈ {1, 2, 3}.

It is worth noting that the empty theory approximates any
theory. When such theory is considered in the presented
theorem, it more closely resembles the Splitting Theorem
by Ferraris et al. (2009). In general, we can use the the-
ory itself, its completion (Ferraris, Lee, and Lifschitz 2011;
Fandinno and Lifschitz 2022) or the completion of a part of
it as a “more precise” approximator.

Conclusions
The concept of intensionality statements introduced here
provides us with a new granularity on considering semantics
of logic programs and its subcomponents. It also paves a way
to the refinement of earlier versions of the Spltting method.
We generalized the conditions under which this method can
be applied to first-order theories and show how the result-
ing approach covers more programs commonly used in prac-
tice. This generalization comes at a price. The conditions of
the Splitting Theorem by Ferraris et al. (2009) are syntactic,
while our conditions rely on verification of semantic prop-
erties. In fact, deciding whether there is an edge in our de-
pendency graph is, in general, undecidable. For instance, a
program containing rules p← q, t = 0 and q ← p, where t
is a polynomial, can be split into subprograms each contain-
ing of one of these rules only if the Diophantine equation in
the body has no solutions. However, we illustrated that for
many practical problems the Splitting result of this paper is
applicable. In the future, we will investigate the possibility to
utilize first-order theorem provers for checking the required
semantic conditions.
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