
Evaluating Epistemic Logic Programs via
Answer Set Programming with Quantifiers

Wolfgang Faber, Michael Morak
University of Klagenfurt, Austria

wolfgang.faber@aau.at, michael.morak@aau.at

Abstract

In this paper we introduce a simple way to evaluate epistemic
logic programs by means of answer set programming with
quantifiers, a recently proposed extension of answer set pro-
gramming. The method can easily be adapted for most of the
many semantics that were proposed for epistemic logic pro-
grams. We evaluate the proposed transformation on existing
benchmarks using a recently proposed solver for answer set
programming with quantifiers, which relies on QBF solvers.

1 Introduction
Answer Set Programming (ASP) is a generic, fully declar-
ative logic programming language that allows users to en-
code problems such that the resulting output of the pro-
gram (called answer sets) directly corresponds to solutions
of the original problem (Gelfond and Lifschitz 1988, 1991;
Brewka, Eiter, and Truszczynski 2011; Schaub and Woltran
2018).

Epistemic Logic Programs (ELPs) are an extension of
ASP with epistemic operators. Originally introduced as the
two modal operators K (“known” or “provably true”) and
M (“possible” or “not provably false”) by Gelfond (Gelfond
1991, 1994), epistemic extensions of ASP have received re-
newed interest (c.f. e.g. (Gelfond 2011; Truszczynski 2011;
Kahl 2014; del Cerro, Herzig, and Su 2015; Shen and Eiter
2016; Son et al. 2017; Kahl and Leclerc 2018; Faber, Morak,
and Woltran 2019; Morak 2019)), with refinements of the se-
mantics and proposals of new language features. Further, the
development of efficient solving systems is underway with
several efficient systems now available (Kahl et al. 2015;
Son et al. 2017; Bichler, Morak, and Woltran 2020).

Example 1. A classical example for the use of epistemic
operators is the presumption of innocence rule

innocent(X )← ¬K guilty(X ),

namely: a person is innocent if they cannot be proven guilty.

Recently, another language extension for ASP has been
proposed, named ASP with Quantifiers, or ASP(Q) (Amen-
dola, Ricca, and Truszczynski 2019), which introduces an

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

explicit way to express quantifiers and quantifier alterna-
tions in ASP, reminiscent of Quantified Boolean Formulas
(QBFs), but also different in spirit. It has the form

�1P1�2P2 · · ·�nPn : C,

where the Pi are classical ASP programs, �i are quantifiers,
and C expresses a set of constraints in ASP.
Example 2. The intuitive reading of the ASP(Q) program

∃P1∀P2 : C

is that there exists an answer set A1 of ASP program P1

such that for each answer set A2 of the ASP program P2

combined with A1 as facts, A2 satisfies the constraints C.
Since evaluating ASP(Q) programs is PSPACE-complete

in general (Amendola, Ricca, and Truszczynski 2019), this
formalism forms an interesting target for rewriting ELPs. In
this paper, we propose such a rewriting, where, given an
ELP Π, we create an ASP(Q) program that is consistent
if and only if Π has a world view. This happens by using
the ASP(Q) quantifiers to directly encode the semantics of
world views of ELPs, and, in turn, the existence the relevant
stable models inside of that world view. We then experimen-
tally verify that this encoding, together with a QBF solver-
based ASP(Q) solver, indeed performs well, compared to
current ELP solvers.

Contributions. The results and contributions presented in
this paper can be summarized as follows.
• We specify a rewriting from ELPs to ASP(Q) programs

in such a way that it preserves consistency. This rewrit-
ing also allows us to extract information about the world
views of the original ELPs by evaluating the outermost
quantifier block of the obtained ASP(Q) program. We
show that our rewriting is flexible in the sense that it is
applicable to all known semantics of ELPs, as long as
they are based on the notion of an epistemic reduct.

• We implement a rewriting tool that performs our rewrit-
ing on real-world ELP instances under the well-known
G94 semantics for ELPs (Gelfond 1991, 1994).

• We compare the performance of evaluating ELPs via our
rewriting tool and state-of-the-art ASP(Q) solvers versus
several existing ELP solvers. We observe that, indeed,
our ASP(Q) rewriting approach shows competitive per-
formance.

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

6322



Related Work. Most ELP solvers build upon an underly-
ing ASP solver that is called multiple times in a procedural,
sequential manner (Leclerc and Kahl 2018). The selp sys-
tem (Bichler, Morak, and Woltran 2020) follows a similar
approach to the one proposed in this paper, since it tries to
rewrite an ELP into a non-ground ASP program with fixed
arity in order to then use a single call to an ASP solver to
establish the consistency of the input ELP. In this work, we
try to follow a similar approach by rewriting ELPs to the
language of ASP(Q). This is due to the fact that ASP(Q) al-
lows one to easily express the quantification that is needed to
write an intuitive encoding of the ELP semantics. However,
other target languages that follow a similar idea would be
available, including the stable-unstable semantics (Bogaerts,
Janhunen, and Tasharrofi 2016), for which a solver imple-
mentation has recently been proposed (Janhunen 2022), but
also the language of Quantified ASP (Fandinno et al. 2021),
which follows a similar approach to ASP(Q), but does not
quantify over answer sets but over atoms. We found the lan-
guage of ASP(Q) to be very intuitive to use in practice, as
well as having several solver implementations available, and
hence chose this as our target language in this paper.

Structure. The remainder of the paper is structured as fol-
lows. In Section 2, we provide an overview of ELPs and
ASP(Q). In Section 3, we present our rewriting of ELPs
to ASP(Q). We then perform an experimental evaluation in
Section 4. We conclude with a summary in Section 5.

2 Preliminaries
Answer Set Programming (ASP). We only give a very
brief overview of the core language. For more informa-
tion, we refer to standard literature (Brewka, Eiter, and
Truszczynski 2011; Gebser et al. 2012; Lifschitz 2019), and,
in our case, the ASP-Core-2 input language format (Calimeri
et al. 2020).

Briefly, ASP programs consist of sets of rules of the form

a1 ∨ · · · ∨ al ← al+1, . . . , am,¬am+1, . . . ,¬an, (1)

where n ≥ m ≥ l and for all 1 ≤ i ≤ n, each ai is
an atom of the form p(t1, . . . , tn), where p is a predicate
name, and t1, . . . , tn are terms, that is, either variables or
constants. A literal ` is either an atom a or a negated atom
¬a. By ` we denote the converse of literal `, that is, if
` = a, then ` = ¬a, and vice versa. The domain of con-
stants in an ASP program P is given implicitly by the set
of all constants that appear in it. Generally, before evalu-
ating an ASP program, variables are removed by a process
called grounding, that is, for every rule, each variable is re-
placed by all possible combination of constants, and appro-
priate ground copies of the rule are added to the resulting
program ground(P ). In practice, several optimizations have
been implemented in state-of-the-art grounders that try to
minimize the size of the grounding while preserving equiv-
alence. Since no more variables are present after ground-
ing, ground ASP program can be defined simply as set of
rules of form (1), where for all 1 ≤ i ≤ n, each ai is
ground or propositional atom. A rule r of form (1) con-
sists of a head H (r) = {a1, . . . , al} and a body given by

B+(r) = {al+1, . . . , am} and B−(r) = {am+1, . . . , an}.
A (ground) rule is called a fact if it has the form a ← >,
for some atom a. It is called a constraint if it has the form
⊥ ← a1, . . . , am,¬am+1, . . . ,¬an, with n ≥ m ≥ 1.
The semantics of non-ground ASP programs are defined in
terms of the semantics of their groundings. We will focus on
ground ASP programs in the remainder of this paper.

The semantics of a (ground) ASP program P is as follows
(Gelfond and Lifschitz 1988, 1991): An interpretation I (i.e.
a set of ground atoms appearing in P ) is called a model of
P iff it satisfies all the rules in P in the sense of classical
logic, that is, for each r ∈ P , B+(r) ⊆ M together with
B−(r)∩M = ∅ implies that H (r)∩M 6= ∅. We denote the
set of models of r by mods(r). The models of a program P
are then given by mods(P ) =

⋂
r∈P mods(r).

The reduct P I of a program P with respect to an interpre-
tation I is the program P I = {rI | r ∈ P,B−(r) ∩ I = ∅},
where rI = H (r) ← B+(r); that is, P I is defined as the
set of rules obtained from P where all negated atoms on the
right-hand side of the rules are evaluated over I and replaced
by > or ⊥ accordingly.

A model M is called an answer set of program P if
M ∈ mods(P ) and there is no M ′ ⊆ M such that
M ′ ∈ mods(PM ). The set of answer sets of a program P
is denoted AS (P ). The consistency problem of ASP (de-
cide whether for a given program P , AS (P ) 6= ∅) is Σ2

P -
complete1 (Eiter and Gottlob 1995).

In this paper, we will make limited use of so-called choice
rules as defined in (Calimeri et al. 2020). For an atom a, such
a (limited) choice rule r is denoted {a} ← >. The reduct rI
of r is a← > if a ∈ I , and otherwise a← ⊥. That is, choice
rule {a} induces two answer sets: one where a is true, and
one where a is false.

Answer Set Programming with Quantifiers (ASP(Q)).
An extension of ASP, referred to as ASP(Q), has been pro-
posed (Amendola, Ricca, and Truszczynski 2019), provid-
ing a formalism reminiscent of Quantified Boolean Formu-
las, but based on ASP. An ASP(Q) program is of the form

�1P1�2P2 · · ·�nPn : C,

where, for each i ∈ {1, . . . , n}, �i ∈ {∃, ∀}, Pi is an ASP
program, and C is a set of constraints (technically, it can
be a stratified normal ASP program and is intended by the
ASP(Q) authors as a “check” at the very end). ∃ and ∀ are
called existential and universal answer set quantifiers, re-
spectively.

As a brief example, the intuitive reading of an ASP(Q)
program ∃P1∀P2 : C is that there exists an answer set A1 of
P1 such that for each answer set A2 of P2 ∪A1 it holds that
C ∪A2 is consistent (i.e. has an answer set).

Let us be more precise about the program P ∪ A, that is,
a program P being extended by an answer set A (or rather
by an interpretation A): For an interpretation I , let fP (I) be
the ASP program that contains all atoms in I as facts and all

1Note that this complexity holds for ground programs. In the
non-ground case, the complexity of deciding ASP consistency is
NEXPTIMENP-complete in general (Dantsin et al. 2001).

6323



atoms a appearing in P but not in I as constraints (i.e. as a
rule ⊥ ← a). Furthermore, for a program P and an inter-
pretation I , let fP (Π, I) be the ASP(Q) program obtained
from an ASP(Q) program Π by replacing the first program
P1 in Π with P1 ∪ fP (I). Coherence of an ASP(Q) program
is then defined inductively:
• ∃P : C is coherent if there exists an answer set M of P

such that C ∪ fP (M) has at least one answer set.
• ∀P : C is coherent if for all answer sets M of P it holds

that C ∪ fP (M) has at least one answer set.
• ∃PΠ is coherent if there exists an answer set M of P

such that fP (Π,M) is coherent.
• ∀PΠ is coherent if for all answer sets M of P it holds

that fP (Π,M) is coherent.
In addition, for an existential ASP(Q) program Π (one that

starts with ∃), the answer sets of the first ASP program P1

are referred to as quantified answer sets.
In general, deciding coherence for an ASP(Q) program

is known to be PSPACE-complete (Amendola, Ricca, and
Truszczynski 2019, Theorem 2), and on the n-th level of
the polynomial hierarchy for programs with n quantifier al-
ternations (Amendola, Ricca, and Truszczynski 2019, The-
orem 3).

Epistemic Logic Programming (ELP). An epistemic or
subjective literal is a formula K ` or M `, where ` is a lit-
eral and K and M are the epistemic operators of certainty
(“known” or “provably true”) and possibility (“maybe,”
“possible,” or “not provably false”). An epistemic logic pro-
gram (ELP) is a set of rules of the following form:

a1 ∨ · · · ∨ ak ← `1, . . . , `m, ξ1, . . . , ξj ,¬ξj+1, . . . ,¬ξn,
where k > 0, m > 0, n > j > 0, each ai is an atom, each `i
is a literal, and each ξi is an epistemic literal. Such rules are
also called ELP rules. Similarly to ASP, we consider an ELP
ground, if no variables appear in it, and treat programs with
variables as an abbreviation of the ground program, where
each variable is replaced with every possible constant from
the program. In this paper, we deal with ground programs.

Let H (r) = {a1, . . . , ak} denote the head
elements of an ELP rule, and let B(r) =
{`1, . . . , `m, ξ1, . . . , ξj ,¬ξj+1, . . . ,¬ξn}, that is, the
set of elements appearing in the rule body. The set of
epistemic literals occurring in an ELP Π is denoted elit(Π).

The semantics of ELPs are given via so-called world
views. An epistemic interpretation I = {I1, . . . , In} of an
ELP Π is a set of ASP interpretations w.r.t. the atoms ap-
pearing in Π, with n ≥ 0. We say that K ` is true in I, if
and only if ` is true in all interpretations in I, and M ` is
true in I, if and only if ` is true in at least one interpretation
in I. Let I be an epistemic interpretation; then ΠI

S denotes
the S-epistemic reduct of Π w.r.t. I, which is derived from
Π and I according to some reduct-based semantics S.
Definition 3. An epistemic interpretation I is called an S-
world view of an ELP Π iff I = AS (ΠI

S) and I 6= ∅.
Various semantics S have been defined over the years

and most of them can be characterized by reducts ΠI
S , ei-

ther over sets of interpretations (as above) or over the set

of elit(Π) that are satisfied by I (Kahl 2014; del Cerro,
Herzig, and Su 2015; Shen and Eiter 2016; Son et al. 2017;
Kahl and Leclerc 2018; Faber, Morak, and Woltran 2019;
Morak 2019; Cabalar, Fandinno, and del Cerro 2020). A
concise summary can be found in (Leclerc and Kahl 2018).
The formal results presented in this paper generally hold for
all reduct-based semantics, that is, for semantics that con-
structs ΠI

S by eliminating the epistemic literals from Π by
evaluating them over the given epistemic interpretation I.
In particular, we will use the G94 semantics (Gelfond 1991,
1994) as a running example and as the basis for our prac-
tical evaluation. The G94 semantics are defined as follows:
ΠI

G94 denotes the G94-epistemic reduct of Π w.r.t. I, which
is obtained from Π by replacing all epistemic literals in Π
with either > or ⊥, depending on whether they are true or
false in I, respectively. When the semantics used are clear
or not relevant, we will often refer to the S-epistemic reduct
simply as the epistemic reduct.

The main reasoning task for ELPs is checking whether
they are consistent, that is, whether they have a world view.
This problem is also referred to as world view existence
problem and is generally known to be ΣP

3 -complete in the
ground case for most known reduct-based semantics (Shen
and Eiter 2016), and, in particular, the G94 semantics.

3 Transformation
Based on the semantics described in Section 2, evaluating
(ground) ELPs can be seen as a three-step procedure in order
to establish world view existence. Given an ELP Π:

1. Guess an epistemic interpretation I.
2. For the given reduct-based semantics S under considera-

tion, construct the epistemic reduct ΠI
S .

3. Finally, evaluate the ASP program ΠI
S and check that

I = AS (ΠI
S), that is, that the answer sets of the epis-

temic reduct coincide with the originally guessed inter-
pretation I.

Guessing an entire epistemic interpretation is, however,
tricky in practice, since it can be exponentially larger than
the program Π. However, the procedure above can be
simplified, since it has been shown that a world view is
uniquely determined by the set of epistemic literals that it
entails (Morak 2019). Hence, if checking world view exis-
tence is the goal (as opposed to actually constructing a world
view), in Step 1 it actually suffices to guess, for each epis-
temic literal in Π, whether it will ultimately be entailed by
the world view. This is also enough information to construct
the relevant epistemic reduct in Step 2. Let Φ denote this
guess, and let ΠΦ

S denote the reduct obtained from guess Φ.
Now, in Step 3, it needs to be checked whether the truth as-
signment to the epistemic literals from Step 1 is consistent
with AS (ΠΦ

S ).
Following the characterization of world views presented

above, in this section, we propose a rewriting for check-
ing for world view existence using the language of Answer
Set Programming with Quantifiers—ASP(Q). The approach
is similar to the one used in the ELP solver selp (Bichler,
Morak, and Woltran 2020), which encodes ground ELPs as

6324



non-ground ASP programs. The general structure is as fol-
lows: Given an ELP Π, our ASP(Q) rewriting first “guesses”
a truth assignment Φ for the epistemic literals in Π, using an
existentially quantified ASP program. In order to establish
existence of a world view w.r.t. this guess Φ, three condi-
tions must be verified:
1. AS (ΠΦ

S ) 6= ∅.
2. For each epistemic literal M ` (resp. K `) that is guessed

as “true” (resp. “false”) in Φ, we need to verify that ` is
true (resp. false) in at least one answer sets of ΠΦ

S .
3. For each epistemic literal K ` (resp. M `) that is guessed

as “true” (resp. “false”) in Φ, we need to verify that ` is
true (resp. false) in all answer sets of ΠΦ

S .
For Condition 1, we use an existentially quantified ASP

program to establish that the epistemic reduct has at least
one answer set.

For each epistemic literal of Condition 2, an existentially
quantified ASP program is used to check that there is indeed
an answer set of the epistemic reduct witnessing the guessed
truth value of the epistemic literal.

For Condition 3, a single universally quantified ASP pro-
gram, together with the final set of constraints, is then used
to check that, indeed, ` is true in every answer set of the
epistemic reduct w.r.t. the guess.

3.1 Reducing ELPs to ASP(Q) Programs
In this section, we present the formal rewriting of an ELP
into ASP(Q) according to semantics S, according to the
outline presented above. Hence, given an ELP Π, we con-
struct an ASP(Q) program Π′, which is structured as follows,
where elit(Π) = {ξ1, . . . , ξn}:

Π′ = ∃PΦ∃P∃∃P1 . . . ∃Pn∀P∀ : C.

In this construction, sub-program PΦ will guess a truth
assignment for the epistemic literals present in program
Π. Then, sub-program P∃ will check Condition 1 stated
above, sub-programs P1, . . . Pn together will collectively
check Condition 2, and finally sub-program P∀ will check
Condition 3. Let us now give the construction of these sub-
programs one by one. To this end, let ξ̂ denote a fresh atom,
not occurring in Π, representing the epistemic literal ξ. To
illustrate how our reduction works, we will use a simple run-
ning example under the G94 semantics, introduced below.
Example 4 (Running Example). The following ELP Πex,

a← K¬b
b← K¬a,

interpreted under the G94 semantics, has two world views:
{{a}} and {{b}}.
Sub-Program PΦ. Here, we simply need to guess, for ev-
ery epistemic literal present in ELP Π, whether it is sup-
posed to be true or false in the resulting world view (if
such a world view exists for that guess). Hence, for each
ξ ∈ elit(Π), PΦ contains exactly one rule of the following
form:

{ξ̂} ← >

This completes the construction of PΦ. By using a choice
rule for each epistemic literal, the resulting answer sets of
PΦ each represent exactly one truth assignment to the epis-
temic literals in Π.
Example 5. Continuing on from Example 4, PΦ would con-
sist of the following two rules:

{kna} ← >
{knb} ← >,

where kna = K̂¬a is an atom representing the epistemic
literal K¬a, and similarly for knb represents K¬b. PΦ has
four answer sets: ∅, {kna}, {knb}, and {kna, knb}, rep-
resenting four possible world views w.r.t. the two epistemic
literals in Πex.

Sub-Programs P∃. In order to construct the sub-program
in this paragraph, we first need to introduce the notion of the
encoded epistemic reduct. Given a reduct-based semantics S
for ELPs, we recall that ΠΦ

S denotes the S-epistemic reduct
w.r.t. a guess Φ on the epistemic literals in Π. In our encod-
ing, however, we cannot directly construct this reduct, since
we don’t know Φ (since it is constructed within the rewrit-
ten program itself via sub-program PΦ). Hence, let Π∗

S de-
note the encoded S-epistemic reduct of Π, that is, an ASP
program, such that the following equivalence holds, for all
subsets Φ ⊆ elit(Π):

AS (Π∗
S ∪ Φ̂) = AS (ΠΦ

S ),

where Φ̂ = {ξ̂ | ξ ∈ Φ}. We can show that such an encoded
reduct always exists: S-epistemic reducts are obtained by
replacing the epistemic literals in Π with some fixed set of
ASP literals, depending on S and the guess Φ. But this can
always be encoded using ASP: Take rule r containing epis-
temic literal ξ and duplicate it. In the one copy, replace ξ

with ξ̂ ∪ L+ (where L+ is the set of ASP literals accord-
ing to semantics S for the case where ξ ∈ Φ). In the other
copy, replace ξ with ¬ξ̂ ∪ L− (where L− is the set of ASP
literals according to semantics S for the case where ξ 6∈ Φ).
The resulting program Π∗

S clearly is an encoded S-epistemic
reduct according to the definition above, since for each set
of atoms Φ̂ added to Π∗

S , for each rule r of Π, only one of
the two copies will ever be “triggerable”, since the body of
the other copy is trivially satisfied by construction.

Now, for an ASP program P , let [P ]o be the same ASP
program, where each atom a not in {ξ̂ | ξ ∈ elit(Π)} is
renamed to ao, where o is an arbitrary string. We will use
this to create several independent copies of program P that
do not interact with each other because they share no atoms,
except the atoms representing the guess Φ.

Now, to finalize the construction of the sub-programs in
this paragraph, let
• P∃ = [Π∗

S ]∃.
This completes the construction of P∃. The intention of the
existentially quantified program P∃ is to ensure Condition 1
of the three conditions stated in the introduction to this sec-
tion. It ensures that there is at least one answer set of the
epistemic reduct of Π w.r.t. the guess Φ.

6325



Example 6. Continuing on from Example 5, P∃ would con-
sist of the following rules under the G94 semantics:

a∃ ← knb.
b∃ ← kna.

Note that the G94-epistemic reduct replaces an epistemic
literal with > if true and with ⊥ if false. This behaviour is
represented in the encoded G94-epistemic reduct by simply
replacing each epistemic literal ξ with the atom representing
the truth value of ξ in guess Φ, as determined by the sub-
program PΦ.

The existentially quantified program P∃ above ensures
that, whatever guess Φ is made, the resulting epistemic
reduct has at least one answer set, and hence, ensures Con-
dition 1.

Sub-Programs P1, . . . , Pn. In order to ensure Condi-
tion 2, we need separate existentially quantified programs
P1, . . . , Pn to separately establish the existence of an appro-
priate answer set of the epistemic reduct, for each epistemic
literal, when the truth value in Φ is the one in Condition 2.
With the already introduced formal notions in place, this is
simply done by creating several copies of the encoded epis-
temic reduct, each enhanced with specific constraints estab-
lish the property in Condition 2. To this end, let
• Pi = [Π∗

S ]i ∪ {ci}, for each 0 < i ≤ n,
where ci is a single constraint for epistemic literal ξi as fol-
lows: In case ξi = K `, then ci is the constraint

⊥ ← ¬ξ̂i, `,

whereas when ξi = M `, then ci is the constraint

⊥ ← ξ̂i, `.

Indeed, whenever K ` is guessed as false in Φ, this en-
sures that there is an answer set of the epistemic reduct
where ` is false, and, similarly, whenever M ` is guessed
as true in Φ, this ensures that there is an answer set of the
epistemic reduct where ` is true, establishing Condition 2.
Example 7. Continuing on from Example 6, P1 (with ξ1 =
K¬b) would consist of the following rules under the G94
semantics:

a1 ← knb.
b1 ← kna.

⊥ ← ¬knb,¬b1.
The existentially quantified program P1 above ensures that,
whenever epistemic literal ξ1 = K¬b is guessed as false in
PΦ, the resulting epistemic reduct has at least one answer
set where b is true, establishing Condition 2 for ξ1.

Sub-Program P∀ and Constraints C. We finally need to
establish Condition 3. This is done via the universally quan-
tified ASP program P∀ which, together with the constraints
C, will verify that Condition 3 holds.

While for Condition 2 we needed separate, independent
sub-programs to establish answer set existence within the
world view for each relevant epistemic literal, Condition 3
imposes a universal condition that needs to hold in all an-
swer sets. The idea of P∀ is therefore to quantify over all

answer sets of the relevant epistemic reduct and ensure con-
sistency with the epistemic literals in guess Φ. Since Condi-
tion 3 must hold in all answer sets, one universally quantified
program is enough to ensure this for all relevant epistemic
literals in guess Φ.

To this end, program let program P∀ be constructed as
follows:
• P∀ = [Π∗

S ]∀,
and let the set of constraints C contain the following:

• ⊥ ← ξ̂, `, for each epistemic literal ξ = K ` in elit(Π);
and

• ⊥ ← ¬ξ̂, `, for each epistemic literal ξ = M ` in elit(Π).
This completes the construction of P∀ and C, and hence

of our reduction. Since P∀ is a universally quantified ASP
program within our ASP(Q) rewriting Π′, every answer set
of P∀ must satisfy all the constraints imposed in C. Since
the answer sets of P∀ are precisely the answer sets of the
epistemic reduct ΠΦ

S , this indeed ensures precisely Condi-
tion 3: in case where ξ = K ` is guessed as true in Φ, ` must
be true in all answer sets of the epistemic reduct, and in case
where ξ = M ` is guessed as false in Φ, ` must be false in
all answer sets of the epistemic reduct.
Example 8. Continuing on from Example 7, P∀ would con-
sist of the following rules under the G94 semantics:

a∀ ← knb.
b∀ ← kna.

The set C would consist of the following two constraints:
⊥ ← knb, b∀.
⊥ ← kna, a∀.

P∀ simply represents a copy of the epistemic reduct w.r.t.
guess Φ. The constraints then ensure that, (1) whenever PΦ

guesses epistemic literal K¬b to hold within the world view,
it cannot be the case that in any answer set of the epistemic
reduct b holds; and (2) whenever PΦ guesses epistemic lit-
eral K¬a to hold within the world view, it cannot be the
case that in any answer set of the epistemic reduct a holds.
This establishes precisely Condition 3.

Uniting the code of Examples 4, 5, 6, 7, and this one, ob-
taining program ASP(Q) program Π′, it is not difficult to
check that indeed Conditions 1–3 are satisfied under the G94
semantics for the original ELP Π, whenever Π′ is coherent.

3.2 Correctness
With the above reduction in place, we can first observe that
the reduction is polynomial in size: it repeats the epistemic
reduct construction (which itself is only linear in size) n
times, where n is the number of epistemic literals in the ELP.
We now need to show that it is indeed correct:
Theorem 9. Let Π be an ELP, and S be a reduct-based se-
mantics for interpreting ELPs. Let Π′ be the ASP(Q) pro-
gram obtained by applying the transformation given in Sec-
tion 3.1 to Π under S. Then Π has at least one world view if
and only if Π′ is coherent.

Proof (Sketch). We show both directions separately. To this
end, let Π′ = ∃PΦ∃P∃∃P1 . . . ∃Pn∀P∀ : C, as in Sec-
tion 3.1, and let elit(Π) = {ξ1, . . . , ξn}.

6326



⇒: Assume that Π has at least one world view. We will
show that Π′ is coherent. Let I be a world view of Π un-
der semantics S. Let Φ ⊆ elit(Π) be the set of epistemic
literals true in I. Clearly, there is a model of PΦ reflecting
precisely this “guess” Φ. Since I is a world view of Π, we
have, by Definition 3 (cf. Morak (2019), Theorem 11) that
I = AS (ΠΦ

S ). But then, clearly, Conditions 1–3 must be
satisfied in the epistemic reduct ΠΦ

S . But these three condi-
tions are encoded, by construction, into P∃, Pi (0 < i ≤ n),
and P∀ : C, respectively. Hence, by virtue of I being a
world view, we have that (a) Condition 1 holds for ΠΦ

S by
assumption, and hence P∃ has at least one answer set; (b)
Pi (0 < i ≤ n) has at least one answer set that witnesses
the truth assignment to epistemic literal ξi in Φ according to
Condition 2, since that condition holds for ΠΦ

S by assump-
tion; and (c) every answer set of P∀ satisfies all the con-
straints in C, since they encode precisely Condition 3, and
again that condition holds for ΠΦ

S by assumption. Hence, we
have that indeed there exists an answer set for PΦ and for P∃,
P1, . . . , Pn, and for all answer sets of P∀, the constraints in
C are satisfied. Hence Π′ is coherent.

⇐: Assume that Π′ is coherent. By this assumption, there
exists an answer set for P∃ encoding a guess Φ ⊆ elit(Π).
By assumption, there exists an answer set of P∃, and hence,
by construction, there exists an answer set of ΠΦ

S , estab-
lishing Condition 1. Again by assumption, each program Pi

(0 < i ≤ n) has an answer set that, by construction, rep-
resents an answer set of ΠΦ

S that witnesses Condition 2 for
one particular epistemic literal ξi, together establishing Con-
dition 2 for ΠΦ

S . Finally, by assumption all answer sets of
P∀ satisfy the constraints in C. But, by construction, these
constraints can only be satisfied if ΠΦ

S satisfies Condition 3,
since they precisely encode it. Hence, we have that Condi-
tions 1–3 are all satisfied for ΠΦ

S , which is a sufficient con-
dition for the existence of a world view of Π (Morak 2019,
Theorem 11). This completes the proof.

We have established that our translation from ELPs to
ASP(Q) programs faithfully mimics the semantics of the
ELP program and can hence be used as a way to solve ELP
programs by means of an ASP(Q) solver. In the next section,
we implement this rewriting approach to see its performance
compared to existing ELP solvers.

4 Experimental Evaluation
We tested the rewriting approach described in Section 3 for
the G94 semantics, by benchmarking it against existing ELP
solvers. We will refer to our rewriting tool as elp2qasp.
To compare, we chose the state-of-the-art ELP solver EP-
ASP (Son et al. 2017) and the selp solver (Bichler, Morak,
and Woltran 2020) based on a rewriting to plain ASP. For
our rewriting, we used two ASP(Q) solvers as backends: the
qasp solver (Natale 2021), as well as the q asp solver (Cuteri
2022). We partly re-use selp’s parsing implementation.

We use the same three test sets proposed in (Bichler,
Morak, and Woltran 2020). For every test set, we measured
the time it took to solve the consistency problem. For selp,
the underlying ASP solver clingo (Gebser et al. 2019) was

stopped after finding the first answer set. For EP-ASP, search
was terminated after finding the first candidate world view2.
For qasp and q asp, the output of our ELP to ASP(Q) rewrit-
ing directly tells us whether the ELP is consistent or not,
depending on whether the ASP(Q) program is consistent.

Experiments were run on an AMD EPYC 7601 system
(2.2GHz base clock speed) with 500 GiB of memory. Each
process was assigned a maximum of 14 GB of RAM, which
was never exceeded by any of the solvers tested. A time limit
of 900 seconds was used for each benchmark set. For EP-
ASP, we made trivial modifications to the python code in
order for it to run with clingo 5.4.1. For selp and qasp, the
same version of clingo was used. For selp, in addition, we
used the htd library, version 1.2.0, and lpopt 2.2. We used
qasp 1.1.0 and q asp 0.1.2 as the backend solvers for our
ASP(Q) rewriting generated by elp2qasp. The time it took to
convert input ELP programs into the specific input formats
of the various tools we used (e.g. the input format for selp
or EP-ASP) was not measured, since we did not want the
input format conversion to influence the benchmark results.
EP-ASP was called with the preprocessing option for brave
and cautious consequences on, since it always ran faster this
way. The time for selp, qasp, and q asp is the sum of the
time it took to run all required components to solve the rel-
evant instance. For selp, clingo was always called with SAT
preprocessing enabled, as is recommended by the lpopt tool.

4.1 Benchmark Instances
We used three types of benchmarks, two coming from the
ELP literature and one from the QSAT domain3. This is the
same benchmark set as used and published by the authors of
the selp solver, which they used in the associated conference
publication (Bichler, Morak, and Woltran 2020). We briefly
describe the benchmark set below.

Scholarship Eligibility. This set of non-ground ELP pro-
grams is shipped together with EP-ASP. Its instances encode
the scholarship eligibility problem for 1 to 25 students.

Yale Shooting. This test set consists of 25 non-ground
ELP programs encoding a simple version of the Yale Shoot-
ing Problem, a conformant planning problem: the only un-
certainty is whether the gun is initially loaded or not, and the
only fluents are the gun’s load state and whether the turkey
is alive. Instances differ in the time horizon. We follow the
ELP encoding from (Kahl et al. 2015).

Tree QBFs. The hardness proof for ELP consistency
(Shen and Eiter 2016) relies on a reduction from the valid-
ity problem for restricted quantified boolean formulas with
three quantifier blocks (i.e. 3-QBFs), which can be gener-
alized to arbitrary 3-QBFs (Bichler, Morak, and Woltran
2020). In that publication, the reduction is applied to the 14
“Tree” instances of QBFEVAL’16 (Pulina 2016), available
at http://www.qbflib.org/family\ detail.php?idFamily=56.

2Note that to have a fair comparison we disabled the subset-
maximality check on the guess that EP-ASP performs by default.

3See supplementary material.

6327



0 5 10 15 20 25

0

200

400

600

Number of students

R
un

tim
e

(s
)

EP-ASP
selp
qasp
q asp

Figure 1: Scholarship Eligibility

4.2 Results
The results for the first two sets are shown in Figure 1 and
Figure 2, respectively. For the Scholarship Eligibility Prob-
lem, we can observe, confirming the observations Bichler,
Morak, and Woltran (2020), that EP-ASP can solve 16 in-
stances, while selp is able to solve all instances, independent
of time, within 5 seconds. Interestingly, the same holds true
for our elp2qasp rewriting, when using q asp as a backend.
This combination can solve all instances within 13 seconds.
Interestingly, the qasp backend is only able to solve three
instances successfully within the time limit. The difference
in performance between the two tools may be due to the fact
that q asp uses a QBF solver, while qasp delegates the solv-
ing work to the ASP solver clingo or wasp (Alviano et al.
2015). In all our benchmarks we use the latter option.

For the Yale Shooting Problem, we can see that both EP-
ASP and selp are unable to solve all instances. Note that all
instances of this problem are inconsistent, which sometimes
allows EP-ASP to realize this fairly quickly. However, in
seven cases, we dont get any answers from EP-ASP within
the time limit. On the other hand, our elp2qasp approach
with the q asp backend is able to solve all instances of this
problem within 70 seconds, with the solving time increas-
ing moderately with the increase in the time horizon. For the
qasp backend, we unfortunately encountered an issue in the
implementation, which lead to an internal error message for
all instances of the Yale Shooting Problem.

Finally, for the Tree QBF Problem, we re-confirmed the
results of Bichler et al. (Bichler, Morak, and Woltran 2020).
selp was able to solve 4 of the 14 instances within the time
limit of 900 seconds. Both EP-ASP and elp2qasp with the
qasp backend were unable to solve any instances at all.
For the q asp backend, this class of problems is unsolvable,
since the resulting ASP(Q) rewriting contains rules that are
not head-cycle free and are hence not treatable by q asp.
Since selp was the only solver able to successfully solve in-
stances of this problem, we omit a dedicated figure.

0 5 10 15 20 25

0

100

200

300

400

Instance Number

R
un

tim
e

(s
)

EP-ASP
selp

q asp

Figure 2: Yale Shooting Problem

These results confirm that elp2qasp is competitive for
solving ELP programs, especially when paired with the
q asp solver for ASP(Q), which, in turn, is based on an inter-
nal QBF solver. On the other hand, the ASP(Q) solver qasp
does not seem to match this success, but this may be an in-
herent limitation, since it internally relies on the ASP solver
clingo or wasp to solve ASP(Q) instances, which may lead
to an exponential number of internal ASP solver calls.

5 Conclusions
In this paper, we proposed a rewriting that transforms epis-
temic logic programs (ELPs) into programs for answer set
programming with quantifiers (ASP(Q)). It does this by
faithfully mimicking the semantics of ELPs and formulat-
ing them directly in ASP(Q), which is possible because of
the explicit support for quantification that ASP(Q) provides.

We then implement our approach and, using state-of-the-
art ASP(Q) solvers as a backend, test our rewriting approach
against existing solvers for ELPs. We show that, for several
problem domains, our rewriting approach offers competitive
performance when compared to existing solvers, especially
in case where the q asp ASP(Q) solver (Cuteri 2022) is used,
which internally uses a QBF solver to evaluate the given
ASP(Q) program.

Future work includes further refining and optimizing the
rewriting, as well as adapting our tool for the various other
semantics that exist for evaluating ELPs (Kahl 2014; del
Cerro, Herzig, and Su 2015; Shen and Eiter 2016; Son et al.
2017; Kahl and Leclerc 2018; Faber, Morak, and Woltran
2019; Morak 2019; Cabalar, Fandinno, and del Cerro 2020).

Another avenue of investigation is that our ASP(Q) pro-
gram is capable of computing the guess Φ that gives rise
to a world view, if one exists. This corresponds to a world
view according to Morak (2019). However, several seman-
tics employ a type of knowledge minimization (Shen and
Eiter 2016; Cabalar, Fandinno, and del Cerro 2020) where
we would need to extend our rewriting to capture this step.

6328



References
Alviano, M.; Dodaro, C.; Leone, N.; and Ricca, F. 2015. Ad-
vances in WASP. In Calimeri, F.; Ianni, G.; and Truszczyn-
ski, M., eds., Proc. LPNMR, volume 9345 of LNCS, 40–54.
Springer.
Amendola, G.; Ricca, F.; and Truszczynski, M. 2019. Be-
yond NP: Quantifying over Answer Sets. Theory Pract. Log.
Program., 19(5-6): 705–721.
Bichler, M.; Morak, M.; and Woltran, S. 2020. selp: A
Single-Shot Epistemic Logic Program Solver. Theory Pract.
Log. Program., 20(4): 435–455.
Bogaerts, B.; Janhunen, T.; and Tasharrofi, S. 2016. Stable-
unstable semantics: Beyond NP with normal logic programs.
Theory Pract. Log. Program., 16(5-6): 570–586.
Brewka, G.; Eiter, T.; and Truszczynski, M. 2011. An-
swer set programming at a glance. Commun. ACM, 54(12):
92–103.
Cabalar, P.; Fandinno, J.; and del Cerro, L. F. 2020. Au-
toepistemic answer set programming. Artif. Intell., 289:
103382.
Calimeri, F.; Faber, W.; Gebser, M.; Ianni, G.; Kaminski,
R.; Krennwallner, T.; Leone, N.; Maratea, M.; Ricca, F.; and
Schaub, T. 2020. ASP-Core-2 Input Language Format. The-
ory Pract. Log. Program., 20(2): 294–309.
Cuteri, B. 2022. Quantified ASP solver q asp. https://github.
com/bernardocuteri/q asp. Accessed: 2023-04-04.
Dantsin, E.; Eiter, T.; Gottlob, G.; and Voronkov, A. 2001.
Complexity and expressive power of logic programming.
ACM Comput. Surv., 33(3): 374–425.
del Cerro, L. F.; Herzig, A.; and Su, E. I. 2015. Epistemic
Equilibrium Logic. In Proc. IJCAI, 2964–2970.
Eiter, T.; and Gottlob, G. 1995. On the Computational Cost
of Disjunctive Logic Programming: Propositional Case.
Ann. Math. Artif. Intell., 15(3-4): 289–323.
Faber, W.; Morak, M.; and Woltran, S. 2019. Strong Equiv-
alence for Epistemic Logic Programs Made Easy. In Proc.
AAAI.
Fandinno, J.; Laferrière, F.; Romero, J.; Schaub, T.; and Son,
T. C. 2021. Planning with Incomplete Information in Quan-
tified Answer Set Programming. Theory Pract. Log. Pro-
gram., 21(5): 663–679.
Gebser, M.; Kaminski, R.; Kaufmann, B.; and Schaub, T.
2012. Answer Set Solving in Practice. Synthesis Lectures
on Artificial Intelligence and Machine Learning. Morgan &
Claypool Publishers.
Gebser, M.; Kaminski, R.; Kaufmann, B.; and Schaub, T.
2019. Multi-shot ASP solving with clingo. TPLP, 19(1):
27–82.
Gelfond, M. 1991. Strong Introspection. In Dean, T. L.; and
McKeown, K. R., eds., Proc. AAAI, 386–391. AAAI Press /
The MIT Press.
Gelfond, M. 1994. Logic Programming and Reasoning with
Incomplete Information. Ann. Math. Artif. Intell., 12(1-2):
89–116.

Gelfond, M. 2011. New Semantics for Epistemic Specifica-
tions. In Proc. LPNMR, 260–265.
Gelfond, M.; and Lifschitz, V. 1988. The Stable Model
Semantics for Logic Programming. In Proc. ICLP/SLP,
1070–1080.
Gelfond, M.; and Lifschitz, V. 1991. Classical Negation
in Logic Programs and Disjunctive Databases. New Gener.
Comput., 9(3/4): 365–386.
Janhunen, T. 2022. Implementing Stable-Unstable Seman-
tics with ASPTOOLS and Clingo. In Cheney, J.; and Perri,
S., eds., Proc. PADL, volume 13165 of Lecture Notes in
Computer Science, 135–153. Springer.
Kahl, P. T. 2014. Refining the Semantics for Epistemic Logic
Programs. Ph.D. thesis, Texas Tech University, Texas, USA.
Kahl, P. T.; and Leclerc, A. P. 2018. Epistemic Logic Pro-
grams with World View Constraints. In Palù, A. D.; Tarau,
P.; Saeedloei, N.; and Fodor, P., eds., Proc. ICLP, volume 64
of OASIcs, 1:1–1:17. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik.
Kahl, P. T.; Watson, R.; Balai, E.; Gelfond, M.; and Zhang,
Y. 2015. The Language of Epistemic Specifications (Re-
fined) Including a Prototype Solver. J. Log. Comput., 30(4):
953–989.
Leclerc, A. P.; and Kahl, P. T. 2018. A survey of advances
in epistemic logic program solvers. CoRR, abs/1809.07141.
Also in Proc. of ASPOCP 2018.
Lifschitz, V. 2019. Answer Set Programming. Springer.
ISBN 978-3-030-24657-0.
Morak, M. 2019. Epistemic Logic Programs: A Different
World View. In Proc. ICLP, Technical Communications, vol-
ume 306 of EPTCS, 52–64.
Natale, A. 2021. Design and implementation of QASP
Solver. https://zenodo.org/record/5425783. Accessed: 2023-
04-04.
Pulina, L. 2016. The Ninth QBF Solvers Evaluation - Pre-
liminary Report. In Proc. QBF, 1–13.
Schaub, T.; and Woltran, S. 2018. Special Issue on Answer
Set Programming. Künstliche Intell., 32(2-3): 101–103.
Shen, Y.; and Eiter, T. 2016. Evaluating epistemic negation
in answer set programming. Artif. Intell., 237: 115–135.
Son, T. C.; Le, T.; Kahl, P. T.; and Leclerc, A. P. 2017. On
Computing World Views of Epistemic Logic Programs. In
Proc. IJCAI, 1269–1275.
Truszczynski, M. 2011. Revisiting Epistemic Specifications.
In Balduccini, M.; and Son, T. C., eds., Logic Programming,
Knowledge Representation, and Nonmonotonic Reasoning -
Essays Dedicated to Michael Gelfond on the Occasion of
His 65th Birthday, volume 6565 of Lecture Notes in Com-
puter Science, 315–333. Springer.

6329


