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Abstract

In the field of parameterized complexity theory, the study of
graph width measures has been intimately connected with
the development of width-based model checking algorithms
for combinatorial properties on graphs. In this work, we
introduce a general framework to convert a large class of
width-based model-checking algorithms into algorithms that
can be used to test the validity of graph-theoretic conjectures
on classes of graphs of bounded width. Our framework
is modular and can be applied with respect to several
well-studied width measures for graphs, including treewidth
and cliquewidth. As a quantitative application of our frame-
work, we prove analytically that for several long-standing
graph-theoretic conjectures, there exists an algorithm that
takes a number k as input and correctly determines in time
double-exponential in kO(1) whether the conjecture is valid
on all graphs of treewidth at most k. These upper bounds,
which may be regarded as upper-bounds on the size of
proofs/disproofs for these conjectures on the class of graphs
of treewidth at most k, improve significantly on theoretical
upper bounds obtained using previously available techniques.

1 Introduction
1.1 Motivation
When mathematicians are not able to solve a conjecture
about a given class of mathematical objects, it is natural
to try to test the validity of the conjecture on a smaller, or
better behaved class of objects. In the realm of graph the-
ory, a common approach is to try analyze the conjecture on
restricted classes of graphs, defined by fixing some struc-
tural parameter. In this work, we push forward this approach
from a computational perspective by focusing on parame-
ters derived from graph width measures. Prominent exam-
ples of such parameters are the treewidth of a graph, which
intuitively quantifies how much a graph is similar to a tree
(Robertson and Seymour 1984; Bertele and Brioschi 1973;
Halin 1976) and the cliquewidth of a graph, which intu-
itively quantifies how much a graph is similar to a clique
(Courcelle and Olariu 2000). More specifically, we are con-
cerned with the following problem:
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Problem 1 (Width-Based ATP). Given a graph property P
and a positive integer k, is it the case that every graph of
width at most k belongs to P?

Problem 1 provides a width-based approach to the field
of automated theorem proving (ATP). For instance, consider
Tutte’s celebrated 5-flow conjecture (Tutte 1954), which
states that every bridgeless graph has a nowhere-zero 5-
flow. Let HasBridge be the set of all graphs that have a
bridge, and NZFlow(5) be the set of all graphs that admit
a nowhere-zero 5-flow. Then, proving Tutte’s 5-flow con-
jecture is equivalent to showing that every graph belongs
to the graph property HasBridge ∨ NZFlow(5). Since
Tutte’s conjecture has been unresolved for many decades,
one possible approach for gaining understanding about the
conjecture is to try to determine, for gradually increas-
ing values of k, whether every graph of width at most
k, with respect to some fixed width-measure, belongs to
HasBridge∨ NZFlow(5). What makes this kind of ques-
tion interesting from a proof theoretic point of view is that
several important classes of graphs have small width with re-
spect to some width measure. For instance, trees and forests
have treewidth at most 1, series-parallel graphs and outer-
planar graphs have treewidth at most 2, k-outerplanar graphs
have treewidth at most 3k−1, co-graphs have cliquewidth at
most 2, any distance hereditary graph has cliquewidth 3, etc
(Biedl 2015; Bodlaender 1998; Brandstädt, Le, and Spin-
rad 1999; Bodlaender 1986; Bodlaender and Koster 2008;
Kammer 2007). Therefore, proving the validity of a given
conjecture on classes of graphs of small width corresponds
to proving the conjecture on interesting classes of graphs.

1.2 Our Results
In this work, we introduce a general and modular framework
that allows one to convert width-based dynamic program-
ming algorithms for the model checking of graph properties
into algorithms that can be used to address Problem 1. More
specifically, our main contributions are threefold.

1. We start by defining the notions of a treelike decomposi-
tion class (Definition 2) and of a treelike width-measure
(Definition 3). These two notions can be used to ex-
press several classic, well studied width measures for
graphs, such as treewidth (Bodlaender 1997), pathwidth
(Korach and Solel 1993), carving width (Thilikos, Serna,
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and Bodlaender 2000), cutwidth (Chung and Seymour
1989; Thilikos, Serna, and Bodlaender 2005), bandwidth
(Chung and Seymour 1989), cliquewidth (Courcelle and
Olariu 2000), etc, and some more recent measures such
as ODD-width (Andrade de Melo and Oliveira Oliveira
2019).

2. Subsequently, we introduce the notion of a treelike dy-
namic programming core (Definition 7), a formalism for
the specification of dynamic programming algorithms
operating on treelike decompositions. Our formalism
combines two points of view for dynamic programming:
the symbolic point of view (Courcelle and Durand 2016)
that allows one to use symbolic tree automata to reason
about classes of graphs of bounded width, and the combi-
natorial point of view (Baste et al. 2022) that provides a
general methodology for the specification of state-of-the-
art combinatorial algorithms for model-checking graph
properties on classes of bounded width. Treelike DP-
cores satisfying certain coherency and finiteness prop-
erties are suitable for the study of the computational
complexity of the problem of determining whether cer-
tain graph-theoretic conjectures are valid on the class of
graphs of width at most k (for several suitable notions of
width). Additionally, our formalism allows one to estab-
lish upper bounds on the size of an hypothetical counter-
example of width at most k in terms of the computational
complexity of algorithms for model-checking the graph
properties arising in the statement of the conjecture.

3. Our main result (Theorem 20) states that if a graph prop-
erty P is a combination (see Section 5.5) of graph proper-
ties P1, . . . ,Pℓ that can be decided by coherent and finite
DP-cores D1,D2, . . . ,Dℓ, then the process of determin-
ing whether every graph of width at most k belongs to P
can be decided roughly1 in time

2O(β(k)·µ(k)) ≤ 22
O(β(k))),

where µ(k) and β(k) are respectively the maximum mul-
tiplicity and the maximum bitlength of a DP-core from
the list D1, . . . ,Dℓ (see Section 5.2). Additionally, if a
counterexample of width at most k exists, then there is a
term of height at most 2O(β(k)·µ(k)) representing such a
counterexample.

We illustrate our approach by specializing on graphs of
bounded treewidth. Mores specifically, we show that sev-
eral long-standing conjectures in graph theory can be tested
on the class of graphs of treewidth at most k in time dou-
ble exponential in kO(1). Examples of such conjectures in-
clude Hadwiger conjecture (Hadwiger 1943), Tutte’s flow
conjectures (Tutte 1954) and Barnette’s conjecture (Tutte
1969) (Section 6). Our upper bounds improve significantly
on upper bounds obtained using previous techniques. For in-
stance, we show that Hadwiger’s conjecture for c colors can
be verified on the class of graphs of treewidth at most k in
time 22

O(k log k+c2)

, while the best known upper bound was
of the form pp

pp

for p = (k + 1)c−1.
1The precise statement of Theorem 20 involves other parame-

ters that are negligible in typical applications.

2 Preliminaries
We let N denote the set of natural numbers and N+ denote
the set of positive natural numbers. We let [0] =̇ ∅, and for
each n ∈ N+, we define [n] =̇ {1, ..., n}. Given a set S, the
set of finite subsets of S is denoted by Pfin(S).

In this work, a graph is a triple G = (V,E, ρ) where V ⊆
N is a finite set of vertices, E ⊆ N is a finite set edges, and
ρ ⊆ E×V is an incidence relation. For each edge e ∈ E, we
let endpts(e) = {v ∈ V : (e, v) ∈ ρ} be the set of vertices
incident with e. We assume |endpts(e)| = 2 for all e ∈ E.
In what follows, we may write VG, EG and ρG to denote the
sets V , E and ρ respectively. We let |G| = |VG|+|EG| be the
size of G. We let GRAPHS denote the set of all graphs. For
us, the empty graph is the graph (∅, ∅, ∅) with no vertices,
no edges, and no incidence pairs.

An isomorphism from a graph G to a graph H is a pair
ϕ = (ϕ1, ϕ2) where ϕ1 : VG → VH is a bijection from the
vertices of G to the vertices of H and ϕ2 : EG → EH is
a bijection from the edges of G to the edges of H with the
property that for each vertex v ∈ VG and each edge e ∈ EG,
(v, e) ∈ ρG if and only if (ϕ1(v), ϕ2(e)) ∈ ρH . If such a
bijection exists, we say that G and H are isomorphic, and
denote this fact by G ∼ H .

A graph property is any subset P ⊆ GRAPHS closed un-
der isomorphisms. That is to say, for each two isomorphic
graphs G and H in GRAPHS, G ∈ P if and only if H ∈ P.
Note that the sets ∅ and GRAPHS are graph properties. Given
a set S of graphs, the isomorphism closure of S is defined as
the set ISO(S) = {G ∈ GRAPHS : ∃H ∈ S,G ∼ H}.

Given a graph property P, a P-invariant is a function
I : P → S, for some set S, that is invariant under graph
isomorphisms. More precisely, I(G) = I(H) for each two
isomorphic graphs G and H in P. If P = GRAPHS, we may
say that I is simply a graph invariant. For instance, chro-
matic number, clique number, dominating number, etc., as
well as width measures such as treewidth and cliquewidth,
are all graph invariants. In this work, the set S will be typi-
cally N, when considering width measures, or {0, 1}∗ when
considering other invariants encoded in binary. In order to
avoid confusion, we may use the letter M to denote invari-
ants corresponding to width measures, and the letter I to
denote general invariants.

A ranked alphabet is a finite non-empty set Σ together
with function r : Σ → N that specifies the arity of each
symbol in Σ. The arity of r is the maximum arity of a sym-
bol in Σ. A term over Σ is a pair τ = (T, λ) where T is
a rooted tree, where the children of each node are totally
ordered, and λ : Nodes(T ) → Σ is a function that la-
bels each node p in Nodes(T ) with a symbol from Σ of
arity |Children(p)|, i.e., the number of children of p. In
particular, leaf nodes are labeled with symbols of arity 0.
We may write Nodes(τ) to refer to Nodes(T ). We write
|τ | to denote |Nodes(T )|. The height of τ is defined as the
height of T . We denote by Terms(Σ) the set of all terms
over Σ. If τ1 = (T1, λ1), ..., τr = (Tr, λr) are terms in
Terms(Σ), and a ∈ Σ is a symbol of arity r, then we let
a(τ1, ..., τr) denote the term τ = (T, λ) where Nodes(T ) =
{u} ∪ Nodes(T1) ∪ · · · ∪ Nodes(Tr) for some fresh node
u, root(T ) = u, λ(u) = a, and λ|Nodes(Tj) = λj for each
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j ∈ [r]. A tree automaton is a tuple A = (Σ, Q, F,∆) where
Σ is a ranked alphabet, Q is a finite set of states, F is a final
set of states, and ∆ is a set of transitions (i.e. rewriting rules)
of the form a(q1, . . . , qr) → q, where a is a symbol of arity
r, and q1, . . . , qr, q are states in Q. A term τ is accepted by
A if it can be rewritten into a final state in F by transitions
in ∆. The language of A, denoted by L(A), is the set of all
terms accepted by A. We refer to (Comon et al. 2008) for
basic concepts on tree automata theory.

3 Treelike Width Measures
In this section, we introduce the notion of a treelike width
measure. Subsequently, we show that prominent width mea-
sures such as treewidth and cliquewidth fulfil the conditions
of our definition. We start by introducing the notion of a
treelike decomposition class.
Definition 2. Let r ∈ N. A treelike decomposition-class of
arity r is a sequence C = {(Σk, Lk,Gk)}k∈N, where for
each k ∈ N, Σk is a ranked alphabet of arity at most r, Lk is
a regular tree language over Σk, and Gk : Lk → GRAPHS
is a function that assigns a graph Gk(τ) to each τ ∈ Lk.
Additionally, we require that for each k ∈ N, Σk ⊆ Σk+1,
Lk ⊆ Lk+1, and Gk+1|Lk

= Gk.
Terms in the set L(C) =

⋃
k∈N Lk are called C-

decompositions. For each such a term τ , we may write sim-
ply G(τ) to denote Gk(τ). The C-width of C-decomposition
τ , denoted by wC(τ), is the minimum k such that τ ∈ Lk.
The C-width of a graph G, denoted by wC(G), is the mini-
mum C-width of a C-decomposition τ with G(τ) ≃ G. We
let wC(G) = ∞ if no such minimum k exists.

For each k ∈ N, we may write Ck = (Σk, Lk,Gk) to
denote the k-th triple in C. The graph property defined by Ck

is the set G[Ck] = ISO({G(τ) : τ ∈ Lk}). Note that every
graph in G[Ck] has C-width at most k, and that G[Ck] ⊆
G[Ck+1]. We let G[C] =

⋃
k∈N G[Ck] be the graph property

defined by C. We note that the C-width of any graph in G[C]
is finite.
Definition 3 (Treelike Width Measure). Let P be a graph
property and M : P → N be a P-invariant. We say that M is
a treelike width measure if there is a treelike decomposition-
class C such that P = G[C], and for each graph G ∈ P,
wC(G) = M(G). In this case, we say that C is a realization
of M.

The next theorem states that several well studied width
measures for graphs are treelike.
Theorem 4. The width measures treewidth, path-
width, carving width, cutwidth, cliquewidth and ODD
width(Andrade de Melo and Oliveira Oliveira 2019) are
treelike width measures.

In our results related to width-based automated theo-
rem proving, we will need to take into consideration the
time necessary to construct a description of the languages
associated with a treelike decomposition class. Let C =
{(Σk, Lk,Gk)}k∈N be a treelike decomposition class of ar-
ity r. An automation for C is a sequence A = {Ak}k∈N
of tree automata where for each k ∈ N, L(Ak) = Lk. We
say that A has complexity f : N → N if for each k ∈ N,

Ak has at most f(k) states, and there is an algorithm A that
takes a number k ∈ N as input, and constructs Ak in time
kO(1) · f(k)O(r).

4 A DP-Friendly Realization of Treewidth
As stated in the proof of Theorem 4, a construction from
(Downey and Fellows 2012) shows that treewidth fulfills
our definition of a treelike width measure. Several more
logically-oriented constructions have been considered in the
literature (Bojańczyk and Pilipczuk 2016; Adler, Grohe, and
Kreutzer 2008; Courcelle and Engelfriet 2012; Elberfeld
2016; Flum, Frick, and Grohe 2002). In this section, we in-
troduce an alternative realization of treewidth as a treelike
width measure. The reason for us to consider this realization
is that, at the same time that it allows one to specify graphs
of bounded treewidth using terms over a finite alphabet, this
realization is closer in spirit to the notion of an edge intro-
ducing nice tree decomposition. This allows one to translate
dynamic programming algorithms operating on such decom-
positions to our framework without much difficulty.

Definition 5. For each k ∈ N, we let

Σk = {Leaf, IntroVertex{u}, ForgetVertex{u},
IntroEdge{u, v}, Join : u, v ∈ [k + 1], u ̸= v}.

where Leaf is a symbol of arity 0, IntroVertex{u},
ForgetVertex{u} and IntroEdge{u, v} are symbols of
arity 1, and Join is a symbol of arity 2. We call Σk the
k-instructive alphabet.

Intuitively, the elements of Σk should be regarded as in-
structions that can be used to construct graphs inductively.
Each such a graph has an associated set b ⊆ [k + 1] of ac-
tive labels. In the base case, the instruction Leaf creates an
empty graph with an empty set of active labels. Now, let G
be a graph with set of active labels b. For each u ∈ [k+1]\b,
the instruction IntroVertex{u} adds a new vertex to G,
labels this vertex with u, and adds u to b. For each u ∈ b,
the instruction ForgetVertex{u} erases the label from the
current vertex labeled with u, and removes u from b. The
intuition is that the label u is now free and may be used later
in the creation of another vertex. For each u, v ∈ b, the in-
struction IntroEdge{u, v} introduces a new edge between
the current vertex labeled with u and the current vertex la-
beled with v. We note that multiedges are allowed in our
graphs. Finally, if G and G′ are two graphs, each having b
as the set of active labels, then the instruction Join creates
a new graph by identifying, for each u ∈ b, the vertex of G
labeled with u with the vertex of G′ labeled with u.

A graph constructed according to the process described
above can be encoded by a term over the alphabet Σk. We
let ITDk the set of all terms over Σk that encode the con-
struction of some graph. The terms in ITDk are called k-
instructive tree decompositions.

Lemma 6. Let G ∈ GRAPHS and k ∈ N. Then G has
treewidth at most k if and only if there exists a k-instructive
tree decomposition τ such that G(τ) ≃ G.
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Figure 1: Left: a 2-instructive tree decomposition τ , and the
graph G(τ) associated with τ . Note that the graph has four
vertices even though only elements from {1, 2, 3} are used
to label the nodes of the tree. Intuitively, once a label has
been forgotten, it can be reused to define a new vertex.

5 Treelike Dynamic Programming Cores
In this section, we introduce the notion of a treelike dynamic-
programming core (treelike DP-core), a formalism intended
to capture the behavior of dynamic programming algorithms
operating on treelike decompositions. Our formalism gen-
eralizes and refines the notion of dynamic programming
core introduced in (Baste et al. 2022). There are two cru-
cial differences. First, our framework can be used to de-
fine DP-cores for classes of dense graphs, such as graphs
of constant cliquewidth, whereas the DP-cores devised in
(Baste et al. 2022) are specialized to work on tree decom-
positions. Second, and most importantly, in our framework,
graphs of width k can be represented as terms over ranked
alphabets whose size depend only on k. This property makes
our framework modular and particularly suitable for appli-
cations in the realm of automated theorem proving.
Definition 7 (Treelike DP-Cores). A treelike dynamic
programming core is a sequence of 6-tuples D =
{(Σk,Wk, Finalk,∆k, Cleank, Invk)}k∈N where for each
k ∈ N,
1. Σk is a ranked alphabet;
2. Wk is a decidable subset of {0, 1}∗;
3. Finalk : Wk → {0, 1} is a function;
4. ∆k is a set containing

• a finite set â ⊆ Pfin(Wk) for each symbol a of arity 0,

• a function â : W×r(a)
k → Pfin(Wk) for each symbol a

of arity r(a) ≥ 1;
5. Cleank : Pfin(Wk) → Pfin(Wk) is a function;
6. Invk : Pfin(Wk) → {0, 1}∗ is a function.

We let D[k] = (Σk,Wk, Finalk,∆k, Cleank, Invk) de-
note the k-th tuple of D. We may write D[k].Σ to denote the
set Σk, D[k].W to denote the set Wk, and so on.

Intuitively, for each k, D[k] is a description of a dy-
namic programming algorithm that operates on terms from
Terms(Σk). This algorithm processes such a term τ from

the leaves towards the root and assigns a set of local wit-
nesses to each node of τ . The algorithm starts by assigning
the set D[k].â to each leaf node labeled with symbol a. Sub-
sequently, the set of local witnesses to be assigned to each
internal node p is computed by taking into consideration the
label of the node, and the set (sets) of local witnesses as-
signed to the child (children) of p. The algorithm accepts τ if
at the end of the process, the set of local witnesses associated
with the root node root(τ) has some final local witness, i.e.,
some local witness w ∈ W such that D[k].Final(w) = 1.

The function D[k].Clean is used to remove redundant
local witnesses during the processing of a term. The func-
tion D[k].Inv is useful in the context of optimization prob-
lems. For instance, given a set S of local witnesses encoding
weighted partial solutions to a given problem, D[k].Inv(S)
may return (a binary encoding of) the minimum/maximum
weight of a partial solution in the set.

The process described above is formalized in our frame-
work using the notion of k-th dynamization of a dynamic
core D, which is a function Γ[D, k] that assigns a set
Γ[D, k](τ) of local witnesses to each term τ ∈ Terms(k).
Given a symbol a of arity r in the set D[k].Σ, and subsets
S1, . . . , Sr ⊆ D[k].W , we let D[k].â(S1, . . . , Sr) denote the
following set:

D[k].Clean

 ⋃
i∈[r],wi∈Si

D[k].â(w1, . . . ,wr)

 . (1)

Using this notation, for each k ∈ N, the function Γ[D, k] is
defined by induction on the structure of τ as follows.
Definition 8 (Dynamization). Let D be a treelike DP-core.
For each k ∈ N, the k-th dynamization of D is the func-
tion Γ[D, k] : Terms(D[k].Σ) → Pfin(D[k].W) inductively
defined as follows.
1. If τ = a for some symbol a ∈ D[k].Σ of arity 0, then

Γ[D, k](τ) = D[k].â.
2. If τ = a(τ1, . . . , τr) for some a ∈ D[k].Σ of arity

r, and some terms τ1, . . . , τr in Terms(D[k].Σ), then
Γ[D, k](τ) = D[k].â(Γ[D, k](τ1), . . . ,Γ[D, k](τr)).

For each k ∈ N, we say that a term τ ∈ Terms(D[k].Σ)
is accepted by D[k] if Γ[D, k](τ) contains a final local wit-
ness, i.e., a local witness w with D[k].Final(w) = 1. We let
Acc(D[k]) denote the set of all terms accepted by D[k]. We
let Acc(D) =

⋃
k∈N Acc(D[k]). The combination of the no-

tion of a DP-core with the notion of a treelike decomposition
class can be used to define graph properties.
Definition 9 (Graph Property of a DP-Core). Let C be a
treelike decomposition class, and D be a treelike DP-core.
For each k ∈ N, the graph property of D[k] is the set

G[D[k],C] = ISO({G(τ) : τ ∈ Lk ∩ Acc(D[k])}).

The graph property defined by D is the set

G[D,C] =
⋃
k

G[D[k],C].

We note that for each k ∈ N, G[D[k],C] ⊆ G[Ck], and
hence, G[D,C] ⊆ G[C].

6300



5.1 Coherency
In order to be useful in the context of model-checking and
automated theorem proving, DP-cores need to behave co-
herently with respect to distinct treelike decompositions of
the same graph. This intuition is formalized by the following
definition.
Definition 10 (Coherency). Let C = {(Σk, Lk,Gk)}k∈N be
a treelike decomposition class, and D be a treelike DP-core.
We say that D is C-coherent if for each k ∈ N, Σk = D[k].Σ,
and for each k, k′ ∈ N, and each τ ∈ Lk and τ ′ ∈ Lk′ with
G(τ) ≃ G(τ ′),
1. τ ∈ Acc(D[k]) if and only if τ ′ ∈ Acc(D[k′]), and
2. D.Inv(Γ[D, k](τ)) = D.Inv(Γ[D, k′](τ ′)).

Let D be a C-coherent treelike DP-core. Condition 1
of Definition 10 guarantees that if a graph G belongs to
G[D,C], then for each k ∈ N and each C-decomposition
τ of width at most k such that G(τ) ≃ G, we have that
τ ∈ Acc(D[k]). On the other hand, if G does not belong to
G[D,C], then no C-decomposition τ with G(τ) ≃ G belongs
to Acc(D). This discussion is formalized in the following
proposition.
Proposition 11. Let C = {(Σk, Lk,Gk)}k∈N be a treelike
decomposition class, and D be a C-coherent treelike DP-
core. Then for each k ∈ N, and each τ ∈ Lk, we have that
G(τ) ∈ G[D,C] if and only if τ ∈ Acc(D[k]).

Coherent DP-cores may be used to define not only graph
properties but also graph invariants, as specified in Defini-
tion 12.
Definition 12 (Invariant of a DP-Core). Let C be a decom-
position class and D be a C-coherent treelike DP-core. The
G[D,C]-invariant defined by D is the function I[D,C] :
G[D,C] → {0, 1}∗ that assigns to each graph G ∈ G[D,C],
the string D[wC(τ)].Inv(Γ[D, k](τ)) where τ is an arbitrary
C-decomposition with G(τ) ≃ G.

We note that Condition 2 of Definition 10 guarantees that

D[wC(τ)].Inv(Γ[D, k](τ)) = D[wC(τ
′)].Inv(Γ[D, k](τ ′))

for any two C-decompositions τ and τ ′ with G(τ) ≃
G(τ ′). Therefore, for each graph G ∈ G[D,C], the value
I[D,C](G) is well defined, and invariant under graph iso-
morphism.

5.2 Complexity Measures
In order to analyze the behavior of treelike DP-cores from a
quantitative point of view we define the notions of bitlength
and multiplicity of a DP-core D. We say that a set S of
local witnesses is (D, k, n)-useful if there is some τ ∈
Terms(D[k].Σ) of size |τ | at most n such that Γ[D, k](τ) =
S. The bitlength of D is the function βD that assigns to each
pair (k, n) the maximum number of bits in a βD(k, n) in a
(D, k, n)-useful witness, while the multiplicity µD of D is
the function that assigns to each pair (k, n) the maximum
number of elements µD(k, n) in a (D, k, n)-useful set.

An important class of DP-cores is the class of cores where
maximum number of bits in a useful local witness corre-
sponding to a term τ is independent of the size of τ . In other
words, the number of bits may depend on k but not on |τ |.

Definition 13 (Finite DP-cores). We say that a treelike DP-
core D is finite if there is a function f : N → N such that for
each n ∈ N, βD(k, n) ≤ f(k).

If D is a finite DP-core then we may write simply βD(k)
and µD(k) to denote the functions βD(k, n), and µD(k, n)
respectively.

We say that a DP-core is internally polynomial, if there is
an algorithm A that when given a number k ∈ N as input,
simulates the functions in D[k] in time polynomial in k and
in the size of the input to these functions. We note that typi-
cal dynamic programming algorithms operating on tree-like
decompositions give rise to internally polynomial DP-cores.
Note that the fact that D is internally polynomial does not
imply that one can determine whether a given term τ is ac-
cepted by D in time polynomial in |τ |. The complexity of
this test is governed by the bitlength and multiplicity of the
DP-core in question (see Theorem 14).

5.3 Model Checking and Invariant Computation
Let C = {(Σk, Lk,Gk)}k∈N be a treelike decomposition
class, and D be a C-coherent treelike DP-core. Given a C-
decomposition of width at most k, we can use the notion
of dynamization (Definition 8), to check whether the graph
G(τ) encoded by τ belongs to the graph property G[D,C]
represented by D. The next theorem states that the complex-
ity of this model-checking task is essentially governed by
the bitlength and by the multiplicity of D. We note that in
typical applications the arity r of a decomposition class is a
constant (most often 1 or 2), and the width k is smaller than
βD(k, n) for each n ∈ N . Nevertheless, for completeness,
we explicitly include the dependence on kO(1) and rO(1) in
the calculation of the running time.

Theorem 14 (Model Checking). Let C =
{(Σk, Lk,Gk)}k∈N be a treelike decomposition class
of arity r, D be an internally polynomial C-coherent treelike
DP-Core, and let τ be a C-decomposition of C-width at
most k and size |τ | = n.

1. One can determine whether G(τ) ∈ G[D,C] in time

T (k, n) = n·kO(1) ·rO(1) ·βD(k, n)
O(1) ·µD(k, n)

r+O(1).

2. One can compute the invariant I[D,C](G(τ)) in time

T (k, n) + kO(1) · βD(k, n)
O(1) · µD(k, n)

O(1).

5.4 Inclusion Test
Let C be a treelike decomposition class, and D be a tree-
like DP-core. As discussed in the introduction, the prob-
lem of determining whether G[C] ⊆ G[D,C] can be re-
garded as a task in the realm of automated theorem prov-
ing. A width-based approach to testing whether this inclu-
sion holds is to test for increasing values of k, whether the
inclusion G[Ck] ⊆ G[D,C] holds. It turns out that if D is
C-coherent, then testing whether G[Ck] ⊆ G[D,C] reduces
to testing whether all C-decompositions of width at most k
are accepted by D[k], as stated in Lemma 15 below. We note
that this is not necessarily true if D is not C-coherent.
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Lemma 15. Let C = {(Σk, Lk,Gk)}k∈N be a treelike de-
composition class and D be a C-coherent treelike DP-core.
Then, for each k ∈ N, G[Ck] ⊆ G[D,C] if and only if
Lk ⊆ Acc(D[k]).

Lemma 15 implies that if D is coherent, then in order to
show that G[Ck] ⊈ G[D,C] it is enough to show that there
is some C-decomposition τ of width at most k that belongs
to Lk but not to Acc(D[k]). We will reduce this later task to
the task of constructing a dynamic programming refutation
(Definition 16).

Let C be a decomposition class with automation A, and
let D be a C-coherent treelike DP-core. An (A,D, k)-pair
is a pair of the form (q, S) where q is a state of Ak and
S ⊆ D[k].W . We say that such pair (q, S) is (A,D, k)-
inconsistent if q is a final state of Ak, but S has no final
local witness for D.
Definition 16 (DP-Refutation). Let C = {(Σk, Lk,Gk)}k∈N
be a decomposition class, A be an automation for C, D be
a C-coherent treelike DP-core, and k ∈ N. An (A,D, k)-
refutation is a sequence of (A,D, k)-pairs

R ≡ (q1, S1)(q2, S2) . . . (qm, Sm)

satisfying the following conditions:
1. (qm, Sm) is (A,D, k)-inconsistent.

2. For each i ∈ [m],
(a) either (qi, Si) = (q,D[k].â) for some symbol a of ar-

ity 0 in Σk, and some state q such that a → q is a
transition of Ak, or

(b) (qi, Si) = (q,D[k].â(Sj1 , . . . , Sjr(a)
)), for some

j1, . . . , jr(a) < i, some symbol a ∈ Σk of arity r(a) >
0, and some state q such that a(qj1 , . . . , qjr(a)

) → q is
a transition of Ak.

The following theorem shows that if C is a decomposition
class with automation A and D is a C-coherent treelike DP-
core, then showing that G[C] ⊈ G[D,C], is equivalent to
showing the existence of some (A,D, k)-refutation.
Theorem 17. Let C = {(Σk, Lk,Gk)}k∈N be a decomposi-
tion class with automation A, and D be a C-coherent treelike
DP-core. For each k ∈ N, we have that G[Ck] ⊈ G[D,C] if
and only if some (A,D, k)-refutation exists.

Theorem 17 implies the existence of a simple forward-
chaining style algorithm for determining whether G[Ck] ⊆
G[D,C] when D is a finite and C-coherent treelike DP-core.
Theorem 18 (Inclusion Test). Let C be a treelike decom-
position class of complexity f(k) and arity r, and let D be
a finite, internally polynomial C-coherent treelike DP core.
One can determine whether G[Ck] ⊆ G[D,C] in time

f(k)O(r) · 2O(r·βD(k)·µD(k)) ≤ f(k)O(r) · 2r·2
O(βD(k))).

5.5 Combinators and Combinations
Given a graph property P, and a graph G ∈ GRAPHS, we let
P(G) denote the Boolean value true if G ∈ P and the value
false, if G /∈ P. For each ℓ ∈ N we call a function of the
form

C : {0, 1}ℓ × ({0, 1}∗)ℓ → {0, 1}.

an ℓ-combinator. Given graph properties P1, . . . ,Pℓ and
graph invariants I1 . . . , Iℓ, we let Ĉ(P1, . . . ,Pℓ, I1, . . . , Iℓ)
denote the graph property consisting of all graphs G such
that C(P1(G), . . . ,Pℓ(G), I1(G), . . . , Iℓ(G)) = 1. We say
that C is polynomial if it can be computed in time Oℓ(|X|c)
for some constant c on any given input X .

Intuitively, a combinator is a tool to define graph classes in
terms of previously defined graph classes and previously de-
fined graph invariants. It is worth noting that Boolean com-
binations of graph classes can be straightforwardly defined
using combinators. Nevertheless, one can do more than that,
since combinators can also be used to establish relations
between graph invariants. For instance, using combinators
one can define the class of graphs whose covering number
(the smallest size of a vertex-cover) is equal to the dominat-
ing number (the smallest size of a dominating set). This is
just a illustrative example. Other examples of invariants that
can be related using combinators are: clique number, inde-
pendence number, chromatic number, diameter, and many
others. Next, we will use combinators as a tool to com-
bine graph properties and graph invariants defined using DP-
cores. We let δD(k, n) be the number of (D, k, n)-useful sets.
We call δD the deterministic state complexity (d.s.c.) of D.
Theorem 19. Let C be and ℓ-combinator, C be a treelike
decomposition class, and D1, . . . ,Dℓ be C-coherent treelike
DP-cores. Then, there exists a C-coherent treelike DP-core
D = D(C,D1, . . . ,Dℓ) satisfying the following properties:
1. G[D,C] =

C(G[D1,C], . . . ,G[Dℓ,C], I[D1,C], . . . , I[Dℓ,C]).
2. D has bitlength βD(k, n) =

∑ℓ
i=1 βDi

(k, n) · µDi
(k, n).

3. D has multiplicity µD(k, n) = 1.
4. D has d.s.c. δD(k, n) ≤

∏ℓ
i=1 δDi

(k, n).

We call the DP-core D = D(C,D1, . . . ,Dℓ) the C-
combination of D1, . . . ,Dℓ. If the DP-cores D1, . . . ,Dℓ are
also finite, besides being C-coherent, and internally polyno-
mial, then Theorem 19 together with Theorem 18 directly
imply the following theorem, which will be used in Section
6 to establish analytic upper bound on the time necessary
to verify long-standing conjectures on graphs of bounded
treewidth.
Theorem 20 (Inclusion Test for Combinations). Let C be a
treelike decomposition class of arity r; D1, . . . ,Dℓ be finite,
internally polynomial, C-coherent treelike DP-cores; and C
be a polynomial ℓ-combinator. Let D = D(C,D1, . . . ,Dℓ)
be the C-combination of D1, . . . ,Dℓ, β(k) = maxi βDi

(k)
and µ(k) = maxi µDi

(k). Then, for each k ∈ N, one can
determine whether G[Ck] ⊆ G[D,C] in time

f(k)O(r) · 2O(ℓ·r·β(k)·µ(k)) ≤ f(k)O(r) · 2ℓ·r·2
O(β(k))).

We note that in typical applications, the parameters r and
ℓ are constant, while the growth of the function f(k) is
negligible when compared with 2O(β(k)·µ(k)). Therefore, in
these applications, the running time of our algorithm is of
the form 2O(β(k)·µ(k)) ≤ 22

O(β(k))

. It is also worth noting
that if G[Ck] ⊈ G[D,C], then there is a term τ of height
at most 2O(β(k)·µ(k)) encoding a graph in G[Ck]\G[D,C].
Such a term can be constructed by backtracking.
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6 Applications of Theorem 20
In this section, we show that Theorem 20 can be used to
show that several long-standing graph-theoretic conjectures
can be tested in time double exponential in kO(1) on the
class of graphs of treewidth at most k. The next theorem
enumerates upper bounds on the bitlength and multiplicity
of DP-cores deciding several graph properties. These upper
bounds are obtained by translating combinatorial dynamic
programming algorithms for these properties parameterized
by treewidth into internally polynomial, ITD-coherent, finite
DP-cores. Here, ITD is the class of instructive tree decom-
positions introduced in Section 4. This class has complexity
2k.

Theorem 21. Let ITD be the instructive tree decomposition
class defined in Section 4. The properties specified above
have ITD-coherent DP-cores with complexity parameters
(bitlength β, multiplicity µ, state complexity ν, deterministic
state complexity δ) as specified in Table 1.

Property β(k) µ(k)
Simple O(k2) 1

MaxDeg≥(c) O(k · log c) 1
MinDeg≤(c) O(k · log c) 1

Colorable(c) O(k log c) 2O(β(k))

Conn O(k log k) 2O(β(k))

VConn(c) O(log c+ k log k) 2O(β(k))

EConn(c) O(log c+ k log k) 2O(β(k))

Hamiltonian O(k log k) 2O(k)

NZFlow(Zm) O(k logm) 2O(β(k))

Minor(H) O(k log k + |VH |+ |EH |) 2β(k)

Table 1: Complexity measures for DP-cores deciding several
graph properties.

Note that in the case of the DP-core C-Hamiltonian
the multiplicity 2O(k) is smaller than the trivial upper
bound of 2O(k·log k) and consequently, the deterministic
state complexity 22

O(k)

is smaller than the trivial upper
bound of 22

O(k·log k)

. We note that the proof of this fact is
a consequence of the rank-based approach developed in
(Bodlaender et al. 2015). Next, we will show how Theorem
20 together with Theorem 21 can be used to provide
double-exponential upper bounds on the time necessary to
verify long-standing graph-theoretic conjectures on graphs
of treewidth at most k. If such a conjecture is false, then one
can establish an upper bound on minimum height of a term
representing a counterexample for the conjecture (we refer
the reader to the full version of this paper for further details).

Hadwiger’s Conjecture. This conjecture states that for each
c ≥ 1, every graph with no Kc+1-minor has a c-coloring
(Hadwiger 1943). This conjecture, which suggests a far
reaching generalization of the 4-colors theorem, is consid-
ered to be one of the most important open problems in graph
theory. The conjecture has been resolved in the positive for
the cases c < 6 (Robertson, Seymour, and Thomas 1993),
but remains open for each value of c ≥ 6. By Theorem 21,

Colorable(c) has DP-cores of deterministic state com-
plexity 22

O(k log c)

, while Minor(Kc+1) has DP-cores of de-

terministic state complexity 22
O(k log k+c2)

. Therefore, by us-
ing Theorem 20, we have that the case c of Hadwiger’s con-
jecture can be tested in time f(c, k) = 22

O(k log k+c2)

on
graphs of treewidth at most k.

Using the fact for each fixed c ∈ N, both the existence
of Kc+1-minors and the existence of c-colorings are MSO-
definable, together with the fact that the MSO theory of
graphs of bounded treewidth is definable one can estimate
f(c, k) by writing explicitly MSO sentences and then by
bounding the running time of the decision algorithm. This
estimate is however very large (a tower of exponentials of
height 10 in k + c suffices). In (Kawarabayashi and Reed
2009) Karawabayshi have estimated that f(c, k) ≤ pp

pp

,
where p = (k + 1)(c−1). It is worth noting that our estimate

of 22
O(k log k+c2)

obtained by a combination Theorem 20 and
Theorem 21 improves significantly on both the estimate
obtained using the MSO approach and the estimate provided
in (Kawarabayashi and Reed 2009).

Tutte’s Flow Conjectures. Tutte’s 5-flow, 4-flow, and
3-flow conjectures are some of the most well studient
and important open problems in graph theory. The 5-flow
conjecture states that every bridgeleass graph G has a
Z5-flow. This conjecture is true if and only if every 2-edge-
connected graph has a Z5-flow (Tutte 1954). By Theorem
21, both ECon(2) and NZFlow(Z5) have coherent DP-
cores of deterministic state complexity 22

O(k log k)

. Since
Tutte’s 5-flow conjecture can be expressed in terms of a
Boolen combination of these properties, we have that this
conjecture can be tested on graphs of treewidth at most
k in time 22

O(k log k)

on graphs of treewidth at most k.
The 4-flow conjecture states that every bridgeless graph
with no Petersen minor has a nowhere-zero 4-flow (Wang,
Zhang, and Zhang 2009). Since this conjecture can be
formulated using a Boolean combination of the properties
ECon(2), Minor(P ) (where P is the Pettersen graph), and
NZFlow(Z4), we have that this conjecture can be tested in
time 22

O(k log k)

on graphs of treewidth at most k. Finally,
Tutte’s 3-Flow conjecture states that every 4-edge connected
graph has a nowhere-zero 3-flow (Fan 1993). Similarly to
the other cases it can be expressed as a Boolean combi-
nation of ECon(4) and NZFlow(Z3). Therefore, it can
be tested in time 22

O(k log k)

on graphs of treewidth at most k.

Barnette’s Conjecture. This conjecture states that every
3-connected, 3-regular, bipartite, planar graph is Hamil-
tonian. Since a graph is bipartite if and only if it is
2-colorable, and since a graph is planar if and only if
it does not contain K5 or K3,3 as minors, Barnette’s
conjecture can be stated as a combination of the cores
VCon(3), MaxDeg≥(3), MinDeg≤(3), Colorable(2),
Minor(K5) and Minor(K3,3). Therefore, by Theorem 20,
it can be tested in time 22

O(k log k)

on graphs of treewidth at
most k.
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