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Abstract

The Datalog query language can express several power-
ful recursive properties, often crucial in real-world scenar-
ios. While answering such queries is feasible over relational
databases, the picture changes dramatically when data is en-
riched with intensional knowledge. It is indeed well-known
that answering Datalog queries is undecidable already over
lightweight knowledge bases (KBs) of the DL-Lite family.
To overcome this issue, we propose a new query language
based on Disjunctive Datalog rules combined with a modal
epistemic operator. Rules in this language interact with the
queried KB exclusively via the epistemic operator, thus ex-
tracting only the information true in every model of the KB.
This form of interaction is crucial for not falling into undecid-
ability. The contribution provided by this paper is threefold.
First, we illustrate the syntax and the semantics of the novel
query language. Second, we study the expressive power of
different fragments of our new language and compare it with
Disjunctive Datalog and its variants. Third, we outline the
precise data complexity of answering queries in our new lan-
guage over KBs expressed in various well-known formalisms.

Introduction
The query language that has received the most attention for
querying knowledge bases (KBs) is (unions of) conjunc-
tive queries ((U)CQ), i.e., the existential positive fragment
of first-order logic. There are, however, several interesting
scenarios where UCQs fail to express relevant information
needs. For example, having some form of negation, includ-
ing inequality, is of great importance in the context of data
quality checking (Console and Lenzerini 2020). Another no-
table example is navigational queries, i.e., queries based on
singling out paths in a graph or characterized by some form
of recursion, as in Datalog. In the literature, there are several
studies on adding such features to UCQs. Unfortunately, the
results show that, as soon as we try to extend the UCQ class
with either unlimited recursion or uncontrolled use of in-
equalities/negation, we get undecidability of query answer-
ing already for lightweight KBs of the DL-Lite family (Levy
and Rousset 1998; Calvanese and Rosati 2003; Gutiérrez-
Basulto et al. 2015). Other studies tried to explore limited
versions of recursion and negation to be added to UCQ,
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with the hope of recovering decidability, if not tractability.
Unions of conjunctive two-way regular path queries (Bien-
venu, Ortiz, and Simkus 2015), UCQ with limited inequali-
ties (Cima, Lenzerini, and Poggi 2020) and EQL-Lite (Cal-
vanese et al. 2007a) are successful examples of such at-
tempts. Each of them, however, lacks features of the others.

The goal of this work is to present a novel query language
for KBs, called DataKlog, whose queries can use recursion,
inequalities, negation, and an epistemic operator on top of
UCQ without falling into undecidability. This new language
allows for rules of the forms used in the Disjunctive Data-
log family (Eiter, Gottlob, and Mannilla 1997), limiting their
interaction with KBs through the use of a modal epistemic
operator K. In this way, only facts that are known to be true
in every model of the queried KB interact with the recur-
sive part of the query, thus overcoming the drawbacks of
less restricted languages. Although simple, this idea defines
a query language for KBs with several interesting features:
1. DataKlog can define a powerful form of navigational

queries even when the (typically SPARQL) end-point
used to access the KB does not explicitly allow them. In
KBs structured as knowledge graphs (Hogan et al. 2021),
this feature can be crucial for computing the transitive
closure of relevant relations (e.g., subset-of ), thus en-
abling meta-querying, i.e., queries mixing instance-based
and schema-based traversal of paths in the graph.

2. By using an epistemic operator, our language can dis-
tinguish between what is known to be true for some el-
ements and what is known to be true for some known
elements. As we show later, this seemingly simple mech-
anism enables to express queries that are provably not
expressible in Disjunctive Datalog and its variants.

3. Combining the epistemic operator with the use of nega-
tion, our language can capture expressive classes of
queries without falling into undecidability. For exam-
ple, adding a stratified form of negation to positive rules
is sufficient to express various types of non-monotonic
queries and the whole class of first-order queries over the
certain facts extracted from the knowledge base.

We now illustrate some of the basic characteristics of
DataKlog via an example. Let a portion of a KB (in DL
notation) supporting health care personnel be:

∃hasInfected v Pat, ∃hasInfected− v Pat,
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Pat v ∃hasVariant, Pat0 v Pat, Pat0(John)
stating that (i) every individual who has infected someone
or was infected by someone is a patient, (ii) every individual
who is a patient has a Covid variant, (iii) every patient zero
is a patient, and (iv) John is a patient zero. Now, suppose
that the healthcare personnel aims at identifying all patients
whose variant is known. This can be done by computing the
answers to the following DataKlog query:

∀x.∃v.K(hasVariant(x, v))→ Ans(x),

where the formula Kφ is read as “φ is known to hold (in
the KB)”. We point out that this is different from the query
obtained by removing the epistemic operator K, which asks
for all patients who have a variant. In fact, once posed over
the KB above, the former would return an empty answer,
while the latter would return John, since we know that John
has a variant although we do not know which one.

Now, to appreciate the expressive power of our language,
suppose that the healthcare personnel aims at checking
whether it is possible to visit exactly once all patients whose
variant is known, following the order in which they were in-
fected, i.e., starting from a patient zero and testing a before
b only if a has infected b. This can be done by checking the
answers to the following DataKlog query:
∀x.∃v.K(hasVariant(x, v))→ N(x) (1)
∀x, y.K(hasInfected(x, y)→ E(x, y) (2)
∀x.K(Pat0(x))→ S(x) (3)
∀x.S(x) ∧N(x)→ R(x) (4)
∀x, y.R(x) ∧ E(x, y) ∧N(y)→ InP (x, y) ∨OutP (x, y) (5)
∀x, y.InP (x, y)→ R(y) (6)
∀x, y, z.InP (x, y) ∧ InP (x, z) ∧ y 6= z → Ans() (7)
∀x, y, z.InP (x, y) ∧ InP (z, y) ∧ x 6= z → Ans() (8)
∀x.N(x) ∧ ¬R(x)→ Ans() (9)

The query defines the predicates N as the set of known
patients whose variant is known, E as the set of known pairs
of patients such that the former has infected the latter, and
S as the set consisting of the known patients zero. Then, the
query exploits non-determinism, recursion, and (stratified)
negation within rules (4)–(9), to obtain the answer by means
of the predicate Ans. Indeed, this predicate will be false in
at least one stable model (Gelfond and Lifschitz 1988) if and
only if there exists an Hamiltonian path in the graph defined
by N and E and starting from a node in S (the patient zero
John in the case of the KB).
Contributions The main contributions provided by this pa-
per can be summarized as follows.

We first define the syntax and the semantics of the
DataKlog(Q) family of query languages, where the param-
eter Q, called the embedded query language, denotes the
query language that can be used to access the KB. Over
the certain answers obtained by querying the KB through
queries in Q, DataKlog(Q) allows using typical constructs
of Disjunctive Datalog. The various members of the family
are characterized by suitable restrictions on the use of nega-
tion, disjunction, and inequalities.

We then investigate the expressive power of various mem-
bers of the DataKlog(CQ) family and compare them with
other relevant languages.

We prove that, for any query language Q and KB lan-
guage L, if answering Q queries over L KBs is decidable
and answers to queries return only constants occurring in
the queried KB (a condition that most combinations of query
languages Q and KB languages L satisfy), then answering
the most general member of DataKlog(Q) queries over L
KBs is decidable as well. Moreover, we sharpen the study of
the data complexity of query answering in (several members
of) DataKlog(Q), by focusing on various combinations of
embedded query (Q) and KB (L) languages.
Related Work The idea of enriching rule-based formalisms
à-la Datalog with epistemic capabilities have been explored
in the context of relational database queries (Gelfond 1991;
Fandinno, Faber, and Gelfond 2022). Usually, rules of these
languages can use the epistemic operator freely to define
conditions. In contrast, DataKlog(Q) defines rule-based
KB queries where the epistemic operator regulates the oth-
erwise problematic interaction with the KBs. To the best of
our knowledge, ours is the first attempt of this kind.

DataKlog(Q) shares similarities also with other lan-
guages in the literature. A first attempt to define KB queries
with epistemic capabilities was done with the EQL-Lite(Q)
family (Calvanese et al. 2007a) of which DataKlog(Q)
is a significant extension. A similar extension is used in
(Cima et al. 2022) to define monotonic query abstractions.
Besides basic computational properties, however, not much
was known of the resulting language. The results presented
in this paper shed some light on its expressive power and
complexity. Moreover, DataKlog(Q) shares some similar-
ities also with HEX-programs (Eiter et al. 2005) and their
precursors DL-programs (Eiter et al. 2008b). Specifically, all
these languages consist of rule-based queries that can access
external data sources via a special set of rules. However, DL-
programs define external sources using only a very limited
query language (essentially, Description Logic expressions)
while HEX-programs use them as black boxes and impose
no definability condition. In contrast, the embedded query
language Q of DataKlog(Q) is a parameter of the frame-
work and can be formally analyzed within it.

Finally, besides what already mentioned, there have been
several attempts at integrating rules with ontological reason-
ing. Related to our work are the so-called hybrid formalisms
(Cadoli, Palopoli, and Lenzerini 1997; Donini et al. 1998;
Motik, Sattler, and Studer 2005) of which the MKNF+

framework (Motik and Rosati 2010) is a notable example.
MKNF+ KBs consist of two components: one based on
DLs, the other based on epistemic Datalog rules. Seman-
tics of these KBs is defined via the MKNF logic (Lifschitz
1991). In spite of their similarities, MKNF+ is conceived
to represent intensional knowledge while DataKlog(Q) is
a query language. The fine-grained analysis presented here
requires KBs and queries expressions to be separated.

Preliminaries
Computational Complexity We make use of standard com-
putational complexity classes, such as P (polynomial time),
NP, coNP, ∆p

2 = PNP, Πp
2 = coNPNP, and EXPTIME. For

a complexity class C, we denote by PC|| the complexity class

6281



containing those decision problems recognizable by a Tur-
ing machine that runs in polynomial time to which it is al-
lowed a constant number of rounds of parallel queries to an
oracle for a decision problem in C. By a round of parallel
queries, we mean that the Turing machine can ask for poly-
nomially many non-adaptive queries to the C-oracle. While
PC|| = C for both C = P and C = EXPTIME, from results
in (Buss and Hay 1991), it is known that PNP

|| = PcoNP
|| coin-

cides with the complexity class Θp
2 (see (Wagner 1990) for

further characterizations of this class).
Knowledge bases We refer to a signature Σ, constituted by
three pairwise disjoint and countably infinite sets of symbols
ΣR, ΣC , and ΣV for predicates, constants (a.k.a. individu-
als), and variables, respectively. An L knowledge base (KB)
K over Σ is a pair K = 〈T ,A〉, where T is called the TBox
andA is called the ABox. The TBox T represents the inten-
sional knowledge of a modeled domain formulated inL (this
latter also referred as a KB language), i.e., it is a finite set of
assertions allowed in the language L using symbols from
ΣR as predicates. The ABox A represents the extensional
knowledge of the domain, i.e., a finite set of facts (a.k.a.
ground assertions) of the form R(c̄), where R is an n-ary
predicate in ΣR and c̄ is an n-tuple of constants occurring
in ΣC . We denote by dom(K) the active domain of K, i.e.,
the subset dom(K) ⊆ ΣC of the constants mentioned in the
ABox A. A KB K = 〈∅,A〉 without assertions in the TBox
is called a trivial KB, and we let Ltriv be the KB language
allowing only for trivial KBs.

In this paper, the semantics of a KB with signature Σ is
given in terms of FOL interpretations over Σ following the
standard name assumption (Levesque and Lakemeyer 2001)
(which implies the unique name assumption), i.e., interpreta-
tions I = 〈ΣC , ·I〉 with domain ΣC and interpretation func-
tion ·I assigning to each n-ary predicate R ∈ ΣR an n-ary
relation RI ⊆ ΣnC and to each constant itself, i.e. cI = c for
each constant c ∈ ΣC . Abusing notation, we will also denote
by R(c̄) ∈ I the fact that c̄ ∈ RI . An interpretation I is a
model of K if I satisfies all the assertions in K. We denote
by mod(K) the set of models of a KB K and say that a KB
K is satisfiable if mod(K) 6= ∅.
Queries An n-ary query q over a signature Σ is a function
that, given either an interpretation over Σ or a KB over Σ,
returns a subset of ΣnC . When q is applied to an interpretation
I over Σ, the result of evaluating q is denoted by q(I). When
q is applied to a KB K over Σ, the result of evaluating q is
denoted by ans(q,K), called the answers to q w.r.t. K. We
impose ans(q,K) = ans(q,K′) if mod(K) = mod(K′).

A query language is a formalism for defining queries
and we assume familiarity with the first-order with equality
(or simply, FOL) query language and the Disjunctive Data-
log family of query languages (Eiter, Gottlob, and Mannilla
1997). An n-ary FOL query is an expression of the form
{x̄ | φ(x̄)}, where x̄ is an n-tuple of variables in ΣV and
φ(x̄) is a first-order formula using ΣR ∪ {=} for predicate
symbols and ΣV ∪ ΣC for term symbols. An equality atom
=(t1, t2) will be written as t1 = t2, and the negation of
an equality atom t1 = t2 will be written as t1 6= t2 and
will be called inequality atom. Note that the characteriza-

tion of the evaluation of a FOL query q over an interpreta-
tion I is the standard one (Abiteboul, Hull, and Vianu 1995).
We are also interested in the following fragments of FOL:
atomic queries (AQ), i.e. queries of the form {x̄ | R(x̄)},
(unions of) conjunctive queries ((U)CQ), unions of con-
junctive queries with inequalities (UCQ6=), and unions of
conjunctive queries with negated atoms (UCQ¬). We refer
to (Eiter, Gottlob, and Mannilla 1997) for the Disjunctive
Datalog family of query languages. Here, we only mention
that, given a query q in some language of this family and
an interpretation I, q(I) is defined according to the stable
model semantics (Gelfond and Lifschitz 1988).

As for the case when an n-ary query q expressed either
as a FOL query or in one language of the Disjunctive Dat-
alog family is applied to a KB K, as usually done in the
context of KR, ans(q,K) is defined according to the cer-
tain answers semantics, i.e., ans(q,K) = {c̄ ∈ ΣnC | c̄ ∈
q(I) for each I ∈ mod(K)}.

Finally, for a query q, a KB language L, and a query lan-
guage Q which is a sublanguge of FOL or Disjunctive Dat-
alog, we say that q is Q-rewritable in L if, for each TBox
T formulated in L, there is a query qT ∈ Q such that
ans(q,K) = qT (IA) holds for any KB K = 〈T ,A〉, where
IA is the interpretation such that R(c̄) ∈ IA iff R(c̄) ∈ A.
Epistemic queries We recall the basis of EQL (Calvanese
et al. 2007a), a first-order modal language with equality and
with a modal operator K used to formalize the epistemic
state of a KB. A query ψ(x̄) in EQL for a KB K over the
signature Σ is built according to the following syntax:

ψ(x̄) ::= K% | ψ1 ∧ ψ2 | ∃z.ψ | w1 6= w2 | ¬ψ,
where x̄ are the free variables of the query, z denotes a fresh
existentially quantified variable,w1 (resp.w2) denotes either
a free variable xi ∈ x̄ or a freshly introduced existential
variable, and % is a query expression in Q using ΣR ∪ {=}
as predicate symbols. The semantics is based on epistemic
interpretation for K, i.e., pairs 〈W , I〉, whereW is a set of
FOL interpretations over Σ and I ∈ W . An EQL sentence
ψ is true in 〈W , I〉, (〈W , I〉 |= ψ), if the following holds:

〈W , I〉 |= c1 = c2 iff c1 = c2
〈W , I〉 |= P (~c) iff I |= P (~c)
〈W , I〉 |= ψ1 ∧ ψ2 iff 〈W , I〉 |= ψ1 and 〈W , I〉 |= ψ2

〈W , I〉 |= ¬ψ iff 〈W , I〉 6|= ψ
〈W , I〉 |= ∃z.ψ iff 〈W , I〉 |= ψzc for some c ∈ ΣC
〈W , I〉 |= Kψ iff 〈W , I ′〉 |= ψ for every I ′ ∈ W ,

where ψ, z, and ψzc denote an arbitrary EQL sentence, a
variable, and the EQL sentence obtained from ψ by replac-
ing the variable z with the constant c, respectively. For an
EQL sentence ψ and a set W of interpretations, we denote
byW |= ψ whenever 〈W , I〉 |= ψ for each I ∈ W .

The Query Language DataKlog(Q)
Syntax We assume to have a countably infinite set of pred-
icate symbols, called IDB, which is pairwise disjoint with
ΣR, ΣC , and ΣV , and contains a special n-ary predicate Ans
used to define the certain answers to n-ary queries.

In what follows, we refer to an EDB (resp. IDB) atom as
an atom whose predicate symbol occurs in ΣR (resp. IDB)
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and its arguments are either constants in ΣC or variables in
ΣV , and to an EDB (resp. IDB) literal as an EDB (resp. IDB)
atom or a negated EDB (resp. IDB) atom.

A DataKlog(Q) query posed to a KBK is a program that
is parametric with respect to the embedded query language
Q, with Q ⊆ FOL, and can use two different types of rules.
The first type, denoted by (1)Q, has the following form:

∀x̄.ψ(x̄)→ h(x̄),

where x̄ = (x1, . . . , xn) are the variables occurring in both
sides of the implication, h(x̄) is an IDB atom using the
variables in x̄, and ψ(x̄) is an open EQL formula whose
free variables are the variables in x̄. Note that the syntax
of EQL implies that all occurrences of the ΣR predicates
in ψ are in the scope of the modal epistemic operator K,
and therefore the rule allows extracting only what is known
to be true in all the possible models of K. An example
of rule of this type is rule (1) in the introduction, where
ψ(x) = ∃v.K(hasVariant(x, v)), and h(x̄) = N(x).

In what follows, for a tuple of constants c̄ = (c1, . . . , cn),
we denote by ψx̄c̄ (resp. hx̄c̄ ) the EQL sentence (resp. the IDB
atom) obtained from the EQL formula ψ(x̄) (resp. IDB atom
h(x̄)) by replacing each variable xi ∈ x̄ with the constant
ci ∈ c̄. We also denote by qψ the FOL query qψ = {x̄ |
BODYFOL(ψ)}, where BODYFOL(ψ) is obtained from ψ(x̄)
by replacing each epistemic atom K%i with a fresh atom
Ri(w̄i), where w̄i is the tuple of the free variables used in %i
and Ri is a fresh predicate symbol of the same arity as w̄i.

The second type of rules, denoted by (2), allows for rules
of the typical form of Disjunctive Datalog:

∀x̄.b1 ∧ . . . ∧ bn → h1(x̄1) ∨ . . . ∨ hm(x̄m),

where each bj is either an IDB literal or an inequality atom,
for each j = 1, . . . , n, x̄ is the tuple of variables used in the
various atoms bj’s, and hj(x̄j) is a single IDB atom using
variables from x̄j ⊆ x̄, for each j = 1, . . . ,m.

Starting from the language defined above, we obtain sev-
eral sublanguages, based on syntactic restrictions concern-
ing inequalities in the body (indicated by I), negation in
the body (N ), and disjunction in the head (D). The set of
such sublanguages form the DataKlog(Q) family, each of
whose member is denoted by DataKlog(Q)I,N,D, where I
can be either void or 6=,D can be either void or∨, andN can
take the value void or be set to semi-positive negation (¬0),
stratified negation (¬s), or full negation (¬). The meaning
of I,D,N should be obvious: (i) if I is void, then inequal-
ities in both rules are disallowed; (ii) if D is void, then the
rules of the form (2) are such that m = 1; (iii) if N is void,
then negation is disallowed, both in rules of type (1)Q and
in rules of type (2); (iv) if N is ¬0, then only negation in
the rules of the form (2) is disallowed; (v) if N is ¬s, then
the set of rules of the form (2) must form a stratified pro-
gram (Eiter, Gottlob, and Mannilla 1997).

For any value taken by I and N as above, we will de-
note by DataK0(Q)I,N the fragment of DataKlog(Q)I,N

allowing only for rules of the form (1)Q. As will be clear
later, the expressive power of EQL-Lite(Q) (Calvanese et al.
2007a) is equivalent to that of DataK0(Q) 6=,¬0 .

Observe that the query ∀x.∃v.K(hasVariant(x, v)) →
Ans(x) illustrated in the introduction is a DataK0(AQ)
query, whereas the set of rules (1)-(9) in the introduction
forms a DataKlog(AQ) 6=,¬s,∨ query.

Adopting the same syntactic restrictions, we can also de-
fine the DatalogI,N,D family of query languages (Eiter,
Gottlob, and Mannilla 1997), where, however, rules of the
form (1)Q are replaced by rules of the form ∀x̄.b1∧. . . bn →
h(x̄h), where bj is either an EDB literal or an inequality
atom, for each j = 1, . . . , n, x̄ is the tuple of variables oc-
curring in the various atoms bj’s, and h(x̄h) is a single IDB
atom using variables from x̄h ⊆ x̄.

As a shorthand, we will denote DataKlog(Q) 6=,¬,∨ and
Datalog6=,¬,∨ simply by DataKlog(Q)> and Datalog>,
respectively.

As usually done when dealing with various forms of
negation, we impose standard syntactic safeness conditions
that ensures domain independence of queries in both the
DataKlog(Q) and the Datalog family. Specifically, from
now on, we implicitly assume that rules of the type (2)
are such that each variable occurring in an inequality atom
or in some negated atom also occur in some non-negated
atom (Ceri, Gottlob, and Tanca 1989). As for rules of type
(1)Q, from now on we deal only with rules ∀x̄.ψ(x̄)→ h(x̄)
such that (i) qψ is a safe-range FOL query (Abiteboul, Hull,
and Vianu 1995), and (ii) each epistemic atom K%i occur-
ring in ψ is such that {w̄i | %i} is a safe-range FOL query,
where w̄i is the tuple of the free variables used in %i1. Also,
in what follows, for the sake of simplicity, we assume to deal
only with knowledge bases K such that mod(K) 6= ∅.
Semantics The semantics of DataKlog(Q) is based on the
classical notion of cautious reasoning over stable models for
Disjunctive Datalog queries. Note that, in principle, other
choices are possible, but the stable model semantics is the
basis of many popular paradigms, including Answer Set Pro-
gramming (Lifschitz 2019).

Let q be a DataKlog(FOL)> query over a KBK with sig-
nature Σ. An interpretation for q is a pair I = 〈mod(K),F〉,
where F is a FOL interpretation for IDB with domain ΣC ,
i.e. F = 〈ΣC , ·F 〉 such that ·F assigns to each n-ary predi-
cate P ∈ IDB an n-ary relation PF ⊆ ΣnC . We now define
when an interpretation I for q satisfies a rule r ∈ q:

1. I satisfies a rule r = ∀x̄.ψ(x̄)→ h(x̄) of the form (1)FOL
if, for each possible tuple of constants c̄ occurring in ΣC
such that mod(K) |= ψx̄c̄ , we have that hx̄c̄ ∈ F ;

2. I satisfies a rule r = ∀x̄.b1 ∧ . . . ∧ bn → h1(x̄1) ∨
. . . ∨ hm(x̄m) of the form (2) if F |= r, i.e. if the FOL
sentence r is true in F .

We then say that an interpretation I for q is a model of q if I
satisfies every rule r ∈ q.

Following the popular approach to deal with negation
in logic programming, we now define the notion of stable
model for DataKlog(FOL)> queries, which in turn relies
on the notion of reduct (Gelfond 1994; Fandinno, Faber,
and Gelfond 2022). We use reducts in order to assign the

1Note that restricting queries to be safe-range is the common
safeness condition imposed on FOL queries.
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truth value to EQL sentences on the left-hand side of ground
rules of the form (1)Q. The grounding of a rule r, either of
the form (1)Q or of the form (2), is the set gr(r) of rules
obtained by instantiating all the universally quantified vari-
ables with the constants from ΣC in all possible ways. We
then define the grounding of a DataKlog(Q)> query q as
gr(q) =

⋃
r∈q gr(r). The reduct of a DataKlog(Q)> query

q w.r.t. a KB K, denoted by qK, is the ground Datalog>
query obtained from gr(q) by replacing each ground rule
ψx̄c̄ → hx̄c̄ of the form (1)FOL with true→ hx̄c̄ ifW |= ψx̄c̄ ;
and with false→ hx̄c̄ otherwise. We then say that an inter-
pretation I for q of the form 〈mod(K),F〉 is a stable model
of q if F is a stable model of the Datalog> query qK. In
what follows, we denote by SM(q,K) the set of stable mod-
els of q. It is easy to verify that each member of SM(q,K) is
a model of q while the converse does not hold in general.

We now define the notion of answers of queries in our
language, based on the skeptical reasoning approach.

Definition 1. The set of answers of a DataKlog(FOL)>

query q w.r.t. a KB K is ans(q,K) = {c̄ ∈ ΣnC | Ans(c̄) ∈
F for each 〈mod(K),F〉 ∈ SM(q,K)}.

To ease the presentation, from now on we assume that
queries do not mention constants. We point out, however,
that all our results can be straightforwardly adapted to the
case where also constants in queries are allowed.

Following (Calvanese et al. 2007a, Proposition 7), given
an n-ary query q and a KB K, we say that q is K-range-
restricted if ans(q,K) ⊆ dom(K)n. For a KB language L,
we say that a query language Q is L-range-restricted if q is
K-range-restricted for any query q ∈ Q and any satisfiable
L KB K. It is not hard to see that, for any query language
Q ⊆ FOL and KB language L, due to the implicit syntactic
safeness conditions imposed on DataKlog(Q)> queries, if
Q is L-range-restricted, then DataKlog(Q)> is L-range-
restricted as well.

Expressiveness
In this section, we study the expressive power of DataKlog.
To this aim, we focus on the Boolean and constant-free frag-
ments2 of DataKlog(CQ), based on the fact that CQ is
the most widely used query language for accessing KBs.
Thus we start by investigating what the various variants
of DataKlog(CQ) can express. Second, we show that
the set of the syntactic features of the richest variant of
DataKlog(CQ) is “minimal”, in the sense that no feature
among disjunction, negation, and recursion can be discarded
without loosing expressivity. Then, we conclude the investi-
gation of the expressivity of DataKlog(CQ) by comparing
it with that of other notable classes of queries. In particular,
we focus on queries expressed in languages most commonly
used in OBDA settings, ranging from CQ to (Disjunctive)
Datalog.

Let us first introduce few definitions. Given two queries
q, q′ and a KB K, q is equivalent to q′ over K, written q ∼K
q′, if ans(q,K) = ans(q′,K). Also, given a KB language L,

2Similar results can be obtained relaxing these limitation at the
expense of a heavier notation.

q is equivalent to q′ over L, written q ∼L q′, if q ∼K q′ for
every L KB K. Then, given a KB language L and two query
languagesQ andQ′,Q expressesQ′ overLKBs if, for every
q′ ∈ Q′, there exists q ∈ Q such that q ∼L q′. Furthermore,
ifQ expressesQ′ over LKBs but not vice-versa, we say that
Q is strictly more expressive thanQ′ over L KBs. Finally,Q
and Q′ are equivalent over L KBs if Q expresses Q′ and
vice-versa. Observe that, if Q does not express Q′ over L
KBs, then Q does not express Q′ over every L′ KBs such
that L′ ⊇ L. On the contrary, the fact that Q expresses Q′
over LKBs does not imply thatQ expressesQ′ over L′ KBs
with L′ ⊇ L. This is because L′ may define theories with
properties that queries in Q cannot recognize while queries
in Q′ can.

With these definitions in place, we start our investigation
by showing that, given a KB language L, DataKlog(CQ)
expresses over L KBs classes of queries that are considered
fundamental in OBDA query answering, i.e., queries enjoy-
ing the property of being rewritable in L in terms of UCQ, if
we consider DataK0(CQ), and in terms of DatalogI,N,D,
if we consider DataKlog(CQ)I,N,D.
Proposition 1. Let L be a KB language such that CQ is
L-range-restricted, and let q be a query.
• If q is UCQ-rewritable inL, then for everyL KBK, there

exists qK in DataK0(CQ) such that q ∼K qK.
• If q is DatalogI,N,D-rewritable in L, then for every L

KB K, there exists qK in DataKlog(CQ)I,N,D such that
q ∼K qK.

We further investigate DataKlog(CQ) and check
whether each of the features of its richest variant actually
adds expressivity to the language. First, we study the impact
of negation in the language.
Proposition 2. DataKlog(CQ) 6=,∨ does not express
DataK0(CQ)¬0 over Ltriv KBs.

Proposition 2 shows that DataKlog(CQ), equipped with
disjunction and inequalities cannot express DataK0(CQ)
equipped with semi-positive negation. This follows from
the fact that DataKlog(CQ) 6=,∨ is monotonic3 while
DataK0(CQ)¬0 is not.

Second, we study the impact of disjunction. Indeed, the
following claim shows that, under reasonable complexity as-
sumptions and in the presence of recursion, stratified nega-
tion cannot express disjunction.
Proposition 3. Unless P = NP, DataKlog(CQ) 6=,¬s does
not express DataKlog(CQ)∨ over Ltriv KBs.

In a nutshell, the previous proposition follows from the
fact that, over Ltriv KBs, the complexity of query answering
for DataKlog(CQ) 6=,¬s is P-complete while the complexity
of query answering for DataKlog(CQ)∨ is coNP-complete
(see Proposition 7 below).

Finally, we turn our attention to the impact of adding
recursion to DataK0(CQ), i.e., we compare the expres-
sive power of DataKlog(CQ) with that of DataK0(CQ).

3In the context of KBs, a query language is monotonic if, given
two KBs K and K′ and a query q in the language, we have that
ans(q,K) ⊆ ans(q,K′) whenever mod(K) ⊇ mod(K′).
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Unsurprisingly, allowing recursion increases the expressive
power of DataK0(CQ) even in the case of trivial KBs.

Proposition 4. DataKlog(CQ) is strictly more expressive
than DataK0(CQ) over Ltriv KBs.

The proof of the above proposition relies on three
claims. First, in the case of Ltriv KBs, every query q ∈
DataK0(CQ) is equivalent to a UCQ. Second, for every
Datalog query q and every database D, one can build a triv-
ial KB K = 〈∅,A〉 and a DataKlog(CQ) query q′ over
K such that the evaluation of q over D returns true if and
only if the answer to q′ over K is true. Third, UCQ cannot
express Datalog due to locality properties. While one can
easily show the former two, the latter is a well-known result
from (Libkin 2003).

Next, we conclude the section by comparing the expres-
sivity of DataKlog(CQ) with that of other languages com-
monly used to pose queries in OBDA settings. Specifically,
we investigate whether some variant of DataKlog(CQ) can
express languages ranging from CQ to Disjunctive Data-
log. Clearly, the expressivity of a query language over a
KB depends on the language of the KB. In particular, in
the following we consider two KB languages: DL-Litecore
and DL-LiteRDFS. The reason for choosing these two specific
languages is that on one hand they are both very simple, on
the other hand they differ for a crucial aspect: DL-Litecore
allows to express incomplete information while DL-LiteRDFS

does not. As we will see, this significantly changes the ex-
pressivity of DataKlog(CQ).

Specifically, we first show that, over DL-LiteRDFS KBs, the
epistemic operator has no impact on the expressive power of
the monotonic fragments of our language.

Proposition 5. Over DL-LiteRDFS KBs, it holds that:

• DataK0(CQ) is equivalent to UCQ;
• DataKlog(CQ)I,D is equivalent to DatalogI,D, for

each possible I and D.

Results similar to Proposition 5 can be obtained for KBs
expressed in other languages not allowing to express incom-
plete information, such as full-tgds (Abiteboul, Hull, and
Vianu 1995). Intuitively, the latter admit a single model,
called canonical, that is representative of all models of the
KB with respect to the answers to UCQ and that does not
include any variable. Note that Proposition 5 cannot be ex-
tended to variants of DataKlog(CQ) with negation, be-
cause while DataKlog(CQ) becomes non monotonic as
soon as we add negation, Datalog with negation over KBs is
monotonic under the stable model semantics (Eiter, Gottlob,
and Mannilla 1997).

We now switch to DL-Litecore and show that over
DL-Litecore KBs even the powerful Datalog> does not ex-
press DataK0(CQ). To this end, we need to introduce some
additional technical tools.

Let I = 〈ΣC , ·I〉, J = 〈ΣC , ·J 〉 be two FOL in-
terpretations. An isomorphism from I to J is a bijection
i : ΣC → ΣC such that i(c̄) ∈ RJ if and only if c̄ ∈ RI ,
for every R in ΣR. Assume two KBs A,B. We say that A is
isomorphically-similar toB (writtenA→iso B) if for every
model IB ∈ mod(B) there exists a model IA ∈ mod(A)

such that there exists an isomorphism from IA to IB . A
Boolean query q is said to be preserved in isomorphically-
similar KBs if A→iso B implies ans(q, A) ⊆ ans(q,B).

One can show that Datalog> queries are preserved in
isomorphically-similar KBs while DataK0(CQ) queries are
not. Thus, Datalog> does not express DataK0(CQ) al-
ready over lightweight KBs such as DL-Litecore (Calvanese
et al. 2007b), which leads to the following proposition.

Proposition 6. Datalog> does not express DataK0(CQ)
over DL-Litecore KBs.

Intuitively, Proposition 6 tells us that over DL-Litecore
KBs, the epistemic operator increases the expressive power
of UCQ, and the resulting DataK0(CQ) language cannot
be expressed even if we allow the recursive and disjunctive
constructs of Datalog>.

Corollary 1. Let L ⊇ DL-Litecore be a KB language. Over
L KBs, DataK0(CQ) is strictly more expressive than CQ.

Query Answering
We now focus on the problem of answering DataKlog(Q)
queries over L KBs. More precisely, in this section, we
implicitly refer to the associated recognition problem, i.e.,
given a satisfiable L KB K = 〈T ,A〉, a query q in
DataKlog(Q), and a tuple of constants c̄, check whether
c̄ ∈ ans(q,K). Also, we conduct our study by implicitly in-
vestigating the data complexity (Vardi 1982) of this problem,
i.e., the complexity where only the ABox A is regarded as
the input and the other components are assumed to be fixed.

We start by showing that query answering is decidable
and provide an upper bound for its complexity under general
assumptions for L and the embedded query language Q.

Theorem 1. Let Q ⊆ FOL and L be a query language
and a KB language, respectively, such that (i)Q is L-range-
restricted and (ii) answering Q queries over L KBs is in C,
for a complexity class C. Then, the following holds:

1) answering DataKlog(Q) 6=,¬s queries over L KBs is in
PC||;

2.1) if either NP ⊆ C or coNP ⊆ C, then answer-
ing DataKlog(Q) 6=,¬ queries and DataKlog(Q) 6=,¬0,∨

queries over L KBs are in PC||;
2.2) if C ⊆ P, then answering DataKlog(Q) 6=,¬ queries

and DataKlog(Q) 6=,¬0,∨ queries over L KBs are in
coNP;

3.1) if either Σp2 ⊆ C or Πp
2 ⊆ C, then answering

DataKlog(Q)> queries over L KBs is in PC||;
3.2) if C ⊆ ∆p

2, then answering DataKlog(Q)> queries
over L KBs is in Πp

2.

The above theorem shows that decidability of answer-
ing Q queries over L KBs plus L-range-restrictedness of Q
queries implies decidability of answering DataKlog(Q)>

queries over L KBs. Note that this must be contrasted
with the fact that as soon as we try to extend UCQ with
either the recursion of plain Datalog or with inequali-
ties/negation, we get undecidability of query answering
already for lightweight ontologies. Indeed, from results
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of (Levy and Rousset 1998; Calvanese and Rosati 2003)
and of (Gutiérrez-Basulto et al. 2015), we know that an-
swering Datalog queries and UCQ6= and UCQ¬ queries,
respectively, already over DL-Litecore KBs is undecidable.

Moreover, the above theorem shows that the complexity
of DataKlog(Q) query answering over L KBs, crucially
depends on the complexity of answering Q queries over L
KBs. Thus, in the following, we provide several tight data
complexity results for combinations of KB languages L and
embedded query languages Q, for which the complexity of
answering Q queries over L KBs is, respectively, in P, in
EXPTIME, and in coNP. Importantly, by combining such re-
sults with results of the previous section, one can see that for
some combinations of Q and L it is possible to pose prov-
ably more expressive queries in the DataKlog(Q) family
(rather than be limited to Q queries) to L KBs at no addi-
tional computational cost (regarding data complexity). For
example, our results imply that it is possible to pose strictly
more expressive DataKlog(UCQ) 6=,¬s queries (rather than
be limited to UCQ queries) to Horn-SHIQ KBs while re-
maining in P in data complexity.

Let us first consider the case of combinations of L and Q
for which query answering is in P. Note that this case covers
several well-known cases in which the embedded query lan-
guageQ is UCQ. Among them, we mention the cases where
the KB language L is one of the following: DLR-LiteA,u
(and thus in particular DL-Litecore and DL-LiteRDFS) (Cal-
vanese et al. 2013), sticky-join tgds (Calı̀, Gottlob, and Pieris
2012), Horn-SHIQ (Eiter et al. 2008a), (frontier-)guarded
tgds ((F)GTGDs) (Baget et al. 2011; Calı̀, Gottlob, and
Lukasiewicz 2012). Notably, for this important case, we get
the following tight complexity results.
Proposition 7. Let Q and L be a query language and a KB
language, respectively, such that (i) AQ ⊆ Q ⊆ FOL, (ii)Q
is L-range-restricted, and (iii) answering Q queries over L
KBs is in P. Then, the following holds:

1. answering DataKlog(Q) 6=,¬s queries over L KBs is P-
complete. The hardness holds for DataKlog(Q);

2. answering DataKlog(Q) 6=,¬ and DataKlog(Q) 6=,¬0,∨

queries over L KBs is coNP-complete. The hardness al-
ready holds for DataKlog(Q)¬ and DataKlog(Q)∨;

3. answering DataKlog(Q)> queries over L KBs is Πp
2-

complete. The hardness holds for DataKlog(Q)¬s,∨.

The above proposition can be shown by combining The-
orem 1 with the following observations. On one hand, an-
swering Datalog queries, Datalog∨ and Datalog¬ queries,
and Datalog¬s,∨ queries is P-hard (Vardi 1982), coNP-
hard (Eiter, Gottlob, and Mannilla 1997), and Πp

2-hard (Eiter
and Gottlob 1995), respectively, already over relational
databases. On the other hand, a DatalogI,N,D query
q over a relational database can be simulated with a
DataKlog(Q)I,N,D query over a Ltriv KB whose ABox co-
incides with the database, by choosing AQ as embedded
query language Q, where, obviously, AQ ⊆ Q ⊆ FOL.

Let us now consider the case where L and Q are such
that answering Q queries over L KBs is in EXPTIME. We
point out that, if Q is UCQ, then notable cases of L that
fall into this case are all languages between weakly-guarded

tgds (WGTGDs) and weakly-frontier-guarded disjunctive
tgds (WFGDTGDs). Indeed, for any such language, answer-
ing UCQ queries over L KBs is EXPTIME-complete (Baget
et al. 2011; Bourhis, Morak, and Pieris 2013).
Proposition 8. Let Q ⊆ FOL and L be a query lan-
guage and a KB language, respectively, such that (i) Q
is L-range-restricted and (ii) answering Q queries over L
KBs is C-complete, where EXPTIME ⊆ C. Then, answering
DataKlog(Q) 6=,¬,∨ queries over L KBs is C-complete.

The above proposition can be derived from Theorem 1
and the fact that, for any query language Q ⊆ FOL, already
DataK0(Q) is able to express Q queries.

Finally, we focus on combinations of embedded query
languages Q ⊆ FOL and KB languages L for which (i)
answeringQ queries over L KBs is in coNP and (ii)Q is L-
range-restricted. From Theorem 1 we know that answering
DataKlog(Q) 6=,¬ queries and DataKlog(Q) 6=,¬0,∨ queries
over L KBs is in PcoNP

|| = Θp
2. If Q is UCQ, examples of

KB languages that fall into this case are SHIQ (Glimm
et al. 2008) and frontier-guarded disjunctive tgds (FGDT-
GDs) (Bourhis, Morak, and Pieris 2013).

First, we prove Θp
2 matching lower bounds already for

very simple combinations of embedded query languages and
KB languages. More specifically, consider the TBoxes Tt =
{∀x.(A1(x) → A2(x) ∨ A3(x))}, T¬ = {∀x.(¬A1(x) →
A2(x))}, and T∀ = {∀x.(∀y.(P (x, y) → A1(y)) →
A2(x))}. These three simple TBoxes are expressive enough
to make conjunctive query answering coNP-hard (Calvanese
et al. 2013). We now show that, for any KB language
L allowing for one of these TBoxes, answering already
DataKlog(CQ)¬0 queries over L KBs is Θp

2-hard.
Lemma 1. Let L be any KB language allowing for a TBox
that is logically equivalent to one among Tt, T¬, and T∀.
Then, answering DataKlog(CQ)¬0 queries over L KBs is
Θp

2-hard, and therefore Θp
2-complete.

We now prove that, unless Θp
2 = coNP, the semi-positive

negation is essential for the above hardness result to hold.
Proposition 9. Let Q ⊆ FOL and L be a query language
and a KB language, respectively, such that (i)Q is L-range-
restricted and (ii) answeringQ queries over L KBs is coNP-
complete. Then, answering DataKlog(Q) 6=,∨ queries over
L KBs is coNP-complete.

We thus observe that, quite surprisingly and differently
from previous cases, allowing negation (or not) actually
makes a difference for combinations of L and Q for which
query answering is in coNP.

Conclusion and Future Work
We investigated the expressive power and the computational
characteristics of a novel family of query languages for
KBs that can express powerful recursive and non-monotonic
queries over the epistemic state of KBs, thus overcoming
the undecidability of well-known query languages such as
Datalog. As future work, we plan to study (fragments of)
DataKlog(Q)> with embedded query languagesQ beyond
FOL, and to investigate different semantics for the language,
e.g., the well-founded and the perfect model semantics.
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