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Abstract

In the context of verification of data-aware processes, a for-
mal approach based on satisfiability modulo theories (SMT)
has been considered to verify parameterised safety properties.
This approach requires a combination of model-theoretic no-
tions and algorithmic techniques based on backward reach-
ability. We introduce here Ontology-Based Processes, which
are a variant of one of the most investigated models in this
spectrum, namely simple artifact systems (SASs), where, in-
stead of managing a database, we operate over a description
logic (DL) ontology. We prove that when the DL is expressed
in (a slight extension of) RDFS, it enjoys suitable model-
theoretic properties, and that by relying on such DL we can
define Ontology-Based Processes to which backward reach-
ability can still be applied. Relying on these results we are
able to show that in this novel setting, verification of safety
properties is decidable in PSPACE.

Introduction
Verifying and reasoning about dynamic systems that inte-
grate processes and data is a long-standing challenge that
attracted considerable attention, and that led to a flourishing
series of results, within business process management (Re-
ichert 2012; Calvanese et al. 2019a; Ghilardi et al. 2020) and
data management (Vianu 2009; Calvanese, De Giacomo,
and Montali 2013; Bagheri Hariri et al. 2013a; Deutsch,
Hull, and Vianu 2014; Deutsch, Li, and Vianu 2019). Among
the several conceptual models studied in this area, data-
centric systems and in particular artifact-centric systems
have been brought forward as a principled approach where
relevant (business) objects are elicited, and actions evolving
them through their lifecycle are defined (Hull 2008). Dif-
ferent formal models have been proposed to capture arti-
fact systems and study their verification (Calvanese, De Gi-
acomo, and Montali 2013). One of the most studied settings
considers artifact systems as being composed of: (i) a read-
only database storing background information about arti-
facts that does not change during the system evolution; (ii) a
working memory, used to store data that can be modified in
the course of the evolution; and (iii) transitions (also called
actions or services) that query the read-only database and
the working memory and use the retrieved data to update
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the working memory. Verification of such systems is chal-
lenging, not only because the working memory in general
evolves through infinitely many different configurations, but
also because the desired verification properties should hold
regardless of the content of the read-only database, thus call-
ing for a particular form of parameterised verification (Dam-
aggio, Deutsch, and Vianu 2012; Deutsch, Li, and Vianu
2019; Calvanese et al. 2019b, 2020).

In this paper, we study for the first time ontology-based
processes, i.e., semantically-enriched artifact systems where
the read-only database is substituted by a description logic
(DL) ontology (Baader et al. 2003), which stores back-
ground, incomplete information about the artifacts. In this
setting, two possible notions of parameterisation may be
studied: one where the evolution of the system is verified
against all possible choices for the ABox (i.e., the exten-
sional component of the ontology), another where verifica-
tion is against all possible models of a fixed ABox. In this
work, we adopt the latter, and thus verify whether the system
enjoys desired properties irrespectively of how the informa-
tion explicitly provided by the ABox is completed through
the assertions in the TBox (i.e., the intensional component
of the ontology).

More in detail, we consider an extensively studied model
of such artifact systems, called simple artifact system (SAS)
by Calvanese et al. (2020), where the artifact working mem-
ory consists of a fixed set of artifact variables (Deutsch
et al. 2009; Damaggio, Deutsch, and Vianu 2012; Calvanese
et al. 2020). On top of this basis, we study the verification
of safety properties in the case where the ontology is spec-
ified in (a slight extension of) RDFS (Brickley and Guha
2014), a schema/ontology language for the Semantic Web
formalized by the W3C, and where the transitions that up-
date the working memory are expressed over the ontology
signature. For this setting, we provide an SMT-based back-
ward reachability procedure to decide safety, showing that
the problem is in PSPACE. To apply this machinery, the un-
derlying DL must enjoy suitable model-theoretic properties.
In particular, to this end, we prove for the first time that this
DL admits a model completion (Chang and Keisler 1990).
Showing the existence of model completions is not trivial:
it requires a careful algebraic analysis of the class of all
models. At the same time, we give indications on which DL
constructs break our verification machinery: indeed, model
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completions may not exist in general, and we show that sim-
ple examples such as RL-ontologies do not admit a model
completion. This gives also a technical justification for the
choice of RDFS.

Detailed proofs are provided in an extended version of
this article (Calvanese et al. 2021).

Related work. In spirit, our approach is reminiscent of
previous works studying the verification of dynamic sys-
tems, like Golog programs, operating over a DL ontology,
such as those by Claßen et al. (2014), and Zarrieß and
Claßen (2016). In fact, both in their settings and ours, the
dynamic system evolves each model of the ontology, and
properties are verified over all the resulting evolutions. This
is radically different from approaches where the ABox it-
self is evolved by the process, with an execution semantics
following Levesque’s functional approach, in which query
entailment over the current state is used to compute the suc-
cessor states (Bagheri Hariri et al. 2013b). However, we dif-
fer from the work by Claßen et al. (2014) and Zarrieß and
Claßen (2016) in that our goal is not only to derive foun-
dational results, but also to transfer them into practical algo-
rithms and thus obtain a model that is readily implementable
by relying on a state-of-the-art SMT-based model checker
such as MCMT (Ghilardi and Ranise 2010). As customary
for artifact systems, our approach is based on actions that
manipulate the artifact variables, coupled with condition-
action rules that declaratively define which actions are cur-
rently executable, and with which parameters. Alternative
choices could be seamlessly taken, by adapting approaches
that rely on an explicit description of the control-flow, e.g.,
based on state machines (de Leoni, Felli, and Montali 2020)
or Petri nets interpreted with interleaving semantics (Ghi-
lardi et al. 2020).

There exist very few approaches that have been proved
to be successful for assessing parameterized safety of pro-
cesses enriched with data capabilities, and SMT solvers are
well-known to represent the state-of-the-art in this area (Cal-
vanese et al. 2019a; Ghilardi et al. 2021; Calvanese et al.
2020): in this work we build in particular on top of the SMT-
based verification framework from (Calvanese et al. 2020).
A key element of novelty in our work is to lift, in conceptual
and modelling terms, this SMT-based verification approach
from to handle data stored in a DL ontology with incomplete
information, as opposed to a standard relational database
adopted in all the prior works on parameterized verification
of artifact systems (Deutsch, Li, and Vianu 2019, 2016; Cal-
vanese et al. 2020). It is well known that lifting results from
settings with complete to ones with incomplete information
is often a non-trivial task that requires novel insights, even
more when dealing with data/knowledge dynamics and for-
mal verification (where overall results are sparse and frag-
mented). This lies at the core of KR in AI and is a key con-
tribution of our work. Moreover, to develop our novel results
we need to extend the technical machinery from (Calvanese
et al. 2020) in a non-trivial way. Indeed, the central techni-
cal result is then to show that model completion holds in this
novel setting (Theorem 2), which in turn stands at the core of
the verification machinery we employ. In this light, Theorem

2 is a crucial, non-trivial result, as proving the existence of
a model completion calls every time for a sophisticated se-
mantical analysis of FO models of the theory of interest, that
is significantly different when a different theory is studied.

Preliminaries

In this section, we recall the syntax and semantics of first-
order logic (FO). We then define the syntax of the DL
RDFS

+
, which is a slight extension of RDFS (Brickley and

Guha 2014). Its semantics is given by the standard transla-
tion, mapping RDFS

+
ontologies into equivalent sets of FO

formulas.

First-Order Logic Preliminaries

The alphabet of first-order logic (FO) consists of: countably
infinite and pairwise disjoint sets NP of predicate symbols
(with ar(P ) ∈ N being the arity of P ∈ NP), NF of func-
tion symbols (with ar(f) ∈ N being the arity of f ∈ NF),
NI of individual symbols (or individual names), and Var of
variables; the equality symbol ‘=’; the Boolean operators
‘¬’ and ‘∧’; and the existential quantifier ‘∃’. The defini-
tions of a (FO) term t (with t denoting a possibly empty
tuple of terms), formula ϕ, atom, and literal are given as
usual. Moreover, we adopt the standard abbreviations and
conventions for the other Boolean operators and the univer-
sal quantifier ‘∀’. We write ϕ(x) to indicate that the free
variables (defined as usual) of ϕ are included in x, and we
write ϕ(a) for the formula obtained from ϕ(x) by substitut-
ing a to x. Similar notions are adopted for terms. A sentence
is defined as a formula without free variables, while we call
quantifier-free a formula without any existential or univer-
sal quantifiers. A formula is existential if it has the form
∃xϕ(x), and universal if it has the form ∀xϕ(x), where ϕ
is quantifier-free. A (FO) theory T is a set of FO sentences,
and T is said to be universal if every ϕ ∈ T is universal.
A signature Σ is a subset of NP ∪ NF ∪ NI. For a set Γ of
formulas (respectively, terms), the signature of Γ, denoted
ΣΓ, is the set of predicate, function, and individual symbols
occurring in Γ. Given Σ, we say that Γ is a set of Σ-formulas
(resp., Σ-terms) if ΣΓ = Σ.

Given a signature Σ, an (FO) Σ-interpretation is a pair
I = (∆I , ·I), where ∆I is a non-empty set, called do-
main of I, and ·I is an interpretation function such that:
P I ⊆ (∆I)ar(P ), for every P ∈ NP∩Σ; fI : (∆I)ar(f) −→
∆I , for every f ∈ NF ∩ Σ; and aI ∈ ∆I , for every
a ∈ NI ∩ Σ. For a set Γ of terms or formulas, when no
confusion can arise, we often write ‘interpretation’ in place
of ‘ΣΓ-interpretation’. An assignment in I is a function
a : Var −→ ∆I . We define the value of a Σ-term t in I
under a as follows: a(t) = a(x), if t = x; a(t) = aI , if
t = a ∈ NI ∩ Σ; and a(t) = fI(a(t)), if t = f(t), where
f ∈ NF ∩ Σ and, for an m-tuple t = (t1, . . . , tm) of terms,
we set a(t) = (a(t1), . . . , a(tm)). The notion of a formula
ϕ being satisfied in an interpretation I under an assignment
a, or of I being a model of ϕ under a, written I |=a ϕ, is
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inductively defined as:

I |=a P (t) iff a(t) ∈ P I ,
I |=a s = t iff a(s) = a(t),
I |=a ¬ψ iff not I |=a ψ,
I |=a ψ ∧ χ iff I |=a ψ and I |=a χ,

I |=a ∃xψ iff I |=a′ ψ, for some a′ that can differ from
a only on x.

For a formula ϕ(x), we write I |= ϕ[d] in place of I |=a

ϕ(x), with a(x) = d. We say that a set Γ of formulas is
satisfied in an interpretation I under an assignment a, or that
I is a model of Γ under a, written I |=a Γ, if I |=a ϕ, for
every ϕ ∈ Γ (we refer to a singleton Γ = {ϕ} simply as ϕ).
For a sentence ϕ, the satisfaction of ϕ in I under a does not
depend on a, thus we write I |= ϕ in place of I |=a ϕ, and
we say that ϕ is satisfied in I. For a theory T , we say that
T is satisfied in an interpretation I (or that I is a model of
T ), written I |= T , if every sentence of T is satisfied in I.
A formula ϕ is satisfiable w.r.t. T (or T -satisfiable) if there
exist an interpretation I and an assignment a in I such that
I |= T and I |=a ϕ. Moreover, we say that T logically
implies a formula ϕ, or that ϕ is a logical consequence of
T , written T |= ϕ, if, for every interpretation I and every
assignment a in I, I |= T implies that I |=a ϕ. Finally,
formulas ϕ, ψ are equivalent w.r.t. T (or T -equivalent) if
T |= ϕ↔ ψ.

Description Logics Preliminaries
The DL we consider here is an extension of RDFS (Brick-
ley and Guha 2014) with disjointness between concepts and
roles, conjunction and (one-level) qualified existential quan-
tification on the left-hand side of inclusions, and inclusion
of direct and inverse roles. We denote this DL RDFS+ .

Formally, let NC, NR, and NI be countably infinite and
pairwise disjoint sets of concept, role, and individual names,
respectively, where concept names are 1-ary and role names
are 2-ary predicate symbols, hence NC ∪ NR ⊆ NP. In
RDFS

+
, concepts C and roles R, respectively denoting 1-

ary and 2-ary predicates, are defined as follows:

R ::= P | P−,
C ::= A1 u · · · u An | ∃R.> | ∃R.A,

where P ∈ NR, n ≥ 1, and A,A1, . . . , An ∈ NC. A concept
inclusion (CI) has the form C v A or C v ¬A, and a role
inclusion (RI) has the form R v R′ or R v ¬R′, where
C is an RDFS

+
concept, A ∈ NC, and R, R′ are roles. An

RDFS
+

TBox T is a finite set of CIs and RIs. An assertion
has the form A(a), ¬A(a), P (a, b), ¬P (a, b), (a = b), or
¬(a = b), where A ∈ NC, P ∈ NR, and a, b ∈ NI. An ABox
A is a finite set of assertions. (We point out that in an ABox
we allow for negated assertions, which is a feature that is not
always supported in DLs.) An RDFS

+
ontology O is a pair

(T ,A), where T is a TBox and A is an ABox.
We observe that RDFS

+
is incomparable in expressive

power with the DLs of the popular DL-Lite family (Cal-
vanese et al. 2007; Artale et al. 2009). Indeed, while DL-
Lite allows for the use of existential quantification ∃R.> on
the right-hand side of CIs, this is ruled out in RDFS+ . On

AcadPos v JobPos AcadPos v ¬AdminPos
AdminPos v JobPos User v ¬JobPos

∃applFor.> v User ∃applFor−.> v JobPos
∃suitFor.> v User ∃suitFor−.> v JobPos
∃suitFor.> v GoodEval EligUser v User

User u Grad v EligUser EligUser v Grad

AcadPos(professor123),
AcadPos(researcher123),

AdminPos(secretary123),
AdminPos(secretary456).

Figure 1: University personnel ontology for job hiring pro-
cesses

the other hand, in RDFS+ one can locally type the second
component of a role through the use of qualified existential
quantification ∃R.A on the left-hand side of CIs, while this
is not possible in DL-Lite. As we will see later, differently
from DL-Lite, the FO translation of an RDFS

+
ontology is a

universal theory.
Example To represent part of the domain knowledge on
job hiring processes for university personnel, we define the
RDFS

+
ontology O = (T ,A), where T and A contain the

CIs and assertions shown in Figure 1. Moreover, we assume
that A, which stores data on available job positions, con-
tains all the assertions of the form ¬A(u), ¬P (u, a) and
¬P (a, u), for a distinguished individual name u ∈ NI and
every A,P, a ∈ ΣO, so that u can be used to represent
an undefined value. The CIs of T formalise the following
facts: there are both academic and administrative job posi-
tions and these are disjoint; users and job positions are dis-
joint; applFor relates users to job positions; to be suitable for
something one has to be a user that is positively evaluated;
the range of suitFor is included in the extension of JobPos;
an eligible user is defined as a graduate user. /

We define now the standard translation from RDFS+ ex-
pressions to FO formulas, which maps concepts to FO for-
mulas with one free variable, and roles to FO formulas with
two free variables. Specifically, the translation T generates
formulas that contain just two variables x, y ∈ Var:

T(A1 u · · · u An) = A1(x) ∧ · · · ∧ An(x),

T(P ) = P (x, y), T(P−) = P (y, x),
T(∃R.>) = ∃yT(R), T(∃R.A) = ∃y(T(R) ∧A(y)),
T(¬A) = ¬T(A), T(¬R) = ¬T(R),

where A,A1, . . . , An are unary predicates and P is a binary
predicate. Moreover, we map CIs and RIs into universal FO
sentences in the following way:

T(C v D) = ∀x(T(C)→ T(D)),
T(R v S) = ∀x∀y(T(R)→ T(S)),

where D stands for either A or ¬A, and S stands for ei-
ther R′ or ¬R′. We also set T(T ) =

⋃
β∈T {T(β)}. As-

sertions α are (identically) mapped into FO literals with-
out free variables (i.e., ground), as T(α) = α, and we set
T(A) =

⋃
α∈A{T(α)} = A. Finally, T(O) = T(T )∪T(A).

It is easy to see that the set of FO sentences obtained as the
translation T(O) of an RDFS+ ontology O, can be equiva-
lently rewritten into a universal Horn theory (Kontchakov
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and Zakharyaschev 2014; Hodges 1993). Such a theory,
which we identify with T (O), can be obtained from T (O)
by simply putting formulas into prenex normal form.

The semantics for RDFS
+

expressions can be given
in terms of their FO translation (Kontchakov and Za-
kharyaschev 2014). For a concept C and an interpretation
I = (∆I , ·I), the extension of C in I is CI = {d ∈ ∆I |
I |= T(C)[d]}. Similarly, for a role R, its extension in I is
RI = {(d, e) ∈ ∆I×∆I | I |= T(R)[d, e]}. We say that C
andR are satisfied in I if CI 6= ∅ andRI 6= ∅, respectively.

Moreover, given a CI, RI, assertion, TBox, ABox, or on-
tology Γ, we say that Γ is satisfied in I (or that I is a model
of Γ), written I |= Γ, if I |= T(Γ). Given an ontology O
and (a concept, role, CI, RI, or assertion mapped, via its FO
translation, into) an FO formula ϕ, we say that ϕ is satisfi-
able w.r.t.O (orO-satisfiable) if there exists a model I ofO
that satisfies ϕ under some assignment in I. Finally, we say
that O logically implies an FO formula ϕ, or that ϕ is a log-
ical consequence of O, written O |= ϕ, if, for every model
I of O and every assignment a in I, I satisfies ϕ under a.

Basic Model-Theoretic Properties
In this section, we prove the model-theoretic properties that
will be used later on to develop our verification machinery.
Specifically, we show here that the standard translation of
the RDFS

+
ontologies introduced in the previous section ad-

mits model completion, and has the constraint satisfiabil-
ity problem decidable. These properties will then allow us
to verify suitably defined ontology-based processes by em-
ploying a variant of the SMT-based backward reachability
procedure by Calvanese et al. (2020). For this, we require
some preliminary notions.

A formula that is a conjunction of Σ-literals is called
a Σ-constraint. Given a Σ-theory T , we define the con-
straint satisfiability problem for T as follows: given a for-
mula ∃yϕ(x, y), where ϕ(x, y) is a Σ-constraint, decide
whether ∃yϕ(x, y) is satisfiable w.r.t. T . A theory T has
quantifier elimination (QE) iff, for every ΣT -formula ϕ(x),
there exists a quantifier-free formula ψ(x) such that T |=
ϕ(x) ↔ ψ(x). Finally, we will use the following defini-
tion of model completion, which is restricted to cover the
case of universal theories (the ones considered in this work)
and that is nonetheless known to be equivalent (for univer-
sal theories) to the usual one from model theory (Chang and
Keisler 1990; Ghilardi 2004). Let T be a universal Σ-theory
and let T ∗ ⊇ T be a further Σ-theory. We say that T ∗ is a
model completion of T iff: (i) every Σ-constraint satisfied in
a model of T is also satisfied in a model of T ∗; (ii) T ∗ has
QE. A model completion T ∗ of a theory T , when it exists, is
unique: this justifies the use of the notation T ∗ for denoting
the unique model completion of T .

We now state the main technical result of the section.
Theorem 2 Given an RDFS

+
ontology O, T(O) is a finite

universal FO theory that (i) has a decidable constraint sat-
isfiability problem, and (ii) admits a model completion.

Proof (Sketch) For Point (i), we reduce to RDFS
+

ontol-
ogy satisfiability, which is decidable (since RDFS

+
is a

fragment of SROIQ (Baader et al. 2017)). For Point (ii),

we require the following definitions. A theory T has the
amalgamation property if, for every pair of embeddings
µ1 : I0 −→ I1, µ2 : I0 −→ I2 between models I0 and I1,
I2 of T , there exist a model I of T and embeddings
ν1 : I1 −→ I , ν2 : I2 −→ I , such that ν1 ◦ µ1 = ν2 ◦ µ2

(we adopt here the usual notion of embedding (Chang and
Keisler 1990)). The triple (I, ν1, ν2) (or, abusing notation,
just I) is called a T -amalgam of I1, I2 over I0. One can as-
sume w.l.o.g. that I0 is a substructure of I1 and I2 and that
µ1 and µ2 are inclusion embeddings (mapping an element
of I0 in the same element of I1 and I2, resp.).

Since there is no function symbol in ΣT (O), it suffices
to show that T (O) enjoys the amalgamation property (Lip-
parini 1982). For this purpose, for every pair of models I1,
I2 of T (O) sharing a submodel I0, we define I = (∆I , ·I)
as follows: (i) ∆I = ∆I1 ∪ ∆I2 ; (ii) for every individual
symbol a ∈ ΣT (O), aI = aI1 ; (iii) for every (1- or 2-ary)
predicate symbol P ∈ ΣT (O), P I = P I1 ∪ P I2 . Observe
that aI = aI1 = aI0 = aI2 . Moreover, if d ∈ P I , where
P is n-ary, for n ∈ {1, 2}, then d ∈ (∆I1)n and d ∈ P I1 ,
or d ∈ (∆I2)n and d ∈ P I2 : this follows from the def-
inition of P I := P I1 ∪ P I2 . Clearly, given embeddings
µ1 : I0 −→ I1, µ2 : I0 −→ I2, the (inclusion) embeddings
i1 : I1 −→ I , i2 : I2 −→ I are such that i1 ◦ µ1 = i2 ◦ µ2.
We show that I is a model of T (O). A formula ϕ of T (O)
has one of the following forms:

(1) ∀x(A1(x) ∧ · · · ∧ An(x)→ D(x));
(2) ∀x∀y(R1(x, y)→ D(x));
(3) ∀x∀y(R1(x, y) ∧A(y)→ D(x));
(4) ∀x∀y(R1(x, y)→ R2(x, y));
(5) ∀x∀y(R1(x, y)→ ¬R2(x, y));

where: Ak ∈ NC, for k ∈ {1, . . . , n}; D ∈ {B,¬B},
with B ∈ NC; Ri(x, y) = Pi(x, y), if Ri = Pi, and
Ri(x, y) = Pi(y, x), if Ri = P−i , with Pi ∈ NR and
i ∈ {1, 2}. Reasoning by cases, one can show that for ev-
ery j ∈ {1, . . . , 5} and every formula ϕ ∈ T (O) of the
form (j), I is a model of ϕ. For example, we prove here
Case (1). Given d ∈ ∆I , suppose that I |= Ak[d], i.e.,
d ∈ AIk , for all k ∈ {1, . . . , n}. We have that d ∈ ∆Ii and
d ∈ AIik , for i = 1 or i = 2, and thus Ii |= Ak[d]. Since
Ii is a model of T (O), and hence of ϕ, we have Ii |= D[d].
Given that D(x) is a literal and Ii is embedded in I, we ob-
tain that I |= D[d], and thus I |= ϕ. This completes the
proof that T (O) has a model completion. �

Remark For every RDFS+ ontology O, the model comple-
tion T (O)∗ of T (O) admits quantifier elimination. The algo-
rithm for quantifier elimination in T (O)∗ follows from the
proof of Theorem 2: to eliminate ∃x from a ΣT (O)-formula
∃xϕ(x, y), we take the conjunction of the clauses χ(y) im-
plied by ϕ(x, y), which are finitely many for T (O), up to
T (O)-equivalence. This procedure is used in Algorithm 1
and is crucial to get the decidability results of Theorem 9. /

Properties (i) and (ii) of Theorem 2 are in line with the
foundational framework by Calvanese et al. (2020), where
a third property is additionally assumed: the finite model
property for constraint satisfiability (see the references for
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the definition). However, an important difference with the
work by Calvanese et al. (2020) is that this property here is
not needed because we do not require finite structures (i.e.,
databases).

Finally, we observe that ontologies in the DL RL
(Kontchakov and Zakharyaschev 2014) do not enjoy Prop-
erty (ii) of Theorem 2. To see this, consider the RL ontol-
ogy O1 = (T1, ∅), with T1 = {∃P.∃P.> v ⊥}. It can be
shown (see figure below) that T(O1) does not enjoy amalga-
mation, hence it does not admit a model completion (Chang
and Keisler 1990).

I0
I1 I2

e0e1 e2

P P

Ontology-Based Processes
To study ontology-based processes under RDFS

+
ontolo-

gies, we introduce now our model, called RDFS
+

-based pro-
cesses, which are a variant of the artifact systems studied
by Calvanese et al. (2019b). We also introduce the param-
eterised safety problems for our model, then studied in the
following section.

Ontology-based processes read data from a given RDFS
+

ontology, used to store background information of the sys-
tem, and manipulate individual variables, called artifact
variables, which represent the current state of the process.

To formalise such model, we first introduce case-defined
functions. For an RDFS

+
ontology O, an O-partition is a fi-

nite set P = {κ1(x), . . . , κn(x)} of ΣO-literals such that
O |= ∀x

∨n
i=1 κi(x) ∧ ∀x

∧
i6=j ¬(κi(x) ∧ κj(x)). Given

an O-partition P = {κ1(x), . . . , κn(x)}, and ΣO-terms
t(x) = (t1(x), . . . , tn(x)), (the value of) a case-defined
function F on P and t, for a fresh function symbol F ∈ NF,
is as follows: for every model I of O, every assignment a
in I, and every tuple x of variables, a(F (x)) = a(ti(x)),
if I |=a κi(x). We call a case-defined function trivial when
i = 1, that is, when it has only one case

In order to introduce verification problems in a symbolic
setting, one first has to specify which formulas are used to
represent (i) the sets of states, (ii) the system initialisations,
and (iii) the system evolution. To capture these aspects, we
provide the following definitions.

An RDFS+ -based process (RDFS+-BP) is a tuple S =
(O, x, ι(x),

⋃m
j=1{τj(x, x′)}), where m ∈ N, and

• O = (T ,A) is an RDFS
+

ontology;
• x = (x1, . . . , xn) is a tuple of variables, called artifact

variables, and x′ is a tuple of variables that are renamed
copies of variables in x;

• ι(x) =
∧n
i=1 xi = ai, with ai ∈ NI, is an initial state

formula;
• τj(x, x′) = ∃y(γj(x, y) ∧

∧n
i=1 x

′
i = F ji (x, y)), for

1 ≤ j ≤ m, is a transition formula, where γj(x, y) is a
conjunction of ΣO-literals, called guard of τj , and each
x′i = F ji (x, y), where F ji is a case-defined function on
some O-partition and list of ΣO-terms, is called an up-
date of τj .

Notice that, when the case-defined function F ji appear-
ing in an update is trivial, the corresponding update x′i =

F ji (x, y) stands for a “value assignment” of the variable x′i
to a single term.

Example We develop a job hiring process for university
personnel based on the domain knowledge from Example 1.
Each application is created using a dedicated website por-
tal, where potentially interested users need to register in ad-
vance. When a registered user decides to apply, the data cre-
ated do not have to be stored persistently and thus can be
maintained just by using artifact variables (described below)
that can interact with the knowledge base. All these variables
are initialised with an undefined value u. In the first transi-
tion, an application is created by a registered user, which
falls into the extension of the concept User: the information
about the user is then stored in the artifact variable xappl.
At this point, the website asks the user whether they hold
a university degree: if this is the case, the website accepts
the user as eligible, their information is stored using xappl
and the process can progress. Then, the user picks up a job
position (assigned to xjob) and applies for it. The following
steps of the process involve the evaluation of the applica-
tion: for both academic and administrative positions, if the
eligible candidate is suitable for the position, they are de-
clared winner (assigned to xwinr), otherwise loser (assigned
to xlosr). To formalise this process, we define the RDFS

+
-BP

S = (O, x, ι(x),
⋃7
j=1{τj(x, x′)}) so that O is the RDFS

+

ontology of Example 1, and
x = (xappl, xjob, xelig, xwinr, xlosr),
ι =

∧
xi∈x xi = u,

τ1 = ∃y1(User(y1) ∧ x′appl = y1),
τ2 = EligUser(xapplicant) ∧ x′elig = xappl,
τ3 = ∃z1(JobPos(z1) ∧ applFor(xelig, z1) ∧ x′job = z1);
τ4 = AcadPos(xjob) ∧ suitFor(xelig, xjob) ∧ x′winr = xelig,
τ5 = AdminPos(xjob) ∧ suitFor(xelig, xjob) ∧ x′winr = xelig,
τ6 = AcadPos(xjob) ∧ ¬suitFor(xelig, xjob) ∧ x′losr = xelig,
τ7 = AdminPos(xjob) ∧ ¬suitFor(xelig, xjob) ∧ x′losr = xelig. /

We define now parametric safety. Given an RDFS
+

on-
tology O, we call state (ΣO-)formula a quantifier-free ΣO-
formula ϕ(x). A state formula constrains the content of the
artifact variables characterising the states of the systems.
Notice that a state formula can represent a (possibly infinite)
set of states, because of the presence of (possibly infinitely
many) different elements in a model of the ontology O. A
safety formula ν(x) for S is a state ΣO-formula describing
the undesired states of the system. We say that S is safe w.r.t.
ν(x) if there is no k ≥ 0 and no formula

ι(x0) ∧ τj0(x0, x1) ∧ · · · ∧ τjk−1
(xk−1, xk) ∧ ν(xk), (?)

that is satisfiable w.r.t. O, where 1 ≤ j0, . . . , jk−1 ≤ m and
each xh, with 0 ≤ h ≤ k, is a tuple of variables that are
renamed copies of variables in x.

The safety problem for S is the following decision prob-
lem: given a safety formula ν(x) for S , decide whether S
is safe w.r.t. ν(x). This verification problem is parametric
on the models of a fixed RDFS

+
ontology, since safety is

assessed irrespectively of the choice of such a model. This
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Algorithm 1: SMT-based backward reachability procedure
Function BReach(ν)

1 φ←− ν; B ←− ⊥;
2 while φ ∧ ¬B is T (O)-satisfiable do
3 if ι ∧ φ is T (O)-satisfiable then

return (unsafe, unsafe trace of form (?));
4 B ←− φ ∨B;
5 φ←− Pre(τ, φ);
6 φ←− QE(T (O)∗, φ);

return safe;

implies that, when the system is safe, it is so for every exe-
cution of the process under every model — in principle, in-
finitely many — of the given ontology.
Example Referring to Example 4, an undesired situation is
the one where an applicant registered user is declared win-
ner even if they were not eligible. This situation is formally
described by the safety formula:

ν = User(xwinr) ∧ ¬EligUser(xwinr). /

Verifying Safety Properties for RDFS+-BPs
We study now the parameterised safety problems for
RDFS

+
-BPs by adopting a symbolic version (Calvanese et al.

2020) of the well-known backward reachability procedure
(Abdulla et al. 1996). The requirements that are needed for
employing our machinery are (cf. Theorem 2): (i) the ex-
istence of the model completion T (O)∗ for T (O) (with an
available quantifier elimination procedure in T (O)∗), and
(ii) the decidability of the constraint satisfiability problem
for the ontology O.

Let us consider the safety problem for an RDFS+-BP S .
First of all, we need to preprocess S in order to eliminate all
the occurrences of case-defined functions. This can be done
in polynomial time.
Lemma 6 The safety problem for an RDFS

+
-BP S can be

reduced to the safety problem for an RDFS
+
-BP S ′ (the size

of which is polynomial in the size of S) with only trivial case-
defined functions.

Indeed, similarly to what shown in (Calvanese et al.
2020), the previous lemma shows that also in this case case-
defined functions can be eliminated w.l.o.g.From now on,
we assume that RDFS

+
-BPs S is without any case-defined

function. We are ready to describe the main procedure for
detecting safety of RDFS+-BPs: this procedure will handle
only the “pre-processed” RDFS+-BPs not containing case-
defined functions

The SMT-based backward reachability procedure (or
backward search) for handling the safety problem for an
RDFS

+
-BP S is shown in Algorithm 1. An integral part of the

algorithm is to compute symbolic preimages (Line 5). The
intuition behind the algorithm is to execute a loop where,
starting from the undesired states of the system (described
by the safety formula ν(x)), the state space of the system
is explored backward: in every iteration of the while loop

(Line 2), the current set of states is regressed through tran-
sitions thanks to the preimage computation. For that pur-
pose, for any τ(z, z′) and φ(z) (where z′ are renamed copies
of z), we define τ :=

∨m
h=1 τh and Pre(τ, φ) as the formula

∃z′(τ(z, z′)∧φ(z′)). Let φ(x) be a state formula, describing
the state of the artifact variables x. The preimage of the set
of states described by the formula φ(x) is the set of states
described by Pre(τ, φ) (notice that, when τ =

∨
τ̂ , then

Pre(τ, φ) =
∨

Pre(τ̂ , φ)). We recall that a state formula
is a quantifier-free ΣO-formula. Unfortunately, because of
the presence of the existentially quantified variables y in
τ , Pre(τ, φ) is not a state formula, in general. As stated by
Calvanese et al. (2020), if the quantified variables were not
eliminated, we would break the regressability of the proce-
dure: indeed, the states reached by computing preimages,
intuitively described by Pre(τ, φ), need to be represented by
a state formula φ′ in the new iteration of the while loop. In
addition, the increase in the number of variables due to the it-
eration of the preimage computation would affect the perfor-
mance of the satisfiability tests described below, in case the
loop is executed many times. In order to solve these issues,
it is essential to introduce the subprocedure QE(T (O)∗, φ)
in Line 6. QE(T (O)∗, φ) implements the quantifier elimi-
nation algorithm of T (O)∗ and that converts the preimage
Pre(τ, φ) of a state formula φ into a state formula (equiva-
lent to it modulo the axioms of T (O)∗), so as to guarantee
the regressability of the procedure: this conversion is possi-
ble since T (O)∗ eliminates from τh the existentially quanti-
fied variables y. Backward search computes iterated preim-
ages of the safety formula ν, until a fixpoint is reached (in
that case, S is safe w.r.t. ν) or until a set intersecting the
initial states (i.e., satisfying ι) is found (in that case, S is
unsafe w.r.t. ν). Inclusion (Line 2) and disjointness (Line 3)
tests can be discharged via proof obligations to be handled
by SMT solvers. The fixpoint is reached when the test in
Line 2 returns unsat: the preimage of the set of the current
states is included in the set of states reached by the back-
ward search so far (represented as the iterated application
of preimages to the safety formula ν). The test at Line 3
is satisfiable when the states visited so far by the backward
search include a possible initial state (i.e., a state satisfying
ι). If this is the case, then S is unsafe w.r.t. ν. Together with
the unsafe outcome, the algorithm returns an unsafe trace
of the form (?), explicitly witnessing the sequence of transi-
tions τh that, starting from the initial configurations, lead the
system to a set of states satisfying the undesired conditions
described by ν(x).
Theorem 7 Backward search (Algorithm 1) is correct for
detecting whether an RDFS+-BP S is safe w.r.t. ν(x).
Proof (Sketch) We first require the following claim, which
comes immediately from the definitions.
Claim 8 For every safety formula ν(x) for S and every k ≥
0, a formula ϑ of the form (?) is satisfiable w.r.t. O iff ϑ is
satisfiable w.r.t. T (O).

We then need to show that, instead of satisfiability of for-
mulas of the form (?) in models of T (O), we can concentrate
on satisfiability w.r.t. T (O)∗ (which exists thanks to Prop-
erty (ii) of Theorem 2). Then, by exploiting the algorithm
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for quantifier elimination in T (O)∗ described in Remark 3,
formulas of the form (?) can be represented via backward
search by using quantifier-free formulas. We conclude by
noticing that safety/unsafety of S w.r.t. ν(x) can be detected
invoking the satisfiability tests on those quantifier-free for-
mulas: these tests are effective thanks to Property (i) of The-
orem 2, because the decidability of the constraint satisfiabil-
ity problem implies the decidability of the satisfiability of
arbitrary quantifier-free formulae. �

Backward search for generic artifact systems is not guar-
anteed to terminate (Calvanese et al. 2020). However, in case
S is unsafe w.r.t. ν(x), an unsafe trace — which is finite — is
found after finitely many iterations of the while loop: hence,
in the unsafe case, backward search must terminate. To-
gether with the theorem above, this means that the backward
reachability procedure is at least a semi-decision procedure
for detecting unsafety of RDFS+-BPs. Nevertheless, we show
in the following theorem that, in case of RDFS+-BPs, back-
ward search always terminates: thus, it is a full decision pro-
cedure, for which we also provide a PSPACE upper bound.
Theorem 9 The safety problem for RDFS

+
-BPs S =

(O, x, ι(x),
⋃m
j=1{τj(x, x′)}) is decidable in PSPACE in the

combined size of x, ι, and
⋃m
j=1 τj .

Proof There are only finitely many quantifier-free ΣT (O)-
formulas, up to T (O)-equivalence, that could be built out
of a finite set of variables x: this holds for every RDFS

+

ontology O. Thanks to the quantifier elimination procedure
in Line 6, the overall number of variables in φ is never
increased: notice that, without quantifier elimination, com-
puting preimages Pre(τ, φj) would introduce in φj+1 new
quantified variables, because of the presence of existentially
quantified variables y in τ . This implies that globally there
are only finitely many quantifier-free ΣT (O)-formulas that
Algorithm 1 needs to analyse. Hence, Algorithm 1 must
terminate: by construction of B, the unsatisfiability test of
Line 2 must eventually succeed, if the unsatisfiability test of
Line 3 never does so.

Concerning complexity, we need to modify Algorithm 1.
We first notice that, thanks to Lemma 6, the preprocessing
that converts an RDFS

+
-BP with occurrences of case-defined

functions into its equivalent RDFS
+
-BP without any occur-

rence of case-defined functions does not increase the over-
all complexity of the problem. Moreover, the translation of
an RDFS+ -ontology O into T (O) requires polynomial time.
Since T (O) is universal and without function symbols, also
the satisfiability tests in Lines 2-3 can be performed in poly-
nomial time (cf. (Calvanese et al. 2020), Proposition 3.1).
Then, we adopt a nondeterministic procedure, analogous to
the one by Calvanese et al. (2019b), Theorem 6.1, that makes
the complexity NPSPACE: the main difference from (Cal-
vanese et al. 2019b), Theorem 6.1, is that in our signatures,
instead of unary functions, we have unary and binary rela-
tional symbols, but the argument works similarly. By Sav-
itch’s Theorem (PSPACE = NPSPACE), we conclude the
proof. �

This upper bound is tight. In fact, propositional STRIPS
planning (Bylander 1994), a well-known PSPACE-hard

problem, can be directly encoded in our setting (without
making use of an ontology, and only employing a propo-
sitional working memory).

We observe that Algorithm 1 is not yet implemented in the
state-of-the-art model checker MCMT (Ghilardi and Ranise
2010), which is based on SMT solving. Such an implementa-
tion, however, can be obtained by extending MCMT with the
quantifier elimination algorithm for T (O)∗ (cf. Remark 3),
required in Line 6, together with a procedure for RDFS+ on-
tology satisfiability, required in Lines 2–3.

Conclusions
We have studied the problem of verification of data-aware
processes under RDFS

+
ontologies, where the process com-

ponent can interact with a knowledge base specified by
means of the DL RDFS+ , underpinning the RDFS con-
structs. We addressed this problem by introducing a suit-
able model of ontology-based processes, called RDFS+-BPs,
and by leveraging the SMT-based version of the backward
reachability procedure, which is a well-known technique to
employ for verifying systems of this kind. Specifically, we
have shown that this procedure is a full decision procedure
for detecting safety of RDFS

+
-BPs, and we also provided a

PSPACE complexity upper bound.
This work opens several directions for future work. First,

we notice that the choice of RDFS
+

ontologies is not intrin-
sic to our approach. Indeed, motivated by conceptual mod-
elling and data integration issues in Ontology-Based Data
Access (Xiao et al. 2018) applications, we are currently
working on the DL-Lite family of DLs, to define suitable DL-
Lite-based processes with analogous decidability and com-
plexity results. The main difference we have to account for
is that, for a DL-Lite ontologyO, we have an equisatisfiable
(but not equivalent) translation into a universal one-variable
FO sentence T (O), and Claim 8 in the proof of Theorem 7
has to be modified to show that a trace ϑ is satisfiable w.r.t.
O iff a suitably translated trace ϑ̂ is satisfiable w.r.t. T (O).
In general, nonetheless, we point out that any DL satisfying
the two conditions stated in Theorem 2 can be chosen for
our purposes, and that the same theoretical guarantees can
be obtained over the SMT-based backward reachability pro-
cedure. As future work, we thus intend to introduce a more
general framework for DL-based processes that is able to ac-
count for different DLs. We also intend to extend the results
obtained here to more sophisticated artifact-centric models,
such as the relational artifact systems (RASs) studied by Cal-
vanese et al. (2020).

Moreover, it is worth investigating in this setting also
properties that go beyond safety, such as liveness. In this
respect, we intend to exploit the framework proposed in
(Geatti, Gianola, and Gigante 2022) for solving satisfiabil-
ity of Linear Temporal Logic Modulo Theories over Finite
Traces (LTLfMT), which is a first-order extension of LTLf,
so as to symbolically represent DL-based processes and ex-
press temporal properties over them. This approach is par-
ticularly promising because it relies on the use of the effi-
cient BLACK solver (Geatti, Gigante, and Montanari 2019,
2021), which leverages SMT solvers as backend tools.
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