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Abstract

In this paper, we study the effect of preferences in abstract ar-
gumentation under a claim-centric perspective. Recent work
has revealed that semantical and computational properties can
change when reasoning is performed on claim-level rather
than on the argument-level, while under certain natural re-
strictions (arguments with the same claims have the same out-
going attacks) these properties are conserved. We now inves-
tigate these effects when, in addition, preferences have to be
taken into account and consider four prominent reductions to
handle preferences between arguments. As we shall see, these
reductions give rise to different classes of claim-augmented
argumentation frameworks, and behave differently in terms
of semantic properties and computational complexity. This
strengthens the view that the actual choice for handling pref-
erences has to be taken with care.

1 Introduction
Arguments vary in their plausibility. Research in formal ar-
gumentation has taken up this aspect in both quantitative
and qualitative terms (Li, Oren, and Norman 2011; Atkinson
et al. 2017). Indeed, preferences are nowadays a standard
feature of many structured argumentation formalisms (Mod-
gil and Prakken 2013; Cyras and Toni 2016). At the same
time, there are numerous generalizations of abstract Argu-
mentation Frameworks (AFs) (Dung 1995) that consider the
impact of preferences on the abstract level, be it in terms
of argument strength (Kaci et al. 2021; Modgil 2009), pref-
erences between values (Atkinson and Bench-Capon 2021),
or weighted arguments/attacks (Bistarelli and Santini 2021).
In AFs in which conflicts are expressed as a binary relation
between arguments (attack relation), the incorporation of
preferences typically results in the deletion or reversion of
attacks. Deciding acceptability of arguments via argumen-
tation semantics is thus reflected in terms of the modified
attack relation (Kaci et al. 2021).

The difference in argument strength and the resulting
modification of the attack relation naturally influences the
acceptability of the arguments’ conclusion (the claim of the
argument). Claim acceptance in argumentation systems, i.e.,
the evaluation of commonly acceptable statements while
disregarding their particular justifications, is an integral part
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of many structured argumentation formalisms (Modgil and
Prakken 2018; Dung, Kowalski, and Toni 2009) and has re-
ceived increasing attention in the literature (Horty 2002; Ba-
roni and Riveret 2019; Dvořák and Woltran 2020; Rocha and
Cozman 2022). A simple yet powerful generalization of AFs
that allow for claim-based evaluation are Claim-augmented
AFs (CAFs) (Dvořák and Woltran 2020), where each argu-
ment is assigned a claim. Semantics for CAFs can be ob-
tained by evaluating the underlying AF before inspecting the
claims of the acceptable arguments in the final step. CAFs
serve as an ideal target formalism for ASPIC+ (Modgil and
Prakken 2018) and other formalisms which utilize abstract
argumentation semantics whilst also considering the claims
of the arguments in the evaluation. Moreover, CAF seman-
tics capture semantics of logic programs without the need of
additional mappings (Rapberger 2020), in contrast to classi-
cal AF-instantiations (Caminada et al. 2015). Thus, we ob-
tain a direct correspondence between claim-extensions in the
CAF and conclusion-extensions in the original formalism.

Although the acceptance of claims is closely related to ar-
gument acceptance, there are subtle differences as observed
in (Dvořák and Woltran 2020; Prakken and Vreeswijk 2002;
Modgil and Prakken 2018) stemming from the fact that
claims can appear as conclusion of several different ar-
guments. As a consequence, several properties of AF se-
mantics cannot be taken for granted when considered in
terms of the arguments’ claims. For instance, the property
of I-maximality, i.e., ⊆-maximality of extensions, which
gives insights into the expressiveness of semantics (Dunne
et al. 2015) and skeptical argument justification (Baroni
and Giacomin 2007) is not satisfied by most CAF seman-
tics (Dvořák, Rapberger, and Woltran 2020). Furthermore,
the additional level of claims causes a rise in the computa-
tional complexity of standard decision problems (in partic-
ular, verification is one level higher in the polynomial hier-
archy as for standard AFs), see (Dvořák et al. 2021). Luck-
ily, these drawbacks can be alleviated by taking fundamental
properties of the attack relation into account: the basic ob-
servation that attacks typically depend on the claim of the
attacking arguments gives rise to the central class of well-
formed CAFs. This class satisfies that all arguments with
the same claim attack the same arguments; thus modeling
a very natural behavior of arguments that is common to all
leading structured argumentation formalisms and instantia-
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tions. Well-formed CAFs have the main advantage that most
of the semantics behave ‘as expected’, e.g., they retain I-
maximality, and their computational complexity is located
at the same level of the polynomial hierarchy as for AFs.

Unfortunately, it turns out that well-formedness cannot be
assumed if one deals with preferences in argumentation, as
arguments with the same claim are not necessarily equally
plausible. The following example demonstrates this.
Example 1. Consider two arguments a, a′ with claim α, and
another argument b having claim β. Moreover, both a and a′
attack b, while b attacks a. Furthermore assume that we are
given the additional information that b is preferred over a′
(for example, if assumptions in the support of b are stronger
than assumptions made by a′). A common method to inte-
grate such information on argument rankings is to delete
attacks from arguments that attack preferred arguments. In
this case, we delete the attack from a′ to b.

Both frameworks are depicted below: F represents the
original situation while F ′ is the CAF resulting from delet-
ing the unsuccessful attack from a′ on the argument b.

F : a

α

b

β

a′
α

F ′ : a

α

b

β

a′
α

Note that F is well-formed since all arguments with the
same claims attack the same arguments. The unique accept-
able argument-set w.r.t. stable semantics (cf. Definition 2) is
{a, a′} which translates to {α} on the claim-level.

The CAF F ′, on the other hand, is no longer well-formed
since a′ does not attack b. In F ′, the argument-sets {a, a′}
and {a′, b} are both acceptable w.r.t. to stable semantics.
In terms of claims this translates to {α} and {α, β}, which
shows that I-maximality is violated on the claim-level.

Although well-formedness can not be guaranteed in view
of preferences, this does not imply arbitrary behavior of
the resulting CAF: on the one hand, preferences conform
to a certain type of ordering (e.g., asymmetric, transitive)
over the set of arguments; on the other hand, it is evident
that the deletion, reversion, and other types of attack ma-
nipulation impose restrictions on the structure of the result-
ing CAF. Combining both aspects, we obtain that, assuming
well-formedness of the initial framework, it is unlikely that
preference incorporation results in arbitrary behavior. The
key motivation of this paper is to identify and exploit struc-
tural properties of preferential argumentation in the scope of
claim acceptance. The aforementioned restrictions suggest
beneficial impact on both the computational complexity and
on desired semantical properties such as I-maximality.

In this paper, we tackle this issue by considering four
commonly used methods, so-called reductions, to integrate
preference orderings into the attack relation: the most com-
mon modification is the deletion of attacks in case the attack-
ing argument is less preferred than its target. This method
is typically utilized to transform preference-based argumen-
tation frameworks (PAFs) (Amgoud and Cayrol 1998) into
AFs but is also used in many structured argumentation for-
malisms such as ASPIC+. This reduction has been criticized
due to several problematic side-effects, e.g., it can be the
case that two conflicting arguments are jointly acceptable,

and has been accordingly adapted in (Amgoud and Vesic
2014); two other reductions have been introduced in (Kaci,
van der Torre, and Villata 2018). We apply these four pref-
erence reductions to well-formed CAFs. In particular, our
main contributions are as follows:

• For each of the four reductions, we characterize the pos-
sible structure of CAFs that are obtained by applying
the reduction to a well-formed CAF and a preference
relation. This results in four novel CAF classes, each
of which constitutes a proper extension of well-formed
CAFs not retaining full expressiveness of general CAFs.
We investigate the relationship between these classes.

• We study I-maximality of stable, preferred, semi-stable,
stage, and naive semantics of the novel CAF classes. Our
results highlight a significant advantage of a particular
reduction: we show that, for admissible-based seman-
tics, this modification preserves I-maximality. The other
reductions fail to preserve I-maximality; moreover, for
naive and stage semantics, I-maximality cannot be guar-
anteed for any of the four reductions.

• Finally, we investigate the complexity of reasoning for
CAFs with preferences with respect to conflict-free, ad-
missible, complete, and all of the aforementioned seman-
tics. We show that for three of the four reductions, the
verification problem drops by one level in the polyno-
mial hierarchy for all except complete semantics and is
thus not harder than for well-formed CAFs (which in turn
has the same complexity as the corresponding AF prob-
lems). Complete semantics remain hard for all but one
preference reduction. Moreover, it turns out that verifica-
tion for the reduction which deletes attacks from weaker
arguments remains as hard as for general CAFs.

Our results constitute a systematic study of the structural and
computational effect of preferences on claim acceptance.
Since we use CAFs as our base formalism, our investiga-
tions extend to large classes of formalisms that can be rep-
resented as CAFs, just like results on AFs yield insights for
formalisms that can be captured by AFs.

This paper is organized as follows. In Section 2, we
recall necessary background. In Section 3, we introduce
preference-based CAFs (PCAFs) which combine PAFs with
well-formed CAFs. We characterize the novel CAF classes
based on the preference reductions in Section 4, study the I-
maximality of the semantics in Section 5, and their compu-
tational complexity in Section 6. We conclude in Section 7.

2 Preliminaries
We first define (abstract) argumentation frameworks (Dung
1995). U denotes a countable infinite domain of arguments.

Definition 1. An argumentation framework (AF) is a tuple
F = (A,R) where A ⊆ U is a finite set of arguments and
R ⊆ A × A is an attack relation between arguments. Let
E ⊆ A. We say E attacks b (in F ) if (a, b) ∈ R for some
a ∈ E; E+

F = {b ∈ A | ∃a ∈ E : (a, b) ∈ R} denotes the
set of arguments attacked by E. E⊕F = E ∪E+

F is the range
of E in F . An argument a ∈ A is defended (in F ) by E if
b ∈ E+

F for each b with (b, a) ∈ R.
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Given an AF F = (A,R) it can be convenient to write
a ∈ F for a ∈ A and (a, b) ∈ F for (a, b) ∈ R. Se-
mantics for AFs are defined as functions σ which assign
to each AF F = (A,R) a set σ(F ) ⊆ 2A of exten-
sions (Baroni, Caminada, and Giacomin 2018). We con-
sider for σ the functions cf (conflict-free), adm (admissi-
ble), com (complete), naive (naive), stb (stable), prf (pre-
ferred), sem (semi-stable), and stg (stage).

Definition 2. Let F = (A,R) be an AF. A set S ⊆ A
is conflict-free (in F ), iff there are no a, b ∈ S, such that
(a, b) ∈ R. cf (F ) denotes the collection of conflict-free sets
of F . For a conflict-free set S ∈ cf (F ), it holds that

• S ∈ adm(F ) iff each a ∈ S is defended by S in F ;
• S ∈ com(F ) iff S ∈ adm(F ) and each a ∈ A defended

by S in F is contained in S;
• S ∈ naive(F ) iff there is no T ∈ cf (F ) with S ⊂ T ;
• S ∈ stb(F ) iff each a ∈ A \ S is attacked by S in F ;
• S ∈ prf (F ) iff S ∈ adm(F ) and there is no
T ∈ adm(F ) with S ⊂ T ;

• S ∈ sem(F ) iff S ∈ adm(F ) and there is no T ∈
adm(F ) with S⊕F ⊂ T

⊕
F ;

• S ∈ stg(F ) iff there is no T ∈ cf (F ) with S⊕F ⊂ T
⊕
F .

Example 2. Consider the AF F = ({a, a′, b}, {(a, b),
(a′, b), (b, a)}) from Example 1, ignoring claims α and β.
Then cf (F ) = {∅, {a}, {a′}, {b}, {a, a′}}, adm(F ) =
{∅, {a}, {a′}, {a, a′}}, naive(F ) = {{b}, {a, a′}}, and
σ(F ) = {{a, a′}} for σ ∈ {com, stb, prf , sem, stg}.

CAFs generalize AFs by assigning each argument a claim
(Dvořák and Woltran 2020). We fix a countable infinite do-
main of claims C.

Definition 3. A claim-augmented argumentation framework
(CAF) is a triple (A,R, cl) where (A,R) is an AF and
cl : A → C is a function that maps arguments to claims.
The claim-function is extended to sets of arguments via
cl(E) = {cl(a) | a ∈ E}. A well-formed CAF (wfCAF)
is a CAF (A,R, cl) in which all arguments with the same
claim attack the same arguments, i.e., for all a, b ∈ A with
cl(a) = cl(b) we have {c | (a, c) ∈ R} = {c | (b, c) ∈ R}.

The semantics of CAFs are based on those of AFs.

Definition 4. LetF = (A,R, cl) be a CAF. The claim-based
variant of a semantics σ is defined as σc(F ) = {cl(S) | S ∈
σ((A,R))}.
Example 3. Consider the CAF F from Example 1. For-
mally, F = (A,R, cl) with A = {a, a′, b}, R = {(a, b),
(a′, b), (b, a)}, cl(a) = cl(a′) = α, and cl(b) = β.
F is well-formed and the underlying AF of F was in-
vestigated in Example 2. From there we can infer that,
e.g., cfc(F ) = {∅, {α}, {β}}, admc(F ) = {∅, {α}},
naivec(F ) = {{α}, {β}}, and stbc(F ) = {{α}}.

Well-known basic relations between different AF seman-
tics σ also hold for σc: stbc(F ) ⊆ semc(F ) ⊆ prf c(F ) ⊆
admc(F ) as well as stbc(F ) ⊆ stgc(F ) ⊆ naivec(F ) ⊆
cfc(F ) (Dvořák, Rapberger, and Woltran 2020).

Note that the semantics σ ∈ {naive, stb, prf , sem, stg}
employ argument maximization and result in incomparable

naivec stbc prfc semc stgc
CAF x x x x x
wfCAF x X X X X

Table 1: I-maximality of CAFs.

σ Cred∆
σ Skept∆

σ VerCAF
σ VerwfCAF

σ

cf in P trivial NP-c in P
adm NP-c trivial NP-c in P
com NP-c P-c NP-c in P
naive in P coNP-c NP-c in P
stb NP-c coNP-c NP-c in P
prf NP-c ΠP

2 -c ΣP
2 -c coNP-c

sem/stg ΣP
2 -c ΠP

2 -c ΣP
2 -c coNP-c

Table 2: Complexity of CAFs (∆ ∈ {CAF ,wfCAF}).

extensions on regular AFs: for all S, T ∈ σ(F ), S ⊆ T
implies S = T . This property is called I-maximality (Baroni
and Giacomin 2007), and is defined analogously for CAFs:

Definition 5. σc is I-maximal for a class F of CAFs if, for
all CAFs F ∈ F and all S, T ∈ σc(F ), S ⊆ T implies
S = T .

Table 1 shows I-maximality properties of CAFs (Dvořák,
Rapberger, and Woltran 2020), revealing an important prop-
erty of wfCAFs compared to general CAFs: I-maximality is
preserved in all semantics except naivec, implying natural
behavior of these maximization-based semantics analogous
to regular AFs; see, e.g., (van der Torre and Vesic 2017) for
a general discussion of such properties.

Regarding computational complexity, we consider the fol-
lowing decision problems pertaining to CAF-semantics σc:

• Credulous Acceptance (CredCAF
σ ): Given a CAF F and

claim α, is α contained in some S ∈ σc(F )?

• Skeptical Acceptance (SkeptCAF
σ ): Given a CAF F and

claim α, is α contained in each S ∈ σc(F )?

• Verification (VerCAF
σ ): Given a CAF F and a set of

claims S, is S ∈ σc(F )?

We furthermore consider these reasoning problems re-
stricted to wfCAFs and denote them by CredwfCAF

σ ,
SkeptwfCAF

σ , and VerwfCAF
σ . Table 2 shows the complex-

ity of these problems (Dvořák and Woltran 2020; Dvořák
et al. 2021). Here we see that the complexity of the verifica-
tion problem drops by one level in the polynomial hierarchy
when comparing general CAFs to wfCAFs. This is an im-
portant advantage of wfCAFs, as a lower complexity in the
verification problem allows for a more efficient enumeration
of claim-extensions (cf. (Dvořák and Woltran 2020)).

3 Preference-based CAFs
As discussed in the previous sections, wfCAFs are a natural
subclass of CAFs with advantageous properties in terms of I-
maximality and computational complexity. However, when
resolving preferences among arguments, the resulting CAFs
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a b F, b � a a b R1(F ) a b R2(F ) a b R3(F ) a b R4(F )

a b G, b � a a b R1(G) a b R2(G) a b R3(G) a b R4(G)

Figure 1: Effect of the four reductions on the attack relation between two arguments.

are typically no longer well-formed (cf. Example 1). In or-
der to study preferences under a claim-centric view we intro-
duce preference-based CAFs. These frameworks enrich the
notion of wfCAFs with the concept of argument strength in
terms of preferences. Our main goals are then to understand
the effect of resolved preferences on the structure of the un-
derlying wfCAF on the one hand, and to determine whether
the advantages of wfCAFs are maintained on the other hand.
Given this motivation, it is reasonable to consider the impact
of preferences on well-formed CAFs only.

Definition 6. A preference-based claim-augmented ar-
gumentation framework (PCAF) is a quadruple F =
(A,R, cl ,�) where (A,R, cl) is a well-formed CAF and �
is an asymmetric preference relation over A.

Notice that preferences in PCAFs are not required to be
transitive. While transitivity of preferences is often assumed
in argumentation (Amgoud and Vesic 2014; Kaci, van der
Torre, and Villata 2018), it cannot always be guaranteed in
practice (Kaci et al. 2021). However, we will consider the
effect of transitive orderings when applicable.

If a and b are arguments and a � b holds then we say
that a is stronger than b. But what effect should this order-
ing have? How should this influence, e.g., the set of admis-
sible arguments? One possibility is to remove all attacks
from weaker to stronger arguments in our PCAF, and to
then determine the set of admissible arguments in the re-
sulting CAF. This altering of attacks in a PCAF based on its
preference-ordering is called a reduction. The literature de-
scribes four such reductions for regular AFs (Amgoud and
Cayrol 2002; Amgoud and Vesic 2014; Kaci, van der Torre,
and Villata 2018), which we now adapt.

Definition 7. Given a PCAF F = (A,R, cl ,�), the corre-
sponding CAF Ri(F ) = (A,R′, cl) is constructed via Re-
duction i, where i ∈ {1, 2, 3, 4}, as follows:

• i = 1: ∀a, b ∈ A : (a, b) ∈ R′ ⇔ (a, b) ∈ R, b 6� a
• i = 2: ∀a, b ∈ A : (a, b) ∈ R′ ⇔ ((a, b) ∈ R, b 6� a) ∨

((b, a) ∈ R, (a, b) /∈ R, a � b)
• i = 3: ∀a, b ∈ A : (a, b) ∈ R′ ⇔ ((a, b) ∈ R, b 6� a) ∨

((a, b) ∈ R, (b, a) 6∈ R)
• i = 4: ∀a, b ∈ A : (a, b) ∈ R′ ⇔ ((a, b) ∈ R, b 6� a) ∨

((b, a) ∈ R, (a, b) /∈ R, a � b)∨((a, b) ∈ R, (b, a) 6∈ R)

Figure 1 visualizes the above reductions. Intuitively, Re-
duction 1 removes attacks that contradict the preference or-
dering while Reduction 2 reverts such attacks. Reduction 3
removes attacks that contradict the preference ordering, but
only if the weaker argument is attacked by the stronger argu-
ment also. Reduction 4 can be seen as a combination of Re-
ductions 2 and 3. Observe that all four reductions are poly-
nomial time computable with respect to the input PCAF.
Note that many structured argumentation formalisms use

preference reductions. For instance, ABA+ (Cyras and Toni
2016) employs attack reversal similar to Reduction 2 while
some instances of ASPIC (Modgil and Prakken 2013) delete
attacks from weaker arguments in the spirit of Reduction 1.

The semantics for PCAFs can now be defined in a
straightforward way: first, one of the four reductions is ap-
plied to the given PCAF; then, CAF-semantics are applied
to the resulting CAF.

Definition 8. Let F be a PCAF and let i ∈ {1, 2, 3, 4}. The
preference-claim-based variant of a semantics σ relative to
Reduction i is defined as σip(F ) = σc(Ri(F )).

Example 4. Let F = (A,R, cl ,�) be the PCAF whereA =
{a, a′, b}, R = {(a, b), (a′, b), (b, a)}, cl(a) = cl(a′) = α,
cl(b) = β, and b � a′. The underlying CAF (A,R, cl) of F
was examined in Example 3.
R1(F ) = (A,R′, cl) with R′ = {(a, b), (b, a)}, which is

the same CAF as F ′ in Example 1. It can be verified that,
e.g., adm1

p(F ) = admc(R1(F )) = {{∅, {α}, {β}, {α, β}}
and stb1

p(F ) = {{α}, {α, β}}.
Indeed, the choice of reduction can influence the exten-

sions of a PCAF. For example, R2(F ) = (A,R′′, cl) with
R′′ = {(a, b), (b, a), (b, a)}, adm2

p(F ) = {∅, {α}, {β}},
and stb2

p(F ) = {{α}, {β}}.
It is easy to see that basic relations between semantics

carry over from CAFs, as, if we have σc(F ) ⊆ τc(F ) for two
semantics σ, τ and all CAFs F , then also σip(F ) ⊆ τ ip(F )
for all PCAFs F . It thus holds that for all i ∈ {1, 2, 3, 4},
stbip(F ) ⊆ semi

p(F ) ⊆ prf ip(F ) ⊆ admi
p(F ) as well as

stbip(F ) ⊆ stg ip(F ) ⊆ naiveip(F ) ⊆ cf ip(F ).

Remark. In this paper we require the underlying CAF of a
PCAF to be well-formed. The reason for this is that we are
interested in whether the benefits of well-formed CAFs are
preserved when preferences have to be taken into account.
Even from a technical perspective, admitting PCAFs with a
non-well-formed underlying CAF is not very interesting with
respect to the questions addressed in this paper. Indeed, any
CAF could be obtained from such general PCAFs, regard-
less of which preference reduction we are using, by simply
specifying the desired CAF and an empty preference rela-
tion. Thus, such general PCAFs have the same properties
regarding I-maximality and complexity as general CAFs.

4 Characterization & Expressiveness
Our first step towards understanding the effect of prefer-
ences on wfCAFs is to examine the impact of resolving pref-
erences on the structure of the underlying CAF. To this end,
we consider four new CAF classes which are obtained from
applying the reductions of Definition 7 to PCAFs.
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aα b α aα b α aα b α

Figure 2: CAFs contained only inR1-CAF,R2-CAF, and
R4-CAF respectively. Solid arrows are attacks, dashed ar-
rows indicate missing attacks for the CAF to be well-formed.

Definition 9. Ri-CAF denotes the set of CAFs that
can be obtained by applying Reduction i to PCAFs, i.e.,
Ri-CAF = {Ri(F ) | F is a PCAF}.

It is easy to see that Ri-CAF, with i ∈ {1, 2, 3, 4},
contains all wfCAFs (we can simply specify the desired
wfCAF and an empty preference relation). However, not
all CAFs are contained in Ri-CAF. For example, F =
({a, b}, {(a, b), (b, a)}, cl) with cl(a) = cl(b) can not be
obtained from a PCAF F ′: such F ′ would need to contain
either (a, b) or (b, a). But then, since the underlying CAF of
a PCAF must be well-formed, F ′ would have to contain a
self-attack which can not be removed by any of the reduc-
tions. This is enough to conclude that the four new classes
are located in-between wfCAFs and general CAFs:
Proposition 1. Let CAF be the set of all CAFs and
wfCAF the set of all wfCAFs. For all i ∈ {1, 2, 3, 4} it
holds that wfCAF ⊂ Ri-CAF ⊂ CAF.

Furthermore, the new classes are all distinct from each
other, i.e., we are indeed dealing with four new CAF classes.
Examples for CAFs that are in only one of R1-CAF,
R2-CAF, and R4-CAF are provided in Figure 2. More-
over, R3-CAF is contained in all other three classes since
Reduction 3 only alters symmetric attacks (in which case all
reductions behave in the same way).
Proposition 2. For all i ∈ {1, 2, 4} and all j ∈ {1, 2, 3, 4}
such that i 6= j it holds that Ri-CAF 6⊆ Rj-CAF and
R3-CAF ⊂ Ri-CAF.

While the classes R1-CAF, R2-CAF, and R4-CAF
are incomparable, we observeR3-CAF ⊂ Ri-CAF which
reflects that Reduction 3 is the most conservative of the four
reductions, removing attacks only when there is a counter-
attack from the stronger argument.

We now know that applying preferences to wfCAFs
results in four distinct CAF-classes that lie in-between
wfCAFs and general CAFs. It is still unclear, however, how
to determine whether some CAF belongs to one of these
classes or not. Especially for R2-CAF and R4-CAF this
is not straightforward, since Reductions 2 and 4 not only
remove but also introduce attacks and therefore allow for
many possibilities to obtain a particular CAF as result. We
tackle this problem by characterizing the new classes via the
so-called wf-problematic part of a CAF.
Definition 10. A pair of arguments (a, b) is wf-problematic
in a CAF F = (A,R, cl) if a, b ∈ A, (a, b) 6∈ R, and there
is a′ ∈ A with cl(a′) = cl(a) and (a′, b) ∈ R. The set
wfp(F ) = {(a, b) | (a, b) is wf-problematic in F} is called
the wf-problematic part of F .

Intuitively, the wf-problematic part of a CAF F consists
of those attacks that are missing for F to be well-formed (cf.

Figure 2). Indeed, F is a wfCAF if and only if wfp(F ) = ∅.
The four new classes can be characterized as follows:

Proposition 3. Let F = (A,R, cl) be a CAF. Then

• F ∈ R1-CAF iff (a, b) ∈ wfp(F ) implies (b, a) 6∈
wfp(F );

• F ∈ R2-CAF iff there are no arguments a, a′, b, b′ in F
with cl(a) = cl(a′) and cl(b) = cl(b′) such that (a, b) ∈
wfp(F ), (b, a) 6∈ R, (a′, b) ∈ R, and either (b, a′) ∈ R
or ((a′, b′) 6∈ R and (b′, a′) 6∈ R);

• F ∈ R3-CAF iff (a, b) ∈ wfp(F ) implies (b, a) ∈ R;
• F ∈ R4-CAF iff there are no arguments a, a′, b, b′ in F

with cl(a) = cl(a′) and cl(b) = cl(b′) such that (a, b) ∈
wfp(F ), (b, a) 6∈ R, (a′, b) ∈ R, and either (b, a′) 6∈ R
or ((a′, b′) 6∈ R and (b′, a′) 6∈ R).

The above characterizations give us some insights into
the effect of the various reductions on wfCAFs. Indeed, the
similarity between the characterizations of R1-CAF and
R3-CAF, resp. R2-CAF and R4-CAF, can intuitively
be explained by the fact that Reductions 1 and 3 only re-
move attacks, while Reductions 2 and 4 can also introduce
attacks. Furthermore, Proposition 3 allows us to decide in
polynomial time whether a given CAF F can be obtained by
applying one of the four preference reductions to a PCAF.

But what happens if we restrict ourselves to transitive
preferences? Analogously to Ri-CAF, by Ri-CAFtr we
denote the set of CAFs obtained by applying Reduction i
to PCAFs with a transitive preference relation. It is clear
that Ri-CAFtr ⊆ Ri-CAF for all i ∈ {1, 2, 3, 4}. Inter-
estingly, the relationship between the classes Ri-CAFtr is
different to that between Ri-CAF (Proposition 2). Specif-
ically, R3-CAFtr is not contained in the other classes. In-
tuitively, this is because, in certain PCAFs F , transitivity
can force a1 � an via a1 � a2 � . . . � an such that
(an, a1) ∈ F but (a1, an) 6∈ F . In this case, only Reduc-
tion 3 leaves the attacks between a1 and an unchanged.

Proposition 4. For all i, j ∈ {1, 2, 3, 4} such that i 6= j it
holds thatRi-CAFtr 6⊆ Rj-CAFtr .

We will not characterize all four classes Ri-CAFtr .
However, capturing R1-CAFtr will prove useful when an-
alyzing the computational complexity of PCAFs using Re-
duction 1. Note that wfp(F ) can be seen as a directed graph,
with an edge between vertices a and b whenever (a, b) ∈
wfp(F ). Thus, we may use notions such as paths and cycles
in the wf-problematic part of a CAF.

Proposition 5. F ∈ R1-CAFtr for a CAF F iff (1) wfp(F )
is acyclic and (2) (a, b) ∈ F implies that there is no path
from a to b in wfp(F ).

From the high-level point of view, our characterization re-
sults yield insights into the expressiveness of argumentation
formalisms that allow for preferences. Propositions 3 and 5
show which situations can be captured by formalisms which
(i) constructs attacks based on the claim of the attacking ar-
gument (i.e., formalisms with well-formed attack relation)
and (ii) incorporate asymmetric or transitive preference re-
lations on arguments using one of the four reductions.
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naiveip stbip prf ip semi
p stg ip

i∈{1, 2, 4} x x x x x
i=3 x X X X x

Table 3: I-maximality of PCAFs.

aα

a′
α

bβ

cγ

aα

a′ αbβ

b′ β

a′′ α

Figure 3: CAFs used as counter examples for I-maximality
(cf. Theorem 6). Dashed arrows are edges in wfp(F ).

5 I-Maximality
One of the advantages of wfCAFs over general CAFs is that
they preserve I-maximality under most maximization-based
semantics (cf. Table 1), which leads to more intuitive behav-
ior of these semantics when considering extensions on the
claim-level. We now investigate whether these advantages
are preserved when preferences are introduced. Analogously
to Definition 5, σip is I-maximal for a class F of PCAFs if,
for all F in F and all S, T ∈ σip(F ), S ⊆ T implies S = T .

From known properties of wfCAFs (cf. Table 1) it fol-
lows directly that naiveip is not I-maximal for PCAFs. It re-
mains to investigate I-maximality of prf ip, stbip, semi

p, and
stg ip. As it turns out, Reduction 3 manages to preserve I-
maximality in most cases. Interestingly, the other three re-
ductions lose I-maximality for all semantics.

Theorem 6. The results in Table 3 hold, even when consid-
ering only PCAFs with transitive preferences.

Intuitively, the above result can be explained by the fact
that Reduction 3 is the most conservative of the reductions,
not adding new attacks and preserving conflict-freeness (i.e.,
given a PCAF F , a set of arguments E is conflict-free in the
underlying CAF of F iff E is conflict-free in R3(F )). Re-
ductions 2 and 4 preserve conflict-freeness too, but they may
introduce new attacks in contrast to Reduction 3. It is easy to
see that Reduction 1 does not preserve conflict-freeness. In
fact, Reduction 1 has been deemed problematic for exactly
this reason when applied to regular AFs (Amgoud and Vesic
2014), although it is still discussed and considered in the lit-
erature alongside the other reductions (Kaci et al. 2021).

Let us explore the negative results from Theorem 6 more
in-depth. For i ∈ {1, 4}, a counter-example is given by the
CAF F ′ from Example 1. For all considered semantics, F ′
admits the extensions {α}, {α, β} which are in ⊆-relation
to each other. It can be checked that F ′ ∈ Ri-CAFtr .

For i = 2, let G be the CAF shown on the right in Fig-
ure 3. G ∈ R2-CAFtr sinceR2(G′) = G for the PCAF G′
with attacks {(b, a), (b, a′), (b′, a), (b′, a′)} and preferences
a � b and a′ � b′. Moreover, stbc(G) = {{α}, {α, β}}.

For stg3
p, let H be the CAF shown on the left in Fig-

ure 3. Note that H ∈ R3-CAFtr and stg3
c(H) = {{α},

{α, γ}, {β}}.

σ i = 1 i ∈ {2, 4} i = 3

cf /adm/naive/stb NP-c in P in P
com NP-c NP-c in P

prf /sem/stg ΣP
2 -c coNP-c coNP-c

Table 4: Complexity of VerPCAF
σ,i .

6 Computational Complexity
In this section, we investigate the impact of preferences
on the computational complexity of claim-based reason-
ing. For each preference reduction i ∈ {1, 2, 3, 4} we de-
fine CredPCAF

σ,i , SkeptPCAF
σ,i , and VerPCAF

σ,i analogously to
CredCAF

σ , SkeptCAF
σ , and VerCAF

σ (cf. Section 2), except
that we take a PCAF instead of a CAF as input and appeal to
the σip semantics instead of the σc semantics. Membership
results for PCAFs can be inferred from results for general
CAFs (recall that the preference reductions from PCAFs to
CAFs can be done in polynomial time), and hardness results
from results for wfCAFs. Thus, the complexity of credulous
and skeptical acceptance follows immediately from known
results for CAFs and wfCAFs: given i ∈ {1, 2, 3, 4} and
σ ∈ {cf , adm, com,naive, stb, prf , sem, stg}, the prob-
lems CredPCAF

σ,i and SkeptPCAF
σ,i have the same complexity

as CredwfCAF
σ and SkeptwfCAF

σ respectively (cf. Table 2).
The computational complexity of the verification prob-

lem, on the other hand, is one level higher for general CAFs
when compared to wfCAFs (cf. Table 2), i.e., the bounds that
existing results yield for PCAFs are not tight. We address
this open problem and comprehensively analyze VerPCAF

σ,i
for each of the considered reductions and semantics.
Theorem 7. The complexity results in Table 4 hold, even
when considering only PCAFs with transitive preferences.

Observe that when using Reduction 1 we obtain the same
complexity as for general CAFs, i.e., the benefits of wfCAFs
are lost in this case. On the other hand, Reductions 2–4 pre-
serve the lower complexity of wfCAFs for almost all seman-
tics. As we will see, this can be explained by the fact that
these reductions do not remove conflicts between arguments.
The only outlier is complete semantics, for which verifica-
tion remains hard under Reductions 2 and 4 but not Reduc-
tion 3. Here, the fact that Reductions 2 and 4 can introduce
new attacks leads to an increase in complexity.

We now examine why verification remains easier under
Reductions 2–4 in more detail. Given a wfCAF F and a set
of claimsC, a set of arguments S can be constructed in poly-
nomial time such that S is the unique maximal admissible
set in F with claim cl(S) = C (Dvořák and Woltran 2020).
Making use of the fact that Reductions 2–4 do not alter con-
flicts between arguments, we can construct such a maximal
set of arguments also for PCAFs: given a PCAF F and set
C of claims, we define the set E0(C) containing all argu-
ments of F with a claim in C; the set Ei1(C) is obtained
from E0(C) by removing all arguments attacked by E0(C)
in the underlying CAF of F ; finally, the set Ei∗(C) is ob-
tained by repeatedly removing all arguments not defended
by Ei1(C) inRi(F ) until a fixed point is reached.
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Definition 11. Given a PCAF F = (A,R, cl ,�), a set of
claims C, and i ∈ {2, 3, 4}, we define

E0(C) ={a ∈ A | cl(a) ∈ C};
Ei1(C) =E0(C) \ E0(C)+

(A,R);

Eik(C) ={x ∈ Eik−1(C) | x is defended by Eik−1(C)

inRi(F )} for k ≥ 2;

Ei∗(C) =Eik for k ≥ 2 such that Eik(C) = Eik−1(C).

The above definition is based on (Dvořák and Woltran
2020, Definition 5), but with the crucial differences that un-
defended arguments are (i) computed w.r.t. Ri(F ) and (ii)
are iteratively removed until a fixed point is reached.
Lemma 8. Let F be a PCAF, C a set of claims, and i ∈
{2, 3, 4}. The following holds:

• C ∈ cf ip(F ) iff cl(Ei1(C)) =C. Moreover, if C ∈ cf ip(F )

then Ei1(C) is the unique maximal conflict-free set S in
Ri(F ) such that cl(S)=C;

• C ∈ admi
p(F ) iff cl(Ei∗(C)) =C. If C ∈ admi

p(F ) then
Ei∗(C) is the unique maximal admissible set S inRi(F )
such that cl(S)=C.

By computing the maximal conflict-free (resp. admissi-
ble) extensions Ei1(C) (resp. Ei∗(C)) for a claim set C, ver-
ification becomes easier for most semantics. For instance,
to decide whether C ∈ stbip(F ) we first check if C ∈
admi

p(F ). If not, C 6∈ stbip(F ). If yes, then cl(Ei∗(C)) = C

(cf. Lemma 8). We check (in P) ifEi∗(C) is stable inRi(F ).
If yes, we are done. If no, there is an argument x that is nei-
ther in Ei∗(C) nor attacked by Ei∗(C) in Ri(F ). Moreover,
there can be no other stable set S with cl(S) = C inRi(F )
since S ⊆ Ei∗(C) (cf. Lemma 8).

The lower complexity of the verification problem is cru-
cial for enumerating extensions. In particular, the improved
enumeration algorithm for wfCAFs (Dvořák and Woltran
2020) is based on the polynomial time verification of claim-
sets and thus extends to PCAFs under Reductions 2–4. This
further implies that deciding the main decision problems is
tractable if the number of claims is bounded by a constant k,
i.e., these problems are fixed parameter tractable (FPT).
Theorem 9. For σ ∈ {cf , adm,naive, stb, prf , sem, stg},
i ∈ {2, 3, 4}, and for σ = com in case i = 3, there is a
polynomial poly(·) such that CredPCAF

σ,i , SkeptPCAF
σ,i , and

VerPCAF
σ,i can be solved in time O(4k · poly(n)) for PCAFs

(A,R, cl ,�) with |cl(A)| ≤ k.

7 Conclusion
Many approaches to argumentation (i) assume that argu-
ments with the same claims attack the same arguments and
(ii) take preferences into account. Investigations on CAFs
so far only consider (i), showing that wfCAFs have sev-
eral desired properties. In this paper, we tackle (ii) and ana-
lyze whether these properties still hold when preferences are
taken into account. To this end, we introduced Preference-
based CAFs (PCAFs) and investigated the impact of the four
commonly used preference reductions on PCAFs.

We examined and characterized resulting CAF-classes,
yielding insights into the expressiveness of argumentation
formalisms that can be instantiated as CAFs and allow for
preference incorporation. Furthermore, we investigated the
properties of I-maximality and computational complexity
for PCAFs. Preserving I-maximality is desirable since it im-
plies intuitive behavior of maximization-based semantics,
while the complexity of the verification problem is crucial
for the enumeration of claim-extensions. Insights in terms of
both semantical and computational properties provide nec-
essary foundations towards a practical realization of this par-
ticular argumentation paradigm (we refer to, e.g., (Baumeis-
ter et al. 2021; Fazzinga, Flesca, and Furfaro 2020), for a
similar research endeavor in terms of incomplete AFs).

Our results show that (i) Reduction 3 exhibits the same
properties as wfCAFs regarding computational complexity
and also preserves I-maximality for most semantics; (ii) Re-
ductions 2 and 4 retain the advantages of wfCAFs regard-
ing complexity for all but complete semantics, but do not
preserve I-maximality; (iii) under Reduction 1, neither com-
plexity properties nor I-maximality are preserved. The above
results hold even if we restrict ourselves to transitive pref-
erences. It is worth noting that Reduction 3 behaves favor-
ably on regular AFs as well, fulfilling many principles for
preference-based semantics laid out by Kaci et al. (2021).

In this work, we dealt with preferences via preference re-
ductions that modify the attack relation. Another approach
is to lift orderings over arguments to sets of arguments
and select extensions in this way (Brewka, Truszczynski,
and Woltran 2010; Amgoud and Vesic 2014; Kaci, van der
Torre, and Villata 2018; Alfano et al. 2022). These two
paradigms interpret the meaning of preferences between ar-
guments differently: using reductions, x � y expresses that
x is stronger than y, while in the second approach x � y ex-
presses that it is preferred to have outcomes with x rather
than with y. Interestingly, under Reduction 3, the admis-
sible/complete/stable extensions of a preference-based AF
are also extensions in the underlying AF (Kaci et al. 2021).
Thus, Reduction 3 selects the ‘best’ extensions from the un-
derlying AF in these cases. A similar dichotomy concerning
preference handling can be observed in related areas such
as logic programs, where preferences are incorporated ei-
ther on the syntactic level (Delgrande, Schaub, and Tompits
2003) or by ranking the outcome (Sakama and Inoue 2000).
An interesting avenue for future work is to examine the ef-
fect of preference liftings on (well-formed) CAFs.

Another possibility for future work is to extend our stud-
ies to alternative semantics for CAFs (Dvořák, Rapberger,
and Woltran 2020; Dvořák et al. 2021), where subset-
maximization is handled on the claim-level instead of on the
argument-level. Experimental evaluation of our results may
also be interesting. Lastly, one can lower the level of abstrac-
tion used here, e.g., by incorporating more structure into ar-
guments, by allowing arguments to act in support of other
arguments as is done in bipolar AFs (Amgoud et al. 2008),
or by preserving more information about the claims of argu-
ments. Regarding the latter point, recent research (Wakaki
2020) has shown that formalisms which permit strong nega-
tion require careful examination with regards to consistency.
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