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Abstract

Human hand has amazing super-resolution ability in sens-
ing the force and position of contact and this ability can
be strengthened by practice. Inspired by this, we propose a
method for robotic tactile super-resolution enhancement by
learning spatiotemporal continuity of contact position and a
tactile sensor composed of overlapping air chambers. Each
overlapping air chamber is constructed of soft material and
seals the barometer inside to mimic adapting receptors of hu-
man skin. Each barometer obtains the global receptive field
of the contact surface with the pressure propagation in the
hyperelastic seal overlapping air chambers. Neural networks
with causal convolution are employed to resolve the pressure
data sampled by barometers and to predict the contact posi-
tion. The temporal consistency of spatial position contributes
to the accuracy and stability of positioning. We obtain an av-
erage super-resolution (SR) factor of over 2500 with only four
physical sensing nodes on the rubber surface (0.1 mm in the
best case on 38×26 mm2), which outperforms the state-of-
the-art. The effect of time series length on the location pre-
diction accuracy of causal convolution is quantitatively an-
alyzed in this article. We show that robots can accomplish
challenging tasks such as haptic trajectory following, adap-
tive grasping, and human-robot interaction with the tactile
sensor. This research provides new insight into tactile super-
resolution sensing and could be beneficial to various applica-
tions in the robotics field.

Introduction
Human skin has both high-precision force sensing and con-
tact location super-resolution (SR) capabilities (Abraira and
Ginty 2013). With tactile sensing, the human hand is able to
perform delicate manipulation tasks. Remarkable progress
has been made in tactile sensing while achieving fine tactile
feedback for robot hands remains a major challenge. One of
the main reasons is that artificial hands lack skin-comparable
tactile sensors, which are flexible and stable with low com-
plexity and high resolution. Human skin is able to perceive
tactile stimulus at a spatial resolution higher than the av-
erage spacing between mechanoreceptors in the finger, for
it mainly consists of four types of mechanoreceptors (SA-I,
SA-II, RA-I, RA-II) (Abraira and Ginty 2013). The SA-I and
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Figure 1: Illustration of the tactile sensor. A depicts the hu-
man skin structure and the soft tactile sensor with a flexible
surface. B shows working principle of the tactile sensor and
super-resolution localization results. The air pressure data in
the four air chambers generated by the surface deformation
are sent into the neural networks with causal convolution to
predict the contact location. We visualized the predictions.

SA-II refer to slow-adapting receptors and RA-I and RA-II
refer to rapid-adapting receptors. The four types of adapt-
ing receptors responses are differentiated to various contact
sizes and frequencies.

Tactile sensing is important for manipulators and skins
of robots in unstructured environments. The tactile super-
resolution with high localization accuracy is obtained by
modeling the receptive fields of sensors. Based on a vari-
ety of transduction principles, many artificial tactile sensors
have been proposed, including using capacitance (Lepora
et al. 2015; Boutry et al. 2018; Lee et al. 2011), resistance
(Park et al. 2015; Zou et al. 2018; Mu et al. 2018; Ma et al.
2015; Sun et al. 2019; Kang, Lee, and Kim 2014; Zhang
et al. 2018; Kim et al. 2021), optics (Ward-Cherrier et al.
2018; Palli et al. 2014; Yuan, Dong, and Adelson 2017),
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magnetic fields (Wang et al. 2016; Ledermann et al. 2013;
Tomo et al. 2018; Yan et al. 2021, 2022) and pressure (Pia-
cenza, Sherman, and Ciocarlie 2018; Sun and Martius 2021).
However, in the large body of work above, modeling tactile
super-resolution localization is still done using multilayer
perceptron regression instead of temporal convolution mod-
eling.

In this paper, we present a concise and effective method
for tactile localization super-resolution. Our method is to de-
sign a soft tactile sensor with four cavities and barometers
embedded. In this way, each barometer achieves the global
receptive field effectively with the overlapping structure.
Then, we construct a tactile dataset including time series
information of each physical node for the sensor and em-
ploy a network with causal convolutional modules to model
the data and map the pressure distributions to contact loca-
tions on sensor surface. The structure and the working prin-
ciple of the tactile sensor are shown in Figure 1. As a re-
sult, we obtain an average localization accuracy of 0.13 mm
on 38×26 mm2. According to the evaluation criteria, our
method achieves the state-of-the-art tactile super-resolution
factor of 2507.

There is still no very mature theory for tactile localization
super-resolution, and it is generally considered to be related
to the overlapping range of the receptive field of each phys-
ical node and the modeling method of the tactile sensor. To
our best knowledge, our method is the first to extract the
spatiotemporal continuity feature of the tactile contact posi-
tion for super-resolution modeling. The change of the con-
tact position is limited between two adjacent moments. The
position of contact at the t moment should be near the con-
tact position of the t− 1 moment in a process of continuous
contact. Method of time series modeling enriches the hap-
tic information in the time dimension and eliminates part of
the noises in the original data, thereby improving the perfor-
mance of tactile localization super-resolution.

The position of the barometers in the air chambers is al-
lowed to be changed as needed in our tactile sensor without
super-resolution accuracy drops. This is different from tradi-
tional tactile super-resolution, which requires fixed physical
node positions for modeling. Besides, we apply highly sensi-
tive tactile sensory feedback in conjunction with the robotic
arm to accomplish challenging tasks such as haptic trajec-
tory following, adaptive grasping, and objects handover.

The main contributions of this paper can be summarized
as follows:

• We propose a flexible tactile sensor with built-in over-
lapping air chambers, which brings the global receptive
field for each barometer. Our tactile sensor is capable of
sensing local touches on 3D surface with high accuracy.

• We employ a temporal convolution network to learn the
spatiotemporal continuity of tactile contact location for
the first time, which improves the accuracy and stability
of tactile super-resolution.

• Our method has well generality and application poten-
tial. The position of the barometer could be adjusted as
needed without super-resolution accuracy drops, while
different types of soft materials and various barometers

are supported.

The remainder of the article is organized as follows: in
the next section, we discuss the related work from the field.
In Section 3 we describe the design of the sensor and its
characterization. In Section 4 we introduce the approaches
for improving tactile super-resolution. Then, in Section 5,
we show an evaluation of the super-resolution performance
of our method in different scenarios. Finally, in Section 6,
we summarize our work and give conclusions and an outlook
for future research.

Related Work
Limited by the space of the robot manipulator and the in-
tegration complexity of tactile sensors, it is difficult to im-
prove the localization accuracy of tactile perception by us-
ing a sensor array. Inspired by image super-resolution and
human tactile perception mechanisms, various tactile super-
resolution methods applied to different materials and sensors
have also been produced. Recently, numerous transduction
methodologies have been explored, and many artificial tac-
tile sensors which have the ability of super-resolution have
been proposed.

In the early period, Bayesian perception was applied to
biomimetic tactile sensors which have an elastomeric cover-
ing that spreads the contact over multiple taxels. Lepora et
al. (Lepora et al. 2015) achieve a 35-fold improvement of lo-
calization acuity (0.12 mm) over sensor resolution (4 mm).
With the same method applied to an optical sensor, Lepora
et al. (Lepora and Ward-Cherrier 2015) design the TacTip
sensors, which are capable of achieving 40-fold localization
super-resolution from 4 mm to 0.1 mm. Ward-Cherrier et
al. (Ward-Cherrier et al. 2018) design a range of soft optical
tactile sensors with various morphologies fabricated through
dual-material 3D printing to attain submillimeter accuracy
on a rolling cylinder task, representing greater than 10-fold
super-resolved acuity. Sun and Martius (Sun and Martius
2019) make use of the spreading behavior of mechanical de-
formation by attaching a few strain gauges on a large robotic
limb shell and developing ML methods to achieve a 78-fold
super-resolution. The spreading behavior of mechanical de-
formation can expand the receptive field of sensors by me-
chanical waves in a very short time. Min Kim et al. (Kim
et al. 2021) propose a supervised learning network called
local message passing network (LoMP) for calibrating a
piezoresistive sensor array. Through LoMP both the contact
position and corresponding pressure map can be generated
with a 16-fold super-resolved localization accuracy (from 5
× 5 to 20 × 20 grids).

In recent years, progress has been made in methods
based on magnetism and pressure. Hellebrekers (Hellebrek-
ers et al. 2020) design a soft magnetic skin that can estimate
both the contact position (XYZ coordinates) and force mag-
nitude. By combining the preprocessing methods for the raw
magnetic field data with a neural network, Tess Hellebrek-
ers et al. achieve a 15-fold improvement of the localization
accuracy (from 15 mm to 1 mm). Yan et al. (Yan et al. 2021,
2022) design a sinusoidally magnetized flexible film, whose
deformation can be detected by a Hall sensor according to
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Tactile sensor type or feature Methods of super-resolution Improvement of
localization accuracy

Soft material and optical sensors
(Ward-Cherrier et al. 2018) Transducing deformation of images 19-fold (from 4.3 to 0.22 mm)

Capacitor arrays
(Lepora et al. 2015)

Bayesian perception 35-fold (from 4 to 0.12 mm)

Optical sensor
(Lepora and Ward-Cherrier 2015)

Bayesian perception 40-fold (from 4 to 0.10 mm)

Pressure sensors
(Piacenza, Sherman, and Ciocarlie 2018)

Machine learning 57-fold (from 68 to 1.2 mm)

Strain-gauge sensors
(Sun and Martius 2019)

Machine learning 78-fold (30.8 in 24000 mm2)

Piezoresistance sensor arrays
(Kim et al. 2021)

Local message passing network 16-fold (from 25 to 400 grids)

Magnetic film
(Yan et al. 2021)

Multilayer perceptron 60-fold (from 6 to 0.1 mm)

Pressure sensors
(Sun and Martius 2021)

Taxel value isolines
and machine learning

1254 SR factor
(0.0216 in 676 mm2, 25 sensors)

Overlapping structure and
pressure sensors (Ours)

Causal convolution network 2507 SR factor
(0.0983 in 988 mm2, 4 sensors)

Table 1: Comparison of tactile super-resolution methods

the changes of magnetic flux densities under external forces.
The sensor achieves a 60-fold super-resolved accuracy en-
hanced by multilayer perceptron (MLP). Magnetic sensors
are still difficult to avoid interference from external mag-
netic objects. Navarroe et al. (Navarro et al. 2019) introduce
a novel pneumatic mechanosensor dedicated to soft robotics
and measured changes in cavity volumes inside a soft sili-
con pad by air-flow sensors. The average positioning accu-
racy is 0.6mm. In the methods of using the barometer, Pia-
cenza et al.(Piacenza, Sherman, and Ciocarlie 2018) embed
individual pressure sensors and map the raw signals from
these pressure sensors to known surface locations and in-
dentation depths with data-driven techniques. They employ
machine learning (ML) to achieve a 57-fold SR. Huanbo Sun
and Georg Martius (Sun and Martius 2021) propose a theory
based on sensor isolines for geometric super-resolution, and
link it to machine learning techniques for signal processing.
Their sensors obtain an average super-resolution factor of
over 100 along one-dimension (1D) and 1200 along two-
dimension (2D), respectively. The super-resolution factor is
calculated according to Eq. 4. For easier viewing, we list
these methods in Table 1.

Sensor Design and Characterization
We construct four air chambers with overlapping structures
using a soft rubber material with tear-resistant properties. As
shown in Figure 2B, the four air chambers are sealed sepa-
rately and overlap with each other in the three-dimensional
space. Arc staggered form is employed to expand the cou-
pling surface for pressure spreading while avoiding the ex-
cessive accumulation of materials at the connection of ad-
jacent chambers. The gas (fluid domain) in the chambers
transmits stress to the septum (solid domain) of the cham-
bers and the septum displacement to the gas in the adjacent

one. The uniform hardness of the surface is conducive to ac-
quiring consistent pressure at each point of the sensor. The
most important is that this form expands the receptive fields
of the four sampling chambers, which is beneficial to the
localization super-resolution.

PCBs with high-sensitivity barometers are fixed in the
groove reserved in the air chamber rubber shell. We employ
epoxy resin for bonding and sealing after the circuit board is
embedded into the air chamber. We degassed the glue solu-
tion to ensure seal integrity, then inverted the chambers into
the mold. The glue solution solidified at room temperature
for 24 hours.

The scale of the sensor is 42×30 mm2, with a level sur-
face in the middle and a small curved surface that descends
around it. Taking into account the thickness of the rubber
boundary, the effective super-resolution localization area is
38×26 mm2.

If touch or indentation occurs on any area of the surface,
the contact deformation of the surface leads to changes in
air pressure in one or more air chambers. At the same time,
the changes of air pressure affects the load applied to the
septum between chambers, thus changing its shape and the
volume of the adjacent air cells. This problem is essentially
a hyperelastic sealed structural analysis, considering the ef-
fect of confined air. The structure naturally reaches a stable
situation with four different chambers pressure with external
force and inner air pressure. The change of volume and air
pressure in the chambers follows Boyle’s law (West 1999).

The barometers in the four air chambers are connected to
the microprocessor (ATmega328P) via the IIC bus. The air
pressure data is packaged in the microprocessor after being
parsed and output through the serial port. The sampling fre-
quency is 200 Hz. The model of the barometer is MS8607,
which is rated for measuring air pressure between 1 Kpa and
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Figure 2: Illustration of the data collection system and receptive field of the sensor. A: Sensor and testbed. The program au-
tomatically records a series of time-pressure data of four sensors at one location. B: (I) is a picture of the real sensor with
geometric properties on a millimeter (mm) scale. (II) shows the air chambers inside the sensor and the position of each barome-
ter. (III) shows the global receptive field obtained by the barometer in each air chamber when a normal force of 1.0N is applied
to a grid spaced at 0.1 mm intervals on the surface. Since the amplitude of the barometric data varies greatly, the displayed
amplitude value is normalized according to the Eq. 1 and A
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t |F=1N = log2A

x,y
t . The red dot represents the location of the

barometer.

200 Kpa with 2.8 Pa resolution at a 5ms response time.

Self-Labeled Data Collection Methodology

To obtain a data model of the pressure distribution of the
tactile sensor, we build a self-labeled data acquisition test
bench, which is shown in Figure 2A. Our test bench con-
sists of a UR5 robotic arm and a ZNLBS-V1 force sensor
with a rated range of -30N to 30N (0.05% FS repeatability,
0.1% FS non-linearity). Both the robotic arm and the force
sensor are connected to a computer for real-time control and
data recording via our program. Three different sizes of in-
denters are mounted on the end of the force sensor in turn
and are moved up and down with program control. The au-
tomatic labeling program simultaneously records the time-
pressure data series in the four chambers for each pressing.
These time-pressure data are labeled with the pressed posi-
tion (x, y) and size (φ) of indenter. We use a 2D plane grid of
0.1×0.1 mm2 to project onto the sensor surface, and set the
indentation depth in the Z-axis direction to a random value
in the range of 0.1-2.1 mm. The sampled data are randomly
divided into the training dataset and validation dataset. The
training dataset consists of 90K groups of data while the
validation dataset set is about 10K. The details of training
and testing the models at different sampling intervals of data
and different shapes of indenters are discussed in detail in
section 5. The collected data shows that pressing at almost
any point changes the pressure in the four chambers. This
indicates that the interaction effect of gas and soft material
leads to the global receptive field of each barometer, which
is shown in Figure 2.

Tactile Super-Resolution with Causal
Convolution

Given there is a single contact with the sensor, the goal of
our method is to predict the precise contact location from
the changes in pressure observed. Our approach addresses
the problem through spatiotemporal continuity learning with
causal convolution (Oord et al. 2016) in a certain time win-
dow length. Different lengths of data sequences are gener-
ated by pressing with different forces and speeds via a fixed
sampling time interval of the barometer. A sliding time win-
dow is created to sample the raw data of four channels si-
multaneously. These sampled data are sent to the network
for training, using the same location labels. The pipeline of
the network is shown in Figure 3A.

The internal air pressure is around 101 Kpa when the
chambers are sealed. The range of air pressure changes
caused by surface contact deformation is about 100 − 180
Kpa. To facilitate training, we normalize the input data and
ground truth (GT) with the Eq. 1 and 2, in which the µ and
δ are the mean and standard deviation of all the data in the
dataset. The values of x, y are 0 − 28 mm and 0 − 36 mm,
and bpx,yt represents for air pressure sampled by barometer
at position x, y and time t.

Ax,y
t =

(bpx,yt − µ)

δ
(1)

XGT =
x

W
, YGT =

y

H
(2)

The neural network resolves the contact location through
the data of four channels which include the information of
overlapping receptive fields. Receptive fields of different
lengths in the time dimension can be obtained with a tiny
causal convolution network, which is described in Eq. 3.

6195



1× 1
Conv
1× 1

Conv

FCFC× FCFC

Causal convolution Prediction head

tt-1t-2t-3t-4t-5t-6t-7t-8t-9

Data preprocessing
A

B

     

      

Visualization

-0
.2

5
  

   
 0

.2
5

   
  

  
0.

7
5

P
o

si
ti

o
n 

er
ro

r 
[m

m
]

P
o

si
ti

o
n 

er
ro

r

0
  

   
  

  
   

  
  

1

y

x

P
o

si
ti

o
n 

er
ro

r

y

x

0
.0

  
  

   
  

 0
.5

   
  

   
  

1
.0

P
os

it
io

n
 E

rr
o

r 
[m

m
]

0.0            0.5             1.0             1.5             2.0           2.5
Force [N]

I Point  T=7  2 N 5 N 8 N

Trajectory GT T=3 T=7

Position

     

Normalization

Data cropping
         

 T=2

C I

II

0              5              10             15            20            251
0 

  
 1

0
0

   
  

1
k

S
R

 f
ac

to
r

2
 ×

 2
 

[m
m

]
[m

m
]

II

Figure 3: The pipeline of the network and experimental results of tactile super-resolution. A: Illustration of the pipeline of
localization super-resolution method. The original signal is normalized by Eq. 1 and sent into the causal convolution network.
The causal convolution extracts the features of the four channels signal respectively and sends the feature vectors into the
multilayer perceptron. The network finally outputs the normalized predictions (xt, yt) and the results are visualized on the
screen. B: (I) shows the mean and standard deviation of position error of estimation result of network, whose input data length
is 3 and 7. (II) shows the super-resolution factor of models. C: (I) is the position error distribution corresponding to contact
force magnitudes and networks with a time window of T = 7. (II) shows spatially resolved position error of slide trajectory in
2×2 mm2 grids.

p(A) =
T∏

t=1

p(Ax,y
t |A

x,y
1 , ..., Ax,y

t−1) (3)

We obtained an average super-resolution result of 0.13
mm on a soft rubber air chamber surface of 988 mm2. This
resolution exceeds the actual physical perception node by
about 2507 times, which is calculated by the Eq. 4 in (Sun
and Martius 2021).

Ω =
nv
nr

=
S
/
Sv

nr
(4)

Where S = 38×26 mm2, and Sv = π × σpx × σpy is the
virtual taxel area calculated as an ellipse with radii of posi-
tion error in x and y directions. nv and nr are the numbers
of virtual taxels and the real sensors.

The multilayer perceptron can achieve super-resolution
accuracy close to temporal convolution when the data of
T = 2 is calculated for contact location. In the case of

single-point contact, the spatial position of the sensor sur-
face contact has the spatiotemporal continuity, and the time
series information can increase the stability of position pre-
diction.

Besides, in real scenarios, the shear force leads to the
tangential deformation of the sensor surface during sliding
contact. This results in a difference between the data gen-
erated by clicking and the data generated by sliding on the
surface of the tactile sensor. The location information of sur-
face contact is also associated with the time dimension. The
temporal consistency of the spatial position contributes to
the stability of the position estimate if the contact point does
not completely leave the surface.

In causal convolution, we employ the skip connections to
add low-level signal amplitude information at time t to the
feature to assist in learning the contact state at the current
moment. Evaluation details are discussed in next section.
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Methods MAEx & MAEy

Point Trajectory
MLP 0.230 0.181 0.401 0.299

Causal Conv T = 2 0.194 0.132 0.372 0.259
Causal Conv T = 3 0.187 0.123 0.369 0.241
Causal Conv T = 4 0.172 0.132 0.341 0.228
Causal Conv T = 5 0.169 0.129 0.330 0.236
Causal Conv T = 6 0.165 0.126 0.331 0.242
Causal Conv T = 7 0.167 0.114 0.317 0.240
Causal Conv T = 8 0.161 0.106 0.309 0.233
Causal Conv T = 9 0.147 0.102 0.298 0.230

Causal Conv T = 10 0.151 0.106 0.299 0.231
Causal Conv T = 11 0.151 0.101 0.297 0.231

Table 2: Results (mm) of tactile super-resolution positioning
error with different time window length.

Experiments and Evaluation

The data-driven method for tactile super-resolution is
straight-forward. The generalization performance of neural
networks and the stability of tactile super-resolution are very
important for the data-driven method. We conduct exten-
sive experiments to verify the tactile super-resolution per-
formance.

The temporal consistency of spatial position contributes
to the stability of the tactile sensor under the influence of
frictional deformation and other factors. The causal convo-
lution models with different time window lengths and the
multilayer perceptron model are trained and tested, respec-
tively. Position prediction error of the neural network for the
tactile sensor with a Shore hardness of 60A is shown in Ta-
ble 2. Mean absolute error (MAE) and root mean square er-
ror (RMSE) are used for evaluation of prediction error.

Prediction error of single-point pressing data and trajec-
tory data are calculated, respectively. Especially for trajec-
tory errors, the y-axis prediction error is calculated from the
trajectory in the x-axis direction, and the x-axis prediction
error is calculated from the trajectory in the y-axis direc-
tion, for precise speed and location of contact are difficult
to collect. The prediction errors of the trajectories are listed
in Table 2. The experimental results suggest that increasing
the time window length of the causal convolution can sig-
nificantly improve the tactile super-resolution accuracy. The
accuracy of localization super-resolution no longer increases
with the consumption of neural network resource increases
when the time window length T ≥ 9. Part of the results are
visualized in Figure 3C. The inference and visualization of
the position are carried out on the computer. The inference
time for networks from T = 2 to T = 9 is about 2.48 ms to
2.52 ms on GeForce RTX2080Ti and the parameter quantity
is 0.25M to 0.40M.

We also test linear models and nonlinear regression mod-
els on this dataset, some of which are used in (Piacenza,
Sherman, and Ciocarlie 2018) (Sun and Martius 2019). The
results (mm) are shown in Table 3, suggesting that nonlinear
models perform better on this task.

Models LR Ridge DT RF Ours
MAEx 6.164 6.116 0.481 0.331 0.147
MAEy 3.953 3.922 0.338 0.220 0.102

Table 3: Localization super-resolution results (mm) of linear
and nonlinear regrssion models on this dataset. The abbre-
viations are: ‘LR’ − Linear Regression, ‘DT’ − Decision
Tree, ‘RF’ − Random Forest.

Accuracy
Index

Sampling Intervals
0.1 0.2 0.5 1.0 2.0

MAEx 0.147 0.180 0.199 0.202 0.306
MAEy 0.102 0.117 0.139 0.173 0.285
RMSEx 0.270 0.290 0.327 0.345 0.396
RMSEy 0.176 0.188 0.209 0.248 0.328

Table 4: Results (mm) of causal convolution models which
are trained with data of different sampling intervals.

Data Distribution and Tactile SR Accuracy
Data-driven super-resolution performance is strongly corre-
lated with data distribution. We explore the effect of differ-
ent sampling intervals of training data on the final super-
resolution accuracy. The original data is sampled by divid-
ing the two-dimensional space into small grids of 0.1×0.1
mm2, with one press from the indenter on the robot arm in
each cell. We sample at intervals of 0.2 mm, 0.5 mm, 1.0
mm, and 2.0 mm to form a subset for network training and
count the average error in a 0.1×0.1 mm2 grid on the curved
sensor surface to verify the accuracy of each part. As shown
in Table 4, smaller sampling intervals achieve higher local-
ization SR accuracy.

Tactile SR Accuracy of Different Contact Size
To explore the relationship between the size of the contact
point and super-resolution localization accuracy, indenters
of three diameters are employed in the data collection sys-
tem. The shape and size of them are shown in Figure 2A.
The neural network models of different indenter diameters
are trained separately and cross-tested. Similarly, the mixed
dataset of three indenter diameters is used for training and
testing. The mean absolute error (MAE) of them is shown
in Table 5. The subsets sampled at 1mm interval on a Shore
hardness of 60A sensor are used for the cross test of differ-
ent indenters. The influence of the indenter diameter on the

Test
Dataset

Train Dataset
D = 2 D = 6 D = 10 Mixed

D = 2 0.174 0.333 0.477 0.328
D = 6 0.361 0.154 0.256 0.257
D = 10 0.535 0.255 0.169 0.320
Mixed 0.268 0.221 0.308 0.267

Table 5: Results (mm) of mean error of the models trained
and tested with different indenter diameters.
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Figure 4: A: An application for super-resolution tactile sensing. A plastic pen with a 3.2 mm indenter slide on the surface
following a word ‘Tactile’ pattern and a trained network model infers contact locations. B: An experiment of holding a bottle
while filling water into it and then interacting with the human. Top: The bottle is stably held in the gripper with the slight
contact deformation displacement feedback from the tactile sensor. Bottom: According to the displacement trend in different
directions, the human’s intention to take the bottle is detected and the gripper is released.

localization model is huge because of the variation in con-
tact deformation. The mean error raises up to 0.6 mm. This
kind of error can be reduced by training the model of mixed
dataset and moderately sized indenter.

Example Applications
In this section, we describe three applications to illustrate
how tactile super-resolution can benefit robot task perfor-
mance. Our expectation is that it could offer far wider bene-
fits for tactile robotics.

Many challenges remain in locating contacts in many un-
structured environments or on flexible surface. Humans can
even exchange intentions and information through the haptic
trajectory. We use a plastic pen to write on the sensor along
a fixed trajectory, and segment the trajectory according to
the real-time pressure. The experimental results are shown
in Figure 4A. Our sensor is extremely position sensitive. We
mount the tactile sensor directly on the 3D printed gripper,
which grips the empty bottle and holds it steady. At this time,
the average pressure in the sensor is about 130 Kpa. As the
bottle is filled with water, the vibration and slipping of the
bottle are reflected in the small change of the contact posi-
tion. We visualized the five times the standard deviation of
the prediction position in the figure. The clamping force can

be adjusted according to the value of the standard deviation
and changes of contact position, so as to carry out adaptive
grasping. When the bottle is full of water, the human hand
takes the bottle and produces a slight displacement in the
horizontal direction. The intention of human is detected ac-
cording to the displacement and variance in the x-axis, the
gripper is slowly released and the handover is completed.
Using the tactile feedback of the sliding trend, we can well
accomplish these tasks which are shown in Figure 4B.

Discussion and Future Work
In this paper, we improve robotic tactile localization super-
resolution via spatiotemporal continuity learning and over-
lapping air chambers for the first time. We obtain an SR fac-
tor of 2507 in tactile localization accuracy with this effective
method. Future work will be devoted to exploring normal
force and shear force decoupling and prediction based on
overlapping air chamber structures with neural networks.
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