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Abstract

Multi-agent path planning (MAPP) is the problem of plan-
ning collision-free trajectories from start to goal locations for
a team of agents. This work explores a relatively unexplored
setting of MAPP where streams of agents have to go through
the starts and goals with high throughput. We tackle this prob-
lem by formulating a new variant of MAPP called periodic
MAPP in which the timing of agent appearances is periodic.
The objective with periodic MAPP is to find a periodic plan, a
set of collision-free trajectories that the agent streams can use
repeatedly over periods, with periods that are as small as pos-
sible. To meet this objective, we propose a solution method
that is based on constraint relaxation and optimization. We
show that the periodic plans once found can be used for a
more practical case in which agents in a stream can appear
at random times. We confirm the effectiveness of our method
compared with baseline methods in terms of throughput in
several scenarios that abstract autonomous intersection man-
agement tasks.

Introduction
Multi-agent path planning (MAPP) refers to the problem of
finding a set of collision-free trajectories from start to goal
locations for a team of multiple agents. MAPP, specifically
multi-agent pathfinding (MAPF) that searches for a solution
on a given graph, is a fundamental problem in multi-agent
systems (Stern et al. 2019).

We are particularly interested in the relatively unexplored
problem of MAPP in which, rather than a single agent, a
stream of agents enters each start location and leaves the en-
vironment upon reaching the goal. Instead of finding a set
of feasible trajectories with a small total cost, we aim to
improve the throughput for agent streams passing through
the environment. Such settings would be beneficial for sev-
eral practical applications, such as autonomous intersection
management (AIM) (Dresner and Stone 2008) and auto-
mated warehouses (Wurman, D’Andrea, and Mountz 2008).

Handling agent streams in such a problem setting poses
a nontrivial technical challenge. As the throughput in-
creases, the environment would be filled with a large num-
ber of agents, making it difficult to use optimal plan-
ning algorithms with limited scalability (e.g., conflict-based
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search (Sharon et al. 2015)). It is also not obvious if the
high throughput can be maintained with scalable planners
that nevertheless have to determine agent trajectories adap-
tively in sequence (e.g., prioritized planning (Silver 2005)).
Furthermore, finding collision-free trajectories in highly-
crowded environments would require consideration of plan-
ning in the continuous space (i.e., not grid maps) and with
continuous time (i.e., allowing agents to start and stop at an
arbitrary timing in a continuous timeline). However, such
continuous setups are generally challenging and there are
few established approaches (Andreychuk et al. 2021, 2022;
Kasaura, Nishimura, and Yonetani 2022).

In this work, we start by formulating a bit simplified but
new variant of MAPP called periodic multi-agent path plan-
ning (periodic MAPP) in which the timing of agent appear-
ances is periodic. The objective with periodic MAPP is to
find a periodic plan, i.e., a set of collision-free trajectories
that streams of agents can use repeatedly over periods. By
finding such plans with periods that are as small as possi-
ble, we are able to improve the throughput of agent streams.
Importantly, periodic plans once found can be easily used
for solving a more practical problem called online MAPP,
a variant of online MAPF (Švancara et al. 2019) in which
a stream of agents can appear at random times but can also
wait until the subsequent agents enter the environment.

We develop a constraint-relaxation and optimization
method as a solution method to periodic MAPP. With this
method, we first generate an initial periodic plan under re-
laxed constraints about the physical size of agents with an
arbitrarily large period they appear. We then solve a contin-
uous optimization problem to improve the initial plan such
that the agent size matches the original one and the period
becomes as small as possible. Therefore, our method can
find a collision-free and repeatable plan while minimizing
the period. We provide insights into the topological aspect
of solutions obtained with the proposed method.

We evaluated the effectiveness of our method on several
scenarios of abstracting AIM tasks, in which the goal is
to move vehicles appearing at intersections to the other
side without collision. Unlike existing methods that require
planning or re-planning for every appearance of a new
vehicle, the proposed method using periodic plans does not
necessitate communications with other vehicles to retrieve
their current locations or to update their trajectories. Nev-
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Figure 1: Example of periodic MAPP problem with N = 2
(left) and periodic plans with M = 1 (middle) and M = 2
(right). Solid lines show trajectories. Numbered circles in-
dicate where agents are at each elapsed period after their
appearance.

ertheless, the solutions derived from the proposed method
are comparably good or sometimes even better in terms of
the throughput, compared with those from baseline methods
that combine online MAPP algorithms (Švancara et al.
2019) and MAPP algorithms for continuous spaces and
times (Andreychuk et al. 2022, 2021; Kasaura, Nishimura,
and Yonetani 2022).

Periodic MAPP
Overview. We consider a two-dimensional (2D) environ-
ment with several pairs of start and goal locations. For each
start location, a stream of agents appears periodically with
a user-defined period (i.e., time interval). Each agent must
move to its goal while avoiding collisions with the borders
of the environment and other agents and disappear from the
environment upon reaching the goal. We assume that there
exists a certain cycle, the number of periods within which we
can find a periodic plan (i.e., a set of collision-free trajecto-
ries that can be used periodically over cycles). Therefore, a
periodic plan may span multiple periods as collision-free tra-
jectories for agents appearing at the same locations that are
not necessarily the same across periods (see agents shown in
red/orange or those in blue/cyan in Fig. 1.) Informally, the
objective with periodic MAPP is to find such periodic plans
for a given cycle with periods that are as small as possible. In
other words, we wish to produce a high throughput plan that
enables us to move agents from their respective start to the
goal even if they appear in rapid succession. Note that, if the
non-periodic version of a given problem instance (i.e., stan-
dard MAPP with a single agent appearing from each start)
has a solution, the problem instance has a periodic plan for
any cycle with the period given by the arrival time of the last
agent. For simplicity, we assume that all agents have bodies
modeled by circles with the same fixed radius and follow a
simple kinodynamic constraint in which the velocity cannot
exceed a certain maximum limit.

Problem instances. Formally, we model a
problem instance of periodic MAPP by a tuple
(E , {(s1, g1), . . . , (sN , gN )}, r, vmax), where E ⊆ R2

is a set of valid states in the 2D environment. The set
{(s1, g1), . . . , (sN , gN )}, where sn, gn ∈ E , describes N
pairs of start and goal locations for agent streams. The
variables r and vmax are the radius and maximum velocity

of each agent, respectively.

Periodic plans. We refer to a period as τ ∈ R+, a time
interval with which a new set of agents can appear at re-
spective start locations s1, . . . , sN . While denoting cycle as
M ∈ N+, we describe a periodic plan with M periods by
a set of M × N trajectories ΓM = (γn,m : [0, Tn,m] →
E)1≤n≤N,0≤m<M . The periodic plan should satisfy the fol-
lowing conditions:
• (Start and goal locations) For all 1 ≤ n ≤ N , 0 ≤ m <
M , γn,m(0) = sn, and γn,m(Tn,m) = gn.

• (Maximum velocity) For all 1 ≤ n ≤ N , 0 ≤ m < M ,
and t ∈ [0, Tn,m], the velocity of agents satisfies∣∣∣∣dγn,mdt

(t)

∣∣∣∣ ≤ vmax. (1)

• (Clearance from boundaries) Let distE(x) be the distance
of x ∈ E from the boundary of E . Then, for all 1 ≤ n ≤
N , 0 ≤ m < M , and t ∈ [0, Tn,m],

distE(γn,m(t)) ≥ r. (2)

• (Collision-free)1 For all 1 ≤ n, n′ ≤ N , 0 ≤ m,m′ <
M , and t ∈ [0, Tn,m], t′ ∈ [0, Tn′,m′ ] such that (m −
m′)τ + (t− t′) ∈ MτZ and (n,m, t) ̸= (n′,m′, t′),

|γn,m(t)− γn′,m′(t′)| ≥ 2r. (3)

Objective of periodic MAPP. Given a problem instance
(E , {(s1, g1), . . . , (sN , gN )}, r, vmax) and a cycle M , our
objective is to find periodic plans ΓM with periods τ that
are as small as possible.

Solution Method
In this section, we explain the proposed solution method for
producing periodic plans for periodic MAPP. Specifically,
we use a two-step approach that first derives initial solution
trajectories for a relaxed problem that ignores the constraints
about r and the objective for τ . We then optimize them
by solving a continuous optimization problem to satisfy
all the original conditions and improve the solution quality
with respect to τ . This is a reasonable approach to derive
solution trajectories in a continuous space and time setup
while aiming to minimize the continuous period value that
affects the solution.

Trajectory Representation
We represent each trajectory γn,m by a sequence of
K + 1 timed locations with a timestep ∆tn,m, i.e.,
((xn,m,0, 0), (xn,m,1,∆tn,m), . . . , (xn,m,K ,K∆tn,m))
where xn,m,k ∈ E , xn,m,0 = sn, xn,m,K = gn, and
K∆tn,m = Tn,m. Agents are assumed to move between

1The agent appearing at sn at time (aM +m)τ follows the tra-
jectory γn,m for any a ∈ Z. Since there exists an agent at γn,m(t)
when the time is . . . , (−2M +m)pτ + t, (−M +m)τ + t,mτ +
t, (M + m)τ + t, (2M + m)τ + t, . . ., there exist two agents at
γn,m(t) and γn′,m′(t′) at the same time if (m−m′)τ +(t− t′) ∈
MτZ, except when (n,m, t) = (n′,m′, t′). To avoid a collision
between them, their distance must be at least 2r.
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two locations xn,m,k, xn,m,k+1 in a straight line with
constant velocity. This discretized representation should
also satisfy the maximum velocity condition in Eq. (1) that
is rewritten as

vn,m,k :=

∣∣∣∣xn,m,k+1 − xn,m,k

∆tn,m

∣∣∣∣ ≤ vmax, (4)

and that for the clearance from boundaries in Eq. (2):

distE(xn,m,k) ≥ r. (5)

Note that satisfying the collision-free condition in Eq. (3) is
a bit non-trivial. Let us define

rq(t) := t−
⌊
t

q

⌋
q, (6)

and

C := {(n,m, k, n′,m′, k′)|
1 ≤ n, n′ ≤ N, 0 ≤ m,m′ < M, 0 ≤ k, k′ < K,

0 ≤ rMτ ((m−m′)τ + k∆tn,m − k′∆tn′,m′) < ∆tn′,m′ ,

(n,m, k) ̸= (n′,m′, k′).}.
(7)

Then, the collision-free condition is rewritten as, for all
(n,m, k, n′,m′, k′) ∈ C,

dn,m,k,n′,m′,k′ := |xn,m,k − ((1− α)xn′,m′,k′ + αxn′,m′,k′+1)|
≥2r,

(8)

where

α =
rMτ ((m−m′)τ + k∆tn,m − k′∆tn′,m′)

∆tn′,m′
. (9)

Note that by setting t = k∆tn,m, t′ = (k′ + α)∆tn′,m′ , the
inequality in Eq. (8) reduces to the original one of Eq. (3).

Optimization
Initial periodic plans. We first create an initial periodic
plan while setting r smaller than that of the original condi-
tion and τ large enough. This makes it easy to find feasible
trajectories that satisfy the above conditions. Concrete algo-
rithms used to produce such plans depend on task setups,
which we present in Appendix B.

Objective. Given an initial periodic plan for ΓM =
(γn,m)1≤n≤N,0≤m<M , we optimize it with respect to r, τ ,
and each trajectory γn,m to satisfy the original conditions.
We denote the original agent radius as r0. By imposing
the cost to violate the original conditions, solving periodic
MAPP reduces to a continuous optimization problem with
the following objective:

V (τ, r,ΓM ) :=

(
τ − 2r

vmax

)2

+
σt

K

∑
n,m,k

v2n,m,k+c(τ, r,ΓM ),

(10)

c(τ, r,ΓM ) := σr(r − r0)
2

+
σv

K

∑
n,m,k

(max {0, vn,m,k − vmax})2

+
σo

K

∑
n,m,k

(
max

{
0, distE(xn,m,k)

−1 − r−1
})2

+
σc

K

∑
C

(
max

{
0, d−1

n,m,k,n′,m′,k′ − (2r)−1
})2

,

(11)

where σt, σr, σv, σo and σc are constants. With this objec-
tive, we aim to decrease τ to the minimum 2r/vmax where
two agents are adjacent to each other. We also impose costs
of trajectories defined by the sums of the squares of velocity
to prevent vanishing of the gradients on the trajectories.

Optimization method. We solve this optimization prob-
lem by using the Levenberg-Marquardt algorithm (Leven-
berg 1944; Marquardt 1963). To force solutions to strictly
satisfy the original conditions, we make the constants
σr, σv, σp, σc gradually increase to become large enough
during the optimization. We also gradually decrease σt up
to zero because the corresponding velocity term is necessary
only for preventing vanishing gradients and is not included
in the original conditions.

Topological Remark
The quality of final solutions is dependent on initial periodic
plans, while some initial plans will result in the same op-
timization results. One considerable feature of solutions is
their equivalent classes with respect to continuous deforma-
tion, including optimizations, from topological perspectives.

To analyze this, we introduce an additional constraint in
which no agents can pass through any start and goal loca-
tions, including those of themselves, instead of considering
the conditions of the velocity and size of agents. This is
necessary to ensure sufficiently different plans to be distinct
enough in terms of their homotopy class. Let:

C := (E \ {s1, g1, . . . , sN , gN})× R/Z. (12)

A trajectory γn,m can be considered an embedding γ̃n,m of
an open interval (0, 1) to C:

(0, 1) ∋ α 7→

(
γn,m(tTn,m),

(
mτ + αTn,m

Mτ

))
∈ C.

(13)
where the overline means the equivalent class. Then, a
periodic plan (γn,m)1≤n≤N,0≤m<M can be considered an
embedding (γ̃n,m)1≤n≤N,0≤m<M of the disjoint union of
N × M open intervals (0, 1) to C, satisfying the following
conditions for any 1 ≤ n ≤ N and 0 ≤ m < M :

• limα→0 γ̃n,m(α) = (sn,m/M) and limα→1 γ̃n,m(α) =
(gn,A) for some A ∈ R/Z.

• The second component of γ̃n,m(α) is locally strictly in-
creasing with respect to α.
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Note that the collision-free condition can be interpreted as
injectivity.

Now, a set of plans that are equivalent with respect to con-
tinuous deformations is the set of homotopy classes of the
embeddings that satisfy the above conditions, and the fol-
lowing proposition holds.

Proposition 1 When E is open and connected, the above set
is independent of the positions of s1, g1, . . . , sN , gN .

For the proof, see Appendix A.

Application to Online MAPP
While it is assumed with periodic MAPP that the appearance
timing of agents in a stream is periodic, the periodic plans
once found can be used for solving a more practical problem
called online MAPP, where agents appear at random times.

Online MAPP Problem
While sharing certain settings with periodic MAPP, the
problem of online MAPP can be viewed as a variant of on-
line MAPF (Švancara et al. 2019) with the following fea-
tures. Like periodic MAPP, there are several pairs of starts
and goals in the environment through which streams of
agents have to pass while avoiding collisions. Following on-
line MAPF, we assume that agents can appear at random
times but are also allowed to wait at their start locations in
a finite or infinite queue until the subsequent agents enter
the environment. This assumption is similar to the concept
of ‘garage’ (Švancara et al. 2019) and realistic for practical
applications such as AIM.

Proposed Method
Adopting periodic plans to agents with random timing of ap-
pearances is straightforward. We first divide a timeline into
periods of the interval τ obtained with the periodic plan.
We then allow at most one agent for each period to enter
each start location and follow the corresponding trajectory.
Therefore, agents can avoid collisions with other agents in
the same stream.

Formally, by using the notations of periodic MAPP in-
troduced earlier, we say that an agent is assigned to the n-
th trajectory in the a-th period when it waits until time aτ
and moves along γn,a−⌊a/M⌋M . Let us denote as t, the time
of appearance of a new agent at the start position sn. Let
a := ⌈t/τ⌉. If the n-th trajectory in the a-th period has not
yet been assigned by any agent, the new agent will follow
that trajectory. Otherwise, the agent will wait to follow the
next trajectory in the a′ + 1-th period, where a′ is the or-
der of the period assigned to the last agent that appeared at
sn before t if the queue has a room. Note that if the length
of the queue is finite and the number of currently waiting
agents exceeds its limit, the planning for the new agent is
considered a failure.

Queueing Theoretical Analysis
We theoretically analyze the waiting times of agents for the
proposed method.

Assumptions. We assume that agents are managed by
queues of infinite length. We also model time intervals of
agent appearances as c + α, where c is a constant2 and α
is a random variable drawn from the exponential distribu-
tion with a rate parameter λ. We also assume that all agents
wait for (the maximum) time τ until they start moving. Note
that this assumption corresponds to the deterministic service
time in terms of the queueing theory (Kendall 1953) and is
more conservative than in actuality.

Waiting time analysis. For theoretical analysis, we re-
move a constant term from the above model by subtract-
ing c from time intervals between arrivals and service time
temporarily. This operation does not change the number of
agents in a queue but reduces waiting times for all the agents.
The resulting model then reduces to the M/D/1 queue in
terms of the queueing theory (Kendall 1953). By denoting
the rate of arrivals as λ and the service time as D := τ − c,
and when ρ = Dλ < 1, the average waiting time is given as

W ′ = D +
ρ

2(1− ρ)
D. (14)

Moreover, the probability that the waiting time exceeds a
limit t decreases exponentially with respect to t (Erlang
1909). By again considering c we subtracted earlier, the av-
erage time now becomes

W = W ′ + c = τ +
λ(τ − c)2

2(1− λ(τ − c))
. (15)

Experiments
To evaluate the effectiveness of our method for first solv-
ing periodic MAPP then using periodic plans for online
MAPP problems, we focus on scenarios of abstracting AIM
tasks (Dresner and Stone 2008).

Experimental Setups
Environments. Our AIM scenario involves a single inter-
section with several entrances and exits. Figure 2 shows the
six environments used in the experiments. Each environment
abstracts one of the typical situations of intersections with
different sizes. The circles with letters ‘s’ and ‘g’ are the
start and goal locations, respectively. Specifically, environ-
ment (a) is a crossing of two one-way roads, while envi-
ronment (b) is a crossing of one-way and two-way roads.
Environments (c) and (d) are modeling the crossing of two
two-way roads of different sizes. Finally, environments (e)
and (f) model the T-junction with different sizes. We also
assume that each start location is equipped with a ‘corridor’,
as illustrated in Fig. 4, which we can use as a queue (with
unlimited or limited capacity) to keep agents waiting until
entering the intersection. Agents (i.e., vehicles) are modeled
by a circle and follow a simple holonomic kinodynamics
model that enable them to move in any direction under a
given maximum velocity. Trajectories for a new agent must
be planned immediately once that agent appears in the en-
vironment. Nevertheless, it is possible to replan trajectories

2We add c to account for the time margin needed to avoid colli-
sions between agents.
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Figure 2: Environments that abstract AIM tasks. Letters ‘s’ and ‘g’ indicate start and goal locations, respectively.
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Figure 3: Optimized periodic plans for each environment with best M . Best viewed in videos in the Appendix.

Figure 4: Environment (a) with corridors used as queues for
five agents.

for some agents that have already been moving in the envi-
ronment to take into account the new agent.

Parameters. We evaluated two different configurations
for the queues: unlimited or limited capacity with five agents
at most. The time interval between agent appearances is
modeled as 1.0 + α, where α follows the exponential dis-
tribution with a rate parameter λ. We sampled appearance
times until the last time reached 1000 for infinite queues
and 100 for finite queues. For each environment and each
λ ∈ [0.25, 0.5, 0.75, . . . , 2.5], we generated 10 different
problem instances. Throughout the experiment, r and vmax

were respectively fixed to 0.5 and 1.0.

Evaluation metrics. The quality of plans is measured by
the following two metrics.

• Throughput measured as the number of agents entering
the environment in unit time.

• Average delay calculated as the incremental travel time
compared with the shortest possible trajectory averaged
over agents. Note that this metric includes the time for

the agent waiting in a queue.

Initial Periodic Plans
With periodic MAPP, we generated and evaluated three pe-
riodic plans for each problem instance with cycles M ∈
{1, 2, 3}. We constructed the plans by carefully designing
the order of passing at intersection points such that, after M
agents of one direction pass at the intersection, M agents of
another direction pass alternately.

Formally, the initial plan for M was created on the basis
of the following rules:

• Let πn be the shortest path connecting sn and gn. Each
agent appearing at sn follows πn, while adjusting its ve-
locity to satisfy the next condition.

• Let two paths πn and πn′ intersect at point p. We assume
that the length of the part of πn from sn to p is shorter
than that of the part of πn′ from sn′ to p (and assume
i < i′ if they are equal). Then, for any a ∈ Z, M agents
appearing at sn at time aMτ, (aM + 1)τ, . . . , (aM +
M − 1)τ must pass p at the time between times when
agents appearing at sn′ at (aM − 1)τ and at aMτ pass
p. The differences between times when two agents pass
are set to be not smaller than 1.0 to prevent optimization
failures.

Note that such initial plans can always be constructed as long
as the initial τ is taken to be large and r is small enough. See
Appendix B for details of the generation algorithm.

Baseline Methods
Because the same problem setup (i.e., improving throughput
of agent streams for MAPP in continuous space and time)
has not been explicitly addressed, we developed two base-
line methods called first-come and first-serve (FCFS) and
snapshot optimal (SO), which combine general strategies of
online MAPF (Švancara et al. 2019) and the state-of-the-art
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Environment
M (a) (b) (c) (d) (e) (f)

1 2.03 2.08 2.45 2.44 2.34 2.13

2 1.27 1.54 1.87 1.86 3.02 1.86

3 1.56 1.45 1.86 1.63 3.04 3.54

Table 1: Periods for optimized periodic plans with different
cycle M

MAPP algorithms in continuous space and time (Andrey-
chuk et al. 2022; Kasaura, Nishimura, and Yonetani 2022).
For both baselines, we first used probabilistic roadmap with
the fixed number of neighbors (k-PRM) (Karaman and Fraz-
zoli 2011) as a standard approach to approximate the con-
tinuous space into a roadmap and find collision-free paths
on the constructed roadmap. Implementation details are pre-
sented in Appendix C.
• FCFS: This baseline incrementally plans a collision-free

trajectory for every new agent that appears while regard-
ing trajectories of other agents already present in the en-
vironment as space-time obstacles. This is a natural ap-
plication of prioritized planning (Silver 2005) for the “re-
plan single” strategy introduced in the context of online
MAPF (Švancara et al. 2019). Specifically, we used pri-
oritized safe-interval path planning (Kasaura, Nishimura,
and Yonetani 2022) to handle continuous space and time.

• SO: By contrast, this baseline uses the “replan all” strat-
egy (Švancara et al. 2019) and finds the optimal solu-
tion using continuous conflict-based search (Andreychuk
et al. 2022) for all the agents presenting in the environ-
ment each time a new agent appears.

Results
Optimization results. Table 1 shows the periods of op-
timized plans for cycle M = 1, 2, 3 and Fig. 3 illustrates
the optimized periodic plans with the best choice of M . We
would like to emphasize that this optimization is required
only once for each combination of environments and M .
Unlike the other baselines, our method can be used with-
out requiring agents to communicate with other agents to
retrieve their current locations or replanning to adjust their
trajectories for each appearance of new agents.

Case I: Infinite queues. Figures 5 and 6 respectively show
the changes in throughput and average delays with respect
to λ when the capacity of queues is infinite. With the ex-
ception of the environment (e), our method, especially for
M = 2 or M = 3, consistently outperformed FCFS as λ
became higher. Note that it was not possible to use SO be-
cause the number of agents present in the environment could
quickly become very large. We observed that the limited per-
formance of the proposed method for (e) is possibly due to
the difficulty of finding enough room for periodic intersec-
tions in the environment.

Case II: Finite queues. We set the length of queues to
be five. Note that planning for a new agent is regarded as
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Figure 5: Throughput with respect to λ for infinite queues
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Figure 6: Average delay with respect to λ for infinite queues
(bars represent standard derivations)

failed if the number of agents waiting to enter their starts
exceeded the length of queues or when the planning time
exceeds a predefined limit (1.0 s). Agents resulting in such
planning failures are discarded and degrade throughput. Fig-
ures 7 and 8 respectively show the throughput and average
delays changing with respect to λ. Regarding throughput,
our method for M = 2 and M = 3 performed better than
FCFS and clearly outperformed SO, except for environment
(e). The performance of SO degraded mainly due to the plan-
ning failures. By contrast, our method showed limited per-
formances in terms of average delays, indicating the limita-
tion of our method that trajectories obtained using periodic
plans would be relatively redundant compared with those
from FCFS and SO.

Related Work
MAPP and its variants. MAPP has historically been
studied in the fields of artificial intelligence and robotics.
Many studies have considered planning particularly in dis-
crete spaces such as grid maps, which are often referred
to as MAPF (e.g., Silver (2005); Sharon et al. (2015),
and see Stern et al. (2019) for an extensive survey.) There
are a number of variants of MAPF problems, such as
Anonymous MAPF (i.e., no correspondences between starts
and goals) (Kloder and Hutchinson 2006; Yu and LaValle
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2013), MAPF with kinodynamic constraints (Hönig et al.
2018; Walker, Sturtevant, and Felner 2018a), and online
MAPF (Švancara et al. 2019; Ma et al. 2017; Li et al.
2021), also known as lifelong MAPF. As summarized by Ma
(2021), online MAPF is an online version of MAPF in which
a team of agents is asked to solve a stream of tasks. Agents
are assigned a new task whenever they appear in the environ-
ment (Švancara et al. 2019) or upon reaching their goal (Ma
et al. 2017). In contrast, periodic MAPP and our version
of online MAPP are different in that streams of agents are
asked to solve a certain task, with the unique objective that
aims for high throughput. We introduced a challenging prob-
lem setup that solves online MAPP in the continuous space
and with continuous time. Studies on such continuous se-
tups have significantly been limited compared with discrete
cases (Walker, Sturtevant, and Felner 2018b; Hönig et al.
2018; Andreychuk et al. 2021, 2022; Kasaura, Nishimura,
and Yonetani 2022; Okumura et al. 2022).

Application to AIM. As reviewed by Stern et al. (2019);
Ma (2021), AIM is a common application of online
MAPF. Typical approaches include the first-come and first-
serve for repeatedly determining trajectories for every new
agent (Dresner and Stone 2008) and the application of op-
timal solvers for a set of all agents present at the mo-

ment (Švancara et al. 2019), which we compared in our
experiments. For a given trajectory (or simply lane), there
are studies that used deep reinforcement learning to achieve
an optimal policy for vehicle acceleration control (Kreidieh,
Wu, and Bayen 2018; Jang et al. 2019; Cui et al. 2021).

Optimization for MAPP. Similar to this work, other stud-
ies uses continuous optimization of trajectories (i.e., trajec-
tory deformation (Kurniawati and Fraichard 2007)), espe-
cially for single-agent cases. For example, the idea of avoid-
ing collisions on the basis of the optimization has existed
for a long time (Khatib 1986). Another widely used moti-
vation for optimization is to take into account kinodynamic
constraints, e.g., that in Rösmann, Hoffmann, and Bertram
(2017) for a single-agent case and that in Hönig et al. (2018)
for a multi-agent case. Our study is unique in that we opti-
mized trajectories as well as the period for their repeated use.

Other related work. Finally, our study has several more
connections to other prior works. Solving path planning
while relaxing constraints is a technique for single-agent
cases (Bonilla et al. 2015; Bonilla, Pallottino, and Bicchi
2017; Fusco, Kermorgant, and Martinet 2018). The homo-
topical aspect of path planning has been studied by Bhat-
tacharya (2010) for single-agent and by Bhattacharya and
Ghrist (2018) for multi-agent cases. However, these studies
are not directly applicable to our problem setup due to the
difficulty of considering collisions for agents appearing in a
periodic fashion.

Conclusion
We presented a new variant of MAPP called periodic MAPP
in which a stream of agents can appear periodically at each
start location and leave the environment once they arrive at
the goal. We also proposed a solution method of periodic
MAPP that generates a periodic plan, i.e., a set of collision-
free trajectories that can be used repeatedly over periods
while maintaining high throughput. We showed that the pe-
riodic plans can further be used for solving the online MAPP
problem in which agents in each stream appear at a random
time, and demonstrated its effectiveness on scenarios of ab-
stracting AIM tasks.

Currently, our formulation of periodic MAPP as well as
our solution method can cover only situations in which
agents follow a simple kinodynamics model that takes into
account only maximum velocity. Promising future work is
to address more realistic kinodynamics of wheeled robots or
drones. This would require extending an optimization tech-
nique for solution methods such as ones used to plan trajec-
tories for swarms (Hönig et al. 2018). Another interesting
direction from an application perspective is to tackle a more
challenging AIM task in which human-driven vehicles also
exist. In such a case, it will be important to combine the pro-
posed method with state-of-the-art AIM methods that can re-
actively control acceleration on a given trajectory (Kreidieh,
Wu, and Bayen 2018; Jang et al. 2019; Cui et al. 2021).
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