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Abstract

This paper considers the problem of cooperative localization
of multiple robots under uncertainty, communicating over a
partially connected, dynamic communication network and as-
sisted by an agile landmark. Each robot owns an IMU and a
relative pose sensing suite, which can get faulty due to sys-
tem or environmental uncertainty and therefore exhibit large
bias in their estimation output. For the robots to localize accu-
rately under sensor failure and system or environmental un-
certainty, a novel Distributed Learning based Decentralized
Cooperative Localization (DL-DCL) algorithm is proposed
that involves real-time learning of an information fusion strat-
egy by each robot for combining pose estimates from its own
sensors as well as from those of its neighboring robots and
utilizing the moving landmark’s pose information as a feed-
back to the learning process. Convergence analysis shows that
the learning process converges exponentially under certain
reasonable assumptions. Simulations involving sensor fail-
ures inducing around 40-60 times increase in the nominal
bias show DL-DCL’s estimation performance to be approx-
imately 40% better than the well-known covariance-based
estimate fusion methods. For the evaluation of DL-DCL’s
implementability and fault-tolerance capability in practice, a
high-fidelity simulation is carried out in Gazebo with ROS2.

Introduction
In autonomous robotic applications involving mobile robots,
localization is considered one of the most fundamental chal-
lenges (Huang and Dissanayake 1999); localization is the
process of determining where a robot is located with respect
to its environment, or in other words, determining an accu-
rate estimate of its location and orientation with respect to
a global frame of reference. Localization of a single robot
is usually carried out using a filtering method, like Kalman
Filter, for estimating the robot pose by fusing information
from its proprioceptive sensors (e.g., IMU, INS) and ex-
teroceptive sensors (e.g., RADAR, LiDAR, GPS, camera).
In ideal situations, one can achieve success in autonomous
robotic mission objectives by simply deploying a single
robot. But in practice, system and environmental uncertainty
play a critical role by increasing the chances of sensor fail-
ure, especially in applications involving adverse conditions
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like search and rescue (Scherer et al. 2015), disaster re-
lief (Gregory et al. 2016), convoy protection (Spry, Girard,
and Hedrick 2005), traffic monitoring (Khan et al. 2020),
etc. Therefore, in such uncertain scenarios, having multiple
robots carry out the mission increases the chances of suc-
cess by increasing the reliability of the overall multi-robot
system (MRS) (Mohiuddin et al. 2020).

A key challenge in the localization of a MRS is to de-
termine an appropriate estimate fusion strategy each robot
should employ so that they collaboratively share their sen-
sor information and improve their pose estimates under sys-
tem and environmental uncertainty. The literature on Decen-
tralized Cooperative Localization (DCL) of a MRS mainly
utilizes covariance-based methods like Kalman Fusion (KF)
(Maybeck 1982), (Uhlmann 2003), Covariance Intersection
(CI) (Matzka and Altendorfer 2009), (Julier and Uhlmann
2017), and Covariance Union (CU) (Matzka and Altendor-
fer 2009), (Reece and Roberts 2010), as information fusion
strategy that robots use to improve their estimation accu-
racy. (Carrillo-Arce et al. 2013) proposes an approximate
decentralized multi-robot cooperative localization algorithm
with reduced processing and communication costs, using CI
to maintain consistency while handling asynchronous com-
munication constraints. (Assa and Janabi-Sharifi 2015) pro-
poses a nonlinear KF-based sensor fusion framework that
adaptively compensates for system noise variations and it-
eratively deals with the fast system dynamics. CI is explic-
itly used in the communication update of the multi-robot lo-
calization algorithm proposed in (Chang, Chen, and Mehta
2021) for ensuring estimation consistency and resilience.
Similarly, (Pires et al. 2021) use CI in their cooperative
localization and mapping algorithm for robotic swarms. In
(Wang et al. 2021), a fully decentralized multi-robot cooper-
ative localization algorithm based on CU is proposed, where
CU handles spurious sensor data in the fusion process ensur-
ing consistency of the fused estimates. The above-mentioned
covariance-based fusion methods usually involve assump-
tions regarding consistency and correlation among the es-
timates being fused – KF requires the estimates to be uncor-
related, CI requires the estimates to be consistent, and CU
requires at least one of the estimates to be consistent. Fur-
ther, covariance-based methods require covariance informa-
tion of the estimates being fused as input. In applications in-
volving adverse conditions, temporary or permanent sensor
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failures can lead to dynamic and/or large bias or drift in the
estimates being fused. In such situations, covariance-based
methods may not perform satisfactorily or may even fail.
Thus, there is a need for DCL algorithms that do not involve
any assumptions regarding consistency and correlation, do
not require any covariance information of the estimates be-
ing fused, and can handle large dynamic bias or drift in the
estimates. In this regard, this paper presents a novel Dis-
tributed Learning-based Decentralized Cooperative Local-
ization (DL-DCL) framework in which robots, assisted by
a moving landmark, utilize the DL-DCL algorithm that sat-
isfies the above-mentioned requirements.

In the DL-DCL framework, robots collaborate over a dy-
namic communication network sharing sensor information,
and get assistance from a stationary or an agile landmark
(e.g., mothership) in learning an estimate fusion strategy that
improves their pose estimates. The learning process in DL-
DCL is inspired by the exponentially weighted online learn-
ing forecaster (Cesa-Bianchi and Lugosi 2006). Each robot
owns an Inertial Measurement Unit (IMU) and a Relative
Pose Sensing Suite (RPSS; e.g., range-bearing sensors, cam-
era, LiDAR, RADAR, etc). Each robot observes its neigh-
boring robots and the moving landmark via its RPSS, and
shares its estimates and sensor information with its neigh-
boring robots. With this shared information, DL-DCL uti-
lizes an estimation loss feedback which is responsible for
learning weights for a two-layered exponentially weighted
multi-estimate fusion process. This way, DL-DCL quickly
adapts to the uncertainty in the system and/or the environ-
ment.

In this paper, convergence analysis of the learned weights
shows that they converge exponentially under reasonable as-
sumptions. DL-DCL’s performance is evaluated in a simula-
tion with an adverse setting where temporary and permanent
faults occur in the robots’ sensors, and it is compared against
the well-known estimate fusion methods – Kalman Fusion,
Covariance Intersection, and Covariance Union. Further, a
scalability study is performed as well to check how scalable
DL-DCL is compared to the three well-known fusion meth-
ods as the no. of robots increases. DL-DCL outperforms
these three covariance-based methods in the simulation stud-
ies by a substantial margin. For evaluating its Sim2Real as-
pect, DL-DCL is also simulated in Gazebo with ROS2.

The rest of this paper is organized as follows: section II
presents problem formulation and a novel distributed learn-
ing framework for decentralized cooperative localization,
along with the proposed DL-DCL algorithm. Section III
presents a convergence analysis of the weights involved in
DL-DCL algorithm. Section IV presents DL-DCL’s perfor-
mance and scalability results via two simulation studies,
comparing the three well-known covariance-based fusion
methods. Finally, section V concludes this paper.

Distributed Learning based Decentralized
Cooperative Localization (DL-DCL)

Problem Formulation
The scenario of Decentralized Cooperative Localization
(DCL) of a heterogeneous MRS with a moving landmark

Figure 1: Multi-robot cooperative localization with a mov-
ing landmark

(shown in Fig.1) involves robots collaborating over a dy-
namic interaction (communication and relative pose sens-
ing) network to localize themselves and help localize their
neighboring robots in the network with the assistance of a
landmark, which can either be moving or stationary. Each
robot is installed with an Inertial Measurement Unit (IMU),
an Estimation Filter, and a Relative Pose Sensing System
(RPSS) for cooperative localization. The landmark can be
observed by all the robots by their RPSS. Any object or fea-
ture, either moving or stationary, whose accurate pose infor-
mation is known at all times, either as information known to
the robots a priori or via active broadcast by the object itself,
can be regarded as a landmark. Heterogeneity is either desir-
able or unavoidable in multi-robot cooperative localization
because of the desired complementarity in sensors/filters in-
stalled among the robots or the deterioration of sensor/fil-
ter performance in some robots due to failure or environ-
mental uncertainty. One can find such problem scenarios in
multi-robot applications involving perimeter defense (Vel-
hal, Sundaram, and Sundararajan 2022), (Shishika and Ku-
mar 2020), convoy protection (Sivakumar and Sujit 2021),
(Hentati and Fourati 2021), robotic swarms (Skorobogatov,
Barrado, and Salamı́ 2020), (Mohanty et al. 2020).

The interaction network abstracts the interactions be-
tween robots in terms of mutual communication and relative
pose sensing, i.e., each robot can sense the relative pose of
and can communicate with only its neighbors in the interac-
tion network. The topology of the dynamic interaction net-
work is represented by an underlying bi-directional dynamic
graph G(t), where t is the discrete-time variable. The robots
share information with their neighbors only once between
two successive discrete-time steps. The robots can infer from
and observe only their neighboring robots and the landmark,
i.e., the robots only have local knowledge of the interaction
network and do not know the overall network topology or the
total number of robots in the multi-robot system. The neigh-
bour set for the ith robot is defined as: Ωi(t) = {j : jth

agent is the neighbour of ith agent at time t, as per G(t)},
where i = 1, 2, · · · , N .

Let N denote the total number of robots in the MRS, and
let each robot be represented by its index i, where i ∈ [N ].
The robots are equipped with an IMU/Filter suite and a
RPSS. Lets denote ith robot’s IMU/Filter suite and RPSS as
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(IMU/FLT)i and RPSi, respectively, ∀i ∈ [N ]. ith robot’s
IMU/Filter suite (IMU/FLT)i and RPSS RPSi can be dif-
ferent from jth robot’s IMU/Filter suite (IMU/FLT)j and
RPSS RPSj , i ̸= j and ∀i, j ∈ [N ]; the sensors and filters
can be of a different class (or type), same class but differ-
ent parameters, or some of them may undergo failure due to
system or environmental uncertainty. This implies that their
estimation performance is likely to be different from each
other.

Robot Model: Consider the following discrete-time 3-
DOF kinematic model for the ith robot, where ∆T is the
sampling period (seconds), ∀i ∈ [N ]

xt+1,i = xt,i +∆T

[
cosϕt,i − sinϕt,i

sinϕt,i cosϕt,i

]
v̄t,i (1a)

ϕt+1,i = ϕt,i +∆Tw̄t,i (1b)

where xt,i ∈ R2 is the ith robot’s 2-D position vector (in
m), v̄t,i ∈ R2 is the ith robot’s body-axis velocity vector
(m/s), ϕt,i ∈ R is the ith robot’s heading angle (radians),
and w̄t,i ∈ R is ith robot’s yaw rate (rad/s) at discrete-time
t, respectively. Here, the body-axis velocity v̄t,i and yaw rate
w̄t,i act as bounded control inputs for the ith robot.

Landmark Model: The landmark model is similar to the
robot model. The landmark’s position vector xt,A ∈ R2 (in
m), heading angle ϕt,A ∈ R (radians), body-axis velocity
v̄t,A ∈ R2 (m/s), and yaw rate w̄t,A ∈ R (rad/s), respec-
tively, can be represented by replacing i with A in the set of
equations (1). Similarly, v̄t,A and w̄t,A act as bounded con-
trol inputs for the landmark at time t, which are considered
unknown to the robots.

Translational Control Law: For the ith robot, the transla-
tional control law consists of two terms as given below

v̄t,i = v̄Rt,i +∆v̄t,i (2)

where v̄Rt,i is the ith robot’s reference command signal re-
sponsible for executing the desired maneuver as per the
mission, and ∆v̄t,i is the ith robot’s correction control sig-
nal responsible for avoiding collisions with other robots. A
generic expression for the ith robot’s reference command
signal v̄Rt,i can be given as

v̄Rt,i = fi(x̂
i
t,i, ϕ̂

i
t,i, xt,A, dS) (3)

where xt,A is the landmark’s position vector at time t, and
x̂i
t,i is the ith robot’s estimate of its 2-D position at time

t, ϕ̂i
t,i is the ith robot’s estimate of its yaw angle at time

t, dS > 0 (m) is a parameter indicating the safe distance
that each robot should maintain from the landmark, fi(·) is
a nonlinear vector function whose structure defines the ith

agent’s translational maneuvering requirements.
Further, we assume that each robot is equipped with a

collision avoidance system to ensure that the robots do not
collide. Considering eq.(2), this behavior is modeled by the
correction control signal ∆v̄t,i for the ith robot by using an
inter-robot collision avoidance control law.

Heading Control Law for the ith robot: Consider
the ith robot’s estimated heading direction as ĥi

t,i =

[
cos ϕ̂i

t,i sin ϕ̂i
t,i

]′
. The ith robot’s yaw control law can be

given as
w̄t,i = gi(x̂

i
t,i, ϕ̂

i
t,i, xt,A) (4)

where gi(·) is a nonlinear vector function whose structure
defines the ith agent’s rotational maneuvering requirements.

IMU/Filter Suite Model for the ith robot: Denote x̂FLT
t,i ∈

R2 and ϕ̂FLT
t,i ∈ R as the ith robot’s IMU/Filter suite’s esti-

mate of its 2-D position and yaw angle, respectively, at time
t. We use a simplified model for the ith robot’s IMU/Filter
suite as follows:

x̂FLT
t,i = xt,i + νxt,i (5a)

ϕ̂FLT
t,i = ϕt,i + νϕt,i (5b)

where the terms νxt,i ∈ R2 and νϕt,i ∈ R represent bounded
arbitrary noise in the ith robot’s IMU/Filter suite’s estimate.

Relative Pose Sensing System (RPSS) Model for the ith

robot: Denote ∆x̂t,ij ∈ R2 and ∆ϕ̂t,ij ∈ R as the ith robot’s
RPSS’s estimate of relative position and relative yaw angle,
respectively, of jth robot at time t, ∀j ∈ Ωi(t)∪ {A}, in the
global frame. We use a simplified model for the ith robot’s
RPSS, ∀j ∈ Ωi(t) ∪ {A}, as follows:

∆x̂t,ij = xt,j − xt,i + µx
t,i (6a)

∆ϕ̂t,ij = ϕt,j − ϕt,j + µϕ
t,i (6b)

where the terms µx
t,i ∈ R2 and µϕ

t,i ∈ R represent bounded
arbitrary noise in the ith robot’s RPSS’s relative pose esti-
mation output. Further, for j = i, we consider ∆x̂t,ii =

[0 0]T and ∆ϕ̂t,ii = 0, since ith robot’s RPSS’s estimate of
its own relative pose would be zero by default.

Given the above description of the MRS, the successful
execution of their control commands requires the robots to
cooperatively form accurate estimates of their pose and that
of their neighboring robots by collaborating over the com-
munication network.

Mathematical Formulation
Define Λi(t) := Ωi(t) ∪ {i}. Since the ith robot has access
to its neighbour jth robot’s information via communication,
where j ∈ Λi(t), under the framework of DL-DCL, we de-
note ith robot’s various estimates of landmark’s (denoted by
A) pose at time t, ∀i ∈ [N ], as follows:

{x̂FLT
t,j +∆x̂t,jA}, {ϕ̂FLT

t,j +∆ϕ̂t,jA} (7)

where x̂FLT
t,j is the jth robot’s IMU/Filter suite’s estimate

of its 2-D position, ∆x̂t,jA is the jth robot’s RPSS’s esti-
mate of the relative position of the landmark A in the global
frame, and thus, these two terms when added together, i.e.,
{x̂FLT

t,j + ∆x̂t,jA}, form an estimate of the landmark A’s
position in the global frame at time t, ∀j ∈ Λi(t). Simi-
larly, ϕ̂FLT

t,j is the jth robot’s IMU/Filter suite’s estimate of
its yaw angle, ∆ϕ̂t,jA is the jth robot’s RPSS’s estimate
of relative yaw angle (orientation) of the landmark A, and

6177



{ϕ̂FLT
t,j +∆ϕ̂t,jA} forms an estimate of the landmark A’s yaw

angle (orientation) at time t, ∀j ∈ Λi(t).
Similarly, by replacing A with i in the above expressions,

we denote ith robot’s various estimates of its own pose at
time t, ∀i ∈ [N ], as follows:

{x̂FLT
t,j +∆x̂t,ji}, {ϕ̂FLT

t,j +∆ϕ̂t,ji} (8)

where x̂FLT
t,j is the jth robot’s IMU/Filter suite’s estimate of

its 2-D position, ∆x̂t,ji is the jth robot’s RPSS’s estimate
of relative position of the ith robot in global frame, and
{x̂FLT

t,j + ∆x̂t,ji} forms an estimate of the ith robot’s posi-
tion in global frame at time t, ∀j ∈ Λi(t). Similarly, ϕ̂FLT

t,j is
the jth robot’s IMU/Filter suite’s estimate of its yaw angle,
∆ϕ̂t,ji is the jth robot’s RPSS’s estimate of relative yaw an-
gle (orientation) of the ith robot, and {ϕ̂FLT

t,j +∆ϕ̂t,ji} forms
an estimate of the ith robot’s yaw angle (orientation) at time
t, ∀j ∈ Λi(t).

DL-DCL Algorithm

The proposed DL-DCL algorithm is a distributed online
learning algorithm designed for the purpose of real-time
fault-tolerant decentralized cooperative localization. Its real-
time learning ability allows the robots to form accurate esti-
mates under sensor failure, limited communication, and en-
vironmental uncertainty.

The DL-DCL algorithm runs in three phases: a projection
phase, a learning phase, and an estimation phase. In the al-
gorithm, the learning and estimation for position and orien-
tation happen separately; first orientation, and then, position
learning and estimation are performed. For compactness, we
will describe the algorithm by considering the measurement
of interest as a generic vector y, which can either be the
position x or orientation ϕ as per mention. For example,
consider the ith robot’s measurement of interest denoted as
ŷFLT
t,i , which would mean it’s IMU/Filter’s position estimate
x̂FLT
t,i if y ≡ x, or heading estimate ϕ̂FLT

t,i if y ≡ ϕ.

Projection Phase: involves each robot predicting the cur-
rent time estimates from previous time estimates using a
suitable model that captures robot dynamics. The final out-
put estimates at time t − 1 by the DL-DCL are denoted as
x̂i
t−1,i and ϕ̂i

t−1,i for ith robot’s position and heading an-
gle, respectively. Projected estimates x̂PRJ

t,i and ϕ̂PRJ
t,i can be

obtained from the previous time DL-DCL final estimates as
follows:

[x̂PRJ
t,i , ϕ̂

PRJ
t,i ] = F̂i(x̂

i
t−1,i, ϕ̂

i
t−1,i, v̄

cmd
t−1,i, w̄

cmd
t−1,i) (9)

where F̂i is a suitable mathematical model capturing ith

robot dynamics, v̄cmd
t−1,i and w̄cmd

t−1,i are ith robot’s com-
manded body-axis velocity and yaw-rate at time t − 1, re-
spectively. In this paper, we consider F̂i to be the same as

equations (1). This implies

x̂PRJ
t,i = x̂i

t−1,i +∆T

[
cos ϕ̂i

t−1,i − sin ϕ̂i
t−1,i

sin ϕ̂i
t−1,i cos ϕ̂i

t−1,i

]
v̄cmd
t−1,i

(10a)

ϕ̂PRJ
t,i = ϕ̂i

t−1,i +∆Tw̄cmd
t−1,i (10b)

Learning Phase: For each robot, learning occurs by com-
paring the landmark’s pose estimates (in equation 7) with
each other, with respect to closeness to the true landmark
pose ({xt,A, ϕt,A}) which is either known by the robots a
priori, or via active broadcast by the landmark itself or some
other means. The robots learn the weights for fusing the es-
timates in equation 7, which would lead to an accurate es-
timation of the landmark’s pose and, therefore, can be used
to form an accurate estimate of their own pose as well. The
learning phase consists of 2 learning layers. The 1st layer
involves a weighted fusion of all the estimates given by
equation 7, including their projected estimates counterpart
as given by equations 10. The 2nd layer involves a weighted
fusion of estimates from the 1st layer. The weights involved
in the weighted fusion process of each layer are updated
based on exponential weighted averaging.

Consider a generic measurement of interest denoted as y,
which can either be position vector x or heading angle ϕ
as per mention. The 1st learning layer for ith robot can be
described as follows:

ỹit,A =
∑

∀j∈Λi(t)

w̃y
ij(t− 1)(ŷFLT

t,j +∆ŷt,jA) (11)

ȳit,A =
∑

∀j∈Λi(t)

w̄y
ij(t− 1)(ŷPRJ

t,j +∆ŷt,jA) (12)

where ỹit,A denotes the landmark’s pose estimate formed by
the ith robot by fusing the filter estimates of all the jth

robots using equation 7, ∀j ∈ Λi(t). Similarly, ȳit,A denotes
the landmark’s pose estimate formed by the ith robot by fus-
ing projected estimates of all the jth robots using equation
7 (replacing FLT with PRJ), ∀j ∈ Λi(t). The estimates ỹit,A
or ȳit,A can intuitively be understood as the landmark’s pose
estimate formed by the ith robot by fusing the IMU/Filter or
projected estimate information, respectively, and the Rela-
tive Pose Sensing information of all the jth robots such that
∀j ∈ Λi(t), where Λi(t) := Ωi(t) ∪ {i}, and Ωi(t) is the
neighbor set of the ith robot at time t.

Define, l̃it,A,j := l(yt,A, (ŷ
FLT
t,j + ∆ŷt,jA)), and l̄it,A,j :=

l(yt,A, (ŷ
PRJ
t,j + ∆ŷt,jA)). Further, define the following cu-

mulative losses: L̃i
t,A,j :=

∑t
s=1 l̃

i
s,A,j , and L̄i

t,A,j :=∑t
s=1 l̄

i
s,A,j . The weights involved in the weighted convex

sum in equations (11) and (12) are updated as follows:

w̃y
ij(t) =

exp (−ηwL̃
i
t,A,j)∑

∀j′∈Λi(t)
exp (−ηwL̃i

t,A,j′)
(13)

and

w̄y
ij(t) =

exp (−ηwL̄
i
t,A,j)∑

∀j′∈Λi(t)
exp (−ηwL̄i

t,A,j′)
(14)
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An intuitive understanding of the weights involved in the 1st
learning layer for the ith robot is that they are indicative of
which jth robot, among all the neighboring robots including
ith robot itself (i.e., ∀j ∈ Λi(t)), owns the most accurate
IMU/Filter or projected estimate information along with ac-
curate relative pose sensing fused information.

The output of the 1st learning layer acts as the input for
the 2ndth learning layer, which can be described as follows:

ŷit,A = γy
i (t− 1)ỹit,A + (1− γy

i )ȳ
i
t,A (15)

where ŷit,A is the landmark’s pose estimate as a final output
from the learning phase of the ith robot, which can also be
called as the DL-DCL estimate of landmark’s pose formed
by the ith robot. ŷit,A can be seen as the fusion between the
estimates based on IMU/Filter information (FLT) and pro-
jected estimate information (PRJ).

Define, l̃it,A := l(yt,A, ỹ
i
t,A), l̄

i
t,A := l(yt,A, ȳ

i
t,A), and

l̂t,A := l(yt,A, ŷt,A). Further, define the following cumu-
lative losses: L̃i

t,A :=
∑t

s=1 l̃
i
s,A, L̄i

t,A :=
∑t

s=1 l̄
i
s,A,

L̂t,A :=
∑t

s=1 l̂s,A. The weights involved in the weighted
convex sum in equations (15) are updated as follows:

γy
i (t) =

exp (−ηγL̃
i
t,A)

exp (−ηγL̃i
t,A) + exp (−ηγL̄i

t,A)
(16)

The weights in the 2nd learning layer indicate if the IMU/-
Filter estimate by the ith robot is more accurate than the
projected estimate by the ith robot, or not.

Estimation Phase: The ith robot in the estimation phase
utilizes the weights learned in the learning phase to form a
DL-DCL estimate of its own pose, i.e. ŷit,i. Replacing A by i
in equations (11), (12), (15), and using the updated weights,
compute ỹit,i, ȳ

i
t,i, and ŷit,i, respectively.

The DL-DCL algorithm is summarized as Algorithm 1.

Convergence Analysis of Weights
Consider 0 ≤ w̃y

ij(0) ≤ 1, where i = 1, 2, · · · , N ,
and ∀j ∈ Λi(0), such that

∑
∀j∈Λi(0)

w̃y
ij(0) = 1.

For t = 1, 2, · · · , T̄ , from equation (13), w̃y
ij(t) =

exp (−ηwL̃i
t,A,j)∑

∀j′∈Λi(t)
exp (−ηwL̃i

t,A,j′ )
, ∀j ∈ Λi(t).

Further, define j′∗(t) := argminj′∈Λi(t) L̃
i
t,A,j′ , i.e., j′∗(t)

is the index of the robot which incurs the least cumulative
loss among all other robots in the index set Λi(t) = Ωi(t) ∪
{i} at time t, where Ωi(t) is the neighbors’ index set of the
ith robot at time t.

Assumption 1: Both limt→∞ j′∗(t) and limt→∞ Λi(t) ex-
ist uniquely.

Remark: Assumption 1 implies that at t → ∞, the inter-
action network configuration (Λi(t)) becomes fixed, and for
every robot, there is a unique robot (either itself or its neigh-
bor given by the index j′∗(t)) that incurs the least cumulative
loss out of all the robots in the set limt→∞ Λi(t).
Theorem 1. Under assumption 1, DL-DCL algorithm’s
weights w̃y

ij(t) satisfy the following:

lim
t→∞

w̃y
ij(t) = 0, ∀j ∈ lim

t→∞
Λi(t) \ {j′∗(t)} (17)

Algorithm 1: DL-DCL algorithm for the ith agent, ∀i ∈ [N ]

Parameters: T, To ≥ 1 (integers); ηw, ηγ > 0

Intialization: x̂PRJ
0,i = x̂FLT

0,i , ϕ̂PRJ
0,i = ϕ̂FLT

0,i ;
Initialize all the cumulative losses for t = 0 involved in
weight update equations (13), (14), and (16) to zero, for y
as both x and ϕ, respectively;
Start at t = 1.

1: while t ≤ T do
2: for y = {ϕ, x} do
3: Projection Phase: compute ŷPRJ

t,i from equations
(10)

4: Periodic Reset: re-initialize previous time cumula-
tive losses to zero after every To discrete time steps
Learning Phase:

5: compute previous time weights as per equations
(13), (14), and (16), using previous time cumula-
tive losses with current time local graph connectiv-
ity

6: compute the landmark’s pose estimates given by
equations (11), (12), and (15)

7: compute current time cumulative losses, and then
compute current time weights as per equations
(13), (14), and (16), using current time cumulative
losses with current time local graph connectivity

8: Estimation Phase: with the current time weights,
replace A by i in equations (11), (12), and (15) to
compute ŷit,i

9: t = t+ 1
10: end for
11: end while

and
lim
t→∞

w̃y
ij′∗(t)

(t) = 1 (18)

where j′∗(t) is the index of the neighbor of the ith robot
whose estimate incurs the least cumulative loss at time t,
i.e., j′∗(t) = argminj′∈Λi(t) L̃

i
t,A,j′ , ∀i ∈ [N ].

Proof. provided in the supplementary document1 (hint: find
suitable upper and lower bounds on the weights and show
that they converge)

Similar to convergence analysis of weights w̃y
ij(t), one

can also derive the convergence results for the weights
w̄y

ij(t) and γy
i (t).

Performance Evaluation
For evaluating the performance of the proposed DL-DCL al-
gorithm, we consider a simulation scenario involving N = 6
robots executing a perimeter monitoring task around a moth-
ership (moving landmark). Such a mothership scenario can
be practical in swarm applications where due to cost con-
straints, all the robots cannot have high-end sensor equip-
ment, but only a few can. In such scenarios, those few robots
with high-end sensor equipment can act as virtual moving

1supplementary doc. sharepoint link: http://surl.li/fgxsq
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landmarks for the other robots with cheap sensor equipment.
The scenario involves a random robot-robot interaction net-
work with a link drop probability of 0.5, whose underlying
base graph topology is that of the ring network. The moth-
ership broadcasts its true position and orientation to all the
robots and is observable to all the robots (via their RPSS) at
all times. The limited field of view of RPSS has been sim-
ulated by the degree (no. of links a node is connected to)
of a node (robot) in the interaction network (an interaction
network link implies both a communication link and an ob-
servation link with the neighboring robot).

Results are averaged over 50 simulation runs. Each simu-
lation run is carried out for a horizon of T = 1400 discrete
time steps, with a sampling period of ∆T = 0.1 second. The
scenario considered is adverse, where three robots are cho-
sen randomly in each simulation run so that their IMUs fail
successively at times 0.0, 23.4, and 46.7 seconds. The RPSS
of at least one and at most three robots fail, also chosen
randomly after approximately every 23.4 ∼ 46.7 seconds
in each simulation run. The noise νxt,i and νϕt,i in the IMUs
(equations (5)) that are functioning is assumed to be Gaus-
sian with a mean of 0.05m and 0.5 deg., respectively, with
a covariance of 0.1 × (0.05)2m2 and 0.1 × (0.05)2rad.2,
respectively. For the IMUs that fail, the noise terms are
still Gaussian but with a large bias (mean) of 3m and 30
deg., respectively, with a covariance of 6 × (0.05)2m2 and
6× (0.05)2rad.2, respectively. Similarly, the noise µx

t,i and
µϕ
t,i in the RPSS (equations (6)) that are functioning is as-

sumed to be Gaussian with a mean of 0.05m and 0.5 deg.,
respectively, with a covariance of 0.1×(0.05)2m2 and 0.1×
(0.05)2rad.2, respectively. For the RPSS that fail, the noise
terms are still Gaussian but with a large bias (mean) of 2m
and 20 deg., respectively, with a covariance of 4×(0.05)2m2

and 4 × (0.05)2rad.2, respectively. The loss functions are
defined to be lx(p1, p2) = min (||p1 − p2||/15, 1) and
lθ(q1, q2) = min (|wrapToPi(q1 − q2)|/(15π/180), 1) for
2-D position and heading angle, respectively. Define l̂t,i :=

l(yt,i, ŷt,i), and the cumulative loss: L̂t,i :=
∑t

s=1 l̂s,i,
where y ∈ {x, ϕ} as per mention.

For the above-described adverse setup, DL-DCL is com-
pared against three well-known decentralized estimate fu-
sion methods (Kalman Fusion, Covariance Intersection, Co-
variance Fusion) and two methods involving no communi-
cation among the robots, described as follows:
No Comm., IMU only: involves no communication among
the robots; the robots just rely on their respective IMU for
their pose estimation, i.e., x̂i

t,i = x̂FLT
t,i and ϕ̂i

t,i = ϕ̂FLT
t,i ,

from equations (5).
No Comm., RPSS only: involves no communication among
the robots; the robots rely on their RPSS and the landmark’s
pose information for their pose estimation, i.e., x̂i

t,i = xt,A−
∆x̂t,iA and ϕ̂i

t,i = ϕt,A −∆ϕ̂t,iA, from Eq.(6).
Kalman Fusion ((Maybeck 1982),(Uhlmann 2003)): each
robot takes the Kalman fusion of all its pose estimates given
by its own sensors and that of its neighbors (from equation
(8)); assumes that the estimates being fused are uncorrelated
and their associated zero-mean Gaussian noises’ covariance
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Figure 2: Snapshot of a simulation run (M: Mothership;
M.T: Mothership’s Trajectory; Robots: Ri, i = 1, 2, · · · , 6)

are known.
Covariance Intersection ((Matzka and Altendorfer
2009),(Julier and Uhlmann 2017)): each robot employs the
covariance intersection method for the fusion of all its pose
estimates given by its own sensors and that of its neighbors
(from equation (8)); assumes that the estimates being fused
are consistent and their associated zero-mean Gaussian
noises’ covariance are known, but their cross-correlation is
unknown.
Covariance Union ((Matzka and Altendorfer 2009),(Reece
and Roberts 2010)): each robot employs the covariance
union method for the fusion of all its pose estimates given by
its own sensors and that of its neighbors (from equation (8));
assumes that the estimates being fused can be inconsistent,
and their cross-correlation is unknown, but their associated
zero-mean Gaussian noises’ covariance are known.

For the DL-DCL algorithm, the learning parameters are
set to the values ηw = 2 and ηγ = 2 via parameter tuning.
DL-DCL periodically resets its cumulative loss variables to
zero after every To = 200 discrete time steps to avoid bias
build-up during learning.

Note that DL-DCL does not make assumptions on the
noise involved in the pose estimates to be zero mean Gaus-
sian or of any other type in specific. Moreover, DL-DCL
does not require noise covariance information as input, un-
like the above-described covariance-based fusion methods.
Further, for the covariance-based methods, it is assumed
that the pose estimates given by equation (8) are formed by
adding two uncorrelated estimates: one provided by the IMU
of a robot (jth robot’s pose estimate) and the other given by
its RPSS (estimate of the displacement between jth robot
and ith robot, w.r.t. jth robot). A snapshot of the above-
described simulation for the considered three well-known
covariance-based fusion methods and DL-DCL is shown in
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Figure 3: Individual and Average cumulative estimation loss
over time

Fig. 2. Further description regarding the simulation setup is
given in the supplementary document1.

The results for the above-described simulation setup with
an adverse setting are shown in Fig. 3. Note that cumulative
loss for ith robot is given as L̂t,i =

∑t
s=1 l̂s,i. In Fig. 3, the

first plot shows how the cumulative estimation loss incurred
by the 6th robot’s estimate of its position, averaged over
50 simulation runs, grows with time for DL-DCL and the
three well-known fusion methods considered for compari-
son; DL-DCL clearly performs substantially better than the
covariance-based methods considered – approximately 41%
improvement compared to the best-performing covariance-
based method, CI. Similar behavior can be seen for other
robots as well – plots are provided in the supplementary doc-
ument1. The second plot in Fig. 3 shows how the Average to-
tal cumulative estimation loss of all six robots (16

∑6
i=1 L̂t,i)

grows with time, averaged over 50 simulation runs. DL-DCL
outperforms the other well-known covariance-based meth-
ods – average total cumulative loss incurred is much lesser
compared to the best-performing covariance-based method,
CI – 40% lesser. In the simulation without failures (zero bias
in the estimates and small covariance), DL-DCL, CI, and KF
incur approximately zero estimation loss.

Further, a scalability study is carried out in which, start-
ing with three robots – one fully functioning with good sen-
sor equipment, one with below-average sensor equipment,
and one with faulty sensor equipment – we keep on adding
more robots in a ring network topology by randomly choos-
ing between the one with good sensor equipment or the one
with below-average sensor equipment. The results (Fig. 4)
clearly show that DL-DCL performs better than the three
well-known fusion methods in terms of scalability, incur-
ring lesser avg. cumulative estimation loss ( 1

N

∑N
i=1 L̂t,i)

than other methods even as N increases. Moreover, at larger
N (N ≥ 11), the avg. cumul. estim. loss starts to plateau
nearly, whereas the reliability cost decreases. Thus, DL-
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Figure 4: The avg. cumulative estimation loss (just after 60
sec.) and reliability cost versus the number of robots

DCL allows an MRS to ensure high reliability by having
more no. of robots while ensuring that the estimation perfor-
mance does not degrade as N gets large.

The average time taken by one iteration of the DL-DCL
algorithm (MATLAB code) is approximately 1.2 millisec-
onds, whereas that of Kalman Fusion, Covariance Intersec-
tion, and Covariance Union is 0.1, 0.31 and 7.4 milliseconds,
respectively. The appropriate vectorization of the DL-DCL
code can further reduce the average time a DL-DCL itera-
tion takes. For the evaluation of its sim2real aspect, DL-DCL
is also simulated in Gazebo with ROS2 (video and GitHub
links in the supplementary document1). Note that DL-DCL
can work for any robot model (holonomic/non-holonomic).

Conclusion

This paper presents a novel Distributed Learning-based De-
centralized Cooperative Localization (DL-DCL) approach
where robots communicating over a dynamic, partially con-
nected network are assisted by an agile landmark in learning
a multi-estimate fusion strategy. DL-DCL’s online learning
process uses an estimation loss feedback, allowing the al-
gorithm to be adaptive and fault-tolerant. Further, the inclu-
sion of the projection information ensures that information
eventually reaches the non-neighboring robots in the com-
munication network. Convergence analysis of the weights
involved in DL-DCL shows that the weights converge at
an exponential rate under reasonable assumptions. More-
over, the DL-DCL algorithm involves analytic expressions,
which makes it computationally inexpensive and easy to
implement. Simulation results show that in adverse condi-
tions (sensor failures inducing a 40-60 times increase in
the bias), DL-DCL outperforms the well-known covariance-
based methods (KF, CI, CU) in terms of estimation perfor-
mance (40% better) and passes the scalability test. Sim2Real
aspects of DL-DCL’s fault-tolerance and practical imple-
mentability are also evaluated in Gazebo using ROS2. Fur-
ther, the DL-DCL framework can be extended to the cases
of 3D localization and partially observable landmark.
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