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Abstract

Predicting the trajectories of pedestrians in crowded condi-
tions is an important task for applications like autonomous
navigation systems. Previous studies have tackled this problem
using two strategies. They (1) infer all future steps recursively,
or (2) predict the potential destinations of pedestrians at once
and interpolate the intermediate steps to arrive there. How-
ever, these strategies often suffer from the accumulated errors
of the recursive inference, or restrictive assumptions about
social relations in the intermediate path. In this paper, we
present a graph convolutional network-based trajectory predic-
tion. Firstly, we propose a control point prediction that divides
the future path into three sections and infers the intermediate
destinations of pedestrians to reduce the accumulated error.
To do this, we construct multi-relational weighted graphs to
account for their physical and complex social relations. We
then introduce a trajectory refinement step based on a spatio-
temporal and multi-relational graph. By considering the social
interactions between neighbors, better prediction results are
achievable. In experiments, the proposed network achieves
state-of-the-art performance on various real-world trajectory
prediction benchmarks.

1 Introduction
Predicting the future trajectories of humans in crowds is
an important task, especially for social robots, autonomous
navigation, and surveillance systems. However, this task is
challenging because such predictions require considering the
desired destinations of each pedestrian, and the social norms
of other moving agents, simultaneously.

Early works (Helbing and Molnar 1995; Pellegrini et al.
2009; Mehran, Oyama, and Shah 2009; Yamaguchi et al.
2011; Pellegrini, Ess, and Gool 2010) have attempted to cap-
ture social interactions using handcrafted Langevin equations,
however, they often fail to model the complex social interac-
tions that occur in crowded scenes. The recent development
of convolutional neural networks (CNNs) and recurrent neu-
ral networks (RNNs) combines with social pooling (Alahi
et al. 2016; Gupta et al. 2018) and social attention (Vemula,
Muelling, and Oh 2018), and has improved understanding
of the social interactions among pedestrians. However, these
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Figure 1: An illustration of Graph-TERN. Our Graph-TERN
first constructs a multi-relational pedestrian graph (yellow) to
capture social and temporal relationships, and then predicts a
set of control points (red) to sample hypothetical destinations
of pedestrians in scenes. After that, the proposed refinement
module learns to estimate accurate final trajectories (orange).

approaches still suffer from severe errors in final destination,
because they accumulate the errors inherent to problems in
the recursive predictions.

To overcome this issue, two notable previous attempts have
been made to infer the potential destinations of pedestrians in
scenes. Works (Mohamed et al. 2020; Shi et al. 2021a; Bae
and Jeon 2021) utilize several temporal CNNs that predict
entire sequences in a single shot, which alleviates the accu-
mulation of errors. In (Rehder et al. 2018; Deo and Trivedi
2020; Mangalam et al. 2020, 2021), the potential endpoints of
the local trajectories are defined first, and their intermediate
steps are then interpolated. Although these methods show
promising performance improvements, issues remained. (1)
Long-term predictions are performed without any consider-
ation of events occurring in the intermediate steps, and (2)
social interactions are not regarded in endpoint prediction.

In this paper, we propose a Graph-based pedestrian Tra-
jectory Estimation and Refinement Network (Graph-TERN)
using a set of control points that combines the advantages of
both attempts. Our network consists of three parts: a control
point prediction, trajectory refinement, and a multi-relational
graph convolutional network (MRGCN). Firstly, we divide
each pedestrian’s future path into three sections and infer
each stochastic goal, called control points. Each control point
represents probabilistic decisions about the next future steps
pedestrians will take. Mixture density networks (MDNs) are
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used in this process, and stochastic endpoints are determined
by connecting the three control points. With the benefit of
the control point prediction, long-term predictions are feasi-
ble while respecting the social norms of interactions among
people travelling in crowds or groups. Here, we introduce a
Gaussian mixture model (GMM) pruning scheme, effectively
cutting-off abnormal behaviors of pedestrians in Gaussian
distributions. Secondly, we generate realistic future paths
by introducing a refinement module that yields correction
vector fields. We initially infer intermediate steps by linearly
interpolating between the endpoints, and then refine the ini-
tial trajectory by adding the correction vector fields. Lastly,
we design an MRGCN operator to take account of complex
social interactions in both the control point prediction and the
trajectory refinement. By effectively incorporating the three
modules, our model achieves state-of-the-art results using a
variety of public pedestrian trajectory prediction benchmarks.

2 Related Works
Context-aware Trajectory Prediction. Starting with hand-
crafted motion model (Helbing and Molnar 1995), there have
been significant advances in the ability of methods to rep-
resent the movement of humans. Pioneering works (Alahi
et al. 2016; Vemula, Muelling, and Oh 2018; Bartoli et al.
2018; Fernando et al. 2018; Zhang et al. 2019; Li, Ma, and
Tomizuka 2019; Shi et al. 2020; Kothari, Sifringer, and Alahi
2021; Xu et al. 2022b) introduce schemes for human prox-
imity relationships which have been used with social forces
to model pedestrian interactions in crowds. Better prediction
results are achievable using a fusion of visual features and co-
ordinate information (Varshneya and Srinivasaraghavan 2017;
Xue, Huynh, and Reynolds 2018; Manh and Alaghband 2018;
Sadeghian et al. 2019; Liang et al. 2019; Kosaraju et al. 2019;
Sun, Zhao, and He 2020; Dendorfer, Elflein, and Leal-Taixé
2021; Zhao et al. 2019; Tao, Jiang, and Duan 2020; Sun,
Jiang, and Lu 2020; Shafiee, Padir, and Elhamifar 2021; Chai
et al. 2019). Recently, the use of Gaussian distribution (Hug,
Hübner, and Arens 2020; Hug et al. 2022; Xu, Yang, and
Du 2020), generative adversarial networks (GANs) (Gupta
et al. 2018; Sadeghian et al. 2019; Kosaraju et al. 2019; Li
2019; Dendorfer, Elflein, and Leal-Taixé 2021) and the Con-
ditional Variational Auto-encoder (CVAE) (Lee et al. 2017;
Ivanovic and Pavone 2019; Salzmann et al. 2020; Chen et al.
2021b; Yao et al. 2021; Xu et al. 2022a; Wang et al. 2022;
Yue, Manocha, and Wang 2022; Xu, Hayet, and Karamouzas
2022; Wen, Wang, and Metaxas 2022) are proposed to infer
socially-acceptable multiple trajectories.

More recently, graph neural network-based approaches
(Liang et al. 2020; Li et al. 2020; Liang, Jiang, and Haupt-
mann 2020; Yu et al. 2020; Bae and Jeon 2021; Bae, Park, and
Jeon 2022b,a; Xu et al. 2022c; Gu et al. 2022) have explicitly
modeled human-human interactions and jointly predicted the
trajectories of all agents, using graph-based representations.
Among them, Graph Attention Networks (GATs) (Veličković
et al. 2018) implicitly assign the social relations of pedestri-
ans on graph nodes and edges (Huang et al. 2019; Kosaraju
et al. 2019; Sun, Jiang, and Lu 2020; Shi et al. 2021a). Social-
STGCNN (Mohamed et al. 2020) presents a Graph Convo-
lutional Network (GCN)-based trajectory prediction, which

effectively aggregates the spatial information of pedestrians.
This method imposes physical constraints to capture the rela-
tive distance of humans in scenes. However, its performance
is limited due to the single relations based on displacements
among them.

Endpoint Conditioned Approach. Endpoint conditioned
trajectory prediction is a process that infers the hypotheti-
cal arrival points of pedestrians and then interpolates their
paths like vehicle navigation systems. Rehder et al. (Re-
hder and Kloeden 2015; Rehder et al. 2018) propose a
von-Mises distributed destination prediction using a parti-
cle filter with environment-based dynamics. TNT (Zhao et al.
2020) uses square lattice endpoints for initial target predic-
tion. Goal-GAN (Dendorfer, Osep, and Leal-Taixe 2020) pre-
dicts the goal probability map on a scene image using CNN.
P2TIRL (Deo and Trivedi 2020) introduces a grid-based goal
planning with maximum entropy inverse reinforcement learn-
ing. Although the works show the potential of goal-based
prediction with human-environment interactions, efforts to
address both spatial and temporal aspects in a crowd remain
insufficient. In very recent works, PECNet (Mangalam et al.
2020) proposed a CVAE-based endpoint conditioned trajec-
tory prediction with social non-local pooling, and achieved
state-of-the-art results. However, these approaches do not
consider all of the pedestrians in scenes or agent interactions
in the endpoint prediction time.

Trajectory Refinement. There are several works that re-
fine initially predicted pedestrian trajectories. In (Lee et al.
2017), gated recurrent units and CVAE were used to predict
the initial sampled trajectory and refine them by fusing the
semantic context of scenes and the social interactions be-
tween agents. MANTRA (Marchetti et al. 2020, 2022) used a
similar strategy with (Lee et al. 2017) on multi-modal initial
trajectories sampled with novel memory augmented networks.
These works have mainly focused on correcting the direc-
tions in the initial trajectory, which can result in severe final
destination errors.

Compared to previous works, the proposed network adopts
a multi-relational GCN structure to take complex agent in-
teractions into account when considering various physical
relations. Our trajectory refinement also corrects initial pre-
dictions well without any distortion of the destinations. What
is unique in the proposed network is the use of control point
prediction when predicting the potential destination of each
pedestrian. The existing endpoint conditioned approaches di-
rectly predict a destination as a single hard constraint without
any consideration of neighbors, and learn short-term destina-
tions like waypoints. In contrast, our control points are used
for endpoint sampling that reflects the agent interactions, not
acting as waypoints.

3 Control Point Conditioned Prediction
Graph-TERN consists of two key components: (1) learning
the probabilistic distribution for sampling endpoint candi-
dates based on the control point; (2) yielding socially accept-
able path prediction using a refinement module. Using an
MRGCN framework, we develop a model that can success-
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Figure 2: An overview of our Graph-TERN Architecture. First, a control point prediction module takes the observed trajectory
S1:Tobs

, and then constructs a multi-relational pedestrian graph. With a spatio-temporal aggregation using GCN and CNN, we
can predict hypothetical endpoints Ê through a summation of a set of randomly sampled control points Ĉ. Second, a trajectory
refinement modules takes the predicted endpoint Ê and the observed trajectory S1:Tobs

to predict a correction vector field. A
refined trajectory ŜTobs+1:Tpred

is obtained by summing the initial trajectory with the correction vector field. DT and DP mean
distance and displacement, respectively.

fully predict future trajectories while considering complex
social relations. The overall framework is shown in Figure 2.

3.1 Preliminaries
Problem Definition. Pedestrian trajectory prediction at-
tempts to determine future position sequences from observed
position sequences for all agents in a scene. Suppose that
there are N pedestrians in a scene at specific time t, and the
corresponding positions of each pedestrian n ∈ {1, ..., N}
can be represented as pnt =(xnt , y

n
t ). The trajectory sequence

from the first time frame to the observed time Tobs can be de-
noted as Sn

1:Tobs
={pnt ∈R2|t∈N, 1≤ t≤Tobs}. The consec-

utive prediction time frames are represented as STobs+1:Tpred
.

An additional goal of this work is to estimate a set of
potential destinations for each pedestrian, called endpoint
En. The endpoint Ê can be predicted with the observed
sequence Ên= p̂nTpred

|S1:Tobs
, then the future trajectories

ŜTobs+1:Tpred
can be inferred from the observed sequence

S1:Tobs
and the predicted endpoint Ê.

Graph Convolutional Network. In general, the graph
G = (V, E) represents a set of nodes V and edges E . In a
pedestrian graph, the spatio-temporal graph G consists of a
pedestrian node V = {pnt |n, t ∈ N, 1 ≤ n ≤ N, 1 ≤ t ≤ T}
and a set of spatial and temporal edges E = Et ∪ En. The
spatial edge Et = {ai,jt |i, j ∈ N, 1≤ i, j ≤N} represents a
spatial relation for each pedestrian at a specific time t, and
the temporal edge En = {ai,jn |i, j ∈ N, 1 ≤ i, j ≤ T} repre-
sents the temporal relation of each pedestrian n within an
observed sequence. Node features are aggregated with both
spatial and temporal dimensions using GCNs and CNNs (Yan,
Xiong, and Lin 2018; Mohamed et al. 2020). With the node

feature H={hnt |n, t∈N, 1≤n≤N, 1≤ t≤Tobs} and adja-
cency matrix A={ai,jt |i, j, t∈N, 1≤ i, j≤N, 1≤ t≤Tobs},
the GCN feature update rule is defined as H ′= σ(ÂHW ).
Here, W and Â indicate the learnable weight matrix and the
normalized form with the formula Â=D̃− 1

2 ÃD̃− 1
2 , respec-

tively. We denote the self-loop added adjacency matrix as
Ã=A+ I and diagonal node degree matrix as D̃ from Ã.

3.2 Control Point Conditioned Endpoint Prediction
The methodology for sampling plausible endpoints and pre-
dicting socially acceptable paths has significantly improved
for pedestrian trajectory prediction. The key to endpoint pre-
diction is determining travelable roads. For this, it is essential
to learn the complex social interactions between pedestrians
in crowds, such as collision avoidance and group following.
However, existing methods do not consider any factor that af-
fects the endpoint prediction in the process. We often observe
that pedestrians fail to arrive within the predicted time frame
Tpred. For this reason, social interactions need to be con-
sidered in the endpoint prediction. In this work, we present
a novel set of control point-based endpoint predictions to
handle events that unexpectedly occur in the predicted time
frames, and MRGCN to precisely capture social interactions.

Graph Control Point Prediction. The key idea of our
model is to use multiple control points when inferring poten-
tial endpoints. In contrast to previous works, we incorporate
our control point prediction into a GCN framework, and in
this way, our model provides a socially compliant endpoint
that considers intermediate social interactions.

First, we define a set of control points C based on a dis-
placement in one section, which is equally divided into future
sequences STobs+1:Tpred

in Figure 3(a). The formula to obtain

6157



Figure 3: A set of control points prediction. (a) When a
person turns left at the crossroad, three control points are
defined based on the displacement. (b) Examples of predicted
distributions for the control points and endpoint sampling.

C for a pedestrian n is as below:

Cn =
{
cnk = pnTobs+τ×k − pnTobs+τ×(k−1)

}
for ∀k ∈ {1, ...,K}, τ =

Tpred − Tobs
K

,
(1)

where K is a user-defined parameter.
Next, we present a control point prediction module. We

update feature maps for the observed input sequence using
a multi-relational GCN, which will be explained in Sec-
tion 3.3. We then use a multivariate GMM to sample the
2D displacements of a set of control points in a MDN,
as shown in Figure 3(b). With the output of the module
z = {zπk , z

µ
k , z

σ
k |k ∈ N, 1 ≤ k ≤K}, we compute a mean

µ̂k ={zµ
m,k|m∈N, 1≤m≤M}, a standard deviation σ̂k =

{exp(zσ
m,k)|m∈N, 1≤m≤M}, and a mixing coefficient

π̂k = {exp(zπm,k)/
∑M

i=1 exp(zπi,k)|m∈N, 1≤m≤M} for
the multivariate GMM with M=8 as illustrated in Figure 2.
Here, the mean and standard deviation have x, y-axis values
of µ̂ = (µ̂x, µ̂y) and σ̂ = (σ̂x, σ̂y), respectively.

GMM Pruning. Public pedestrian trajectory datasets con-
tain abnormal behaviors of agents. Since statistical models
need to allocate a portion of its capacity to ensure the abnor-
mal cases, it is left with relatively less capacity for generating
realistic paths. In a previous GAN-based approach (Dendor-
fer, Elflein, and Leal-Taixé 2021), stacking multiple genera-
tors with individual parameters exclusively predicts path sam-
ples on disconnected manifolds. This multi-generator struc-
ture reduces unrealistic path generations in the test phase.

We observe that the Gaussian distribution for abnormal
behaviors is formed to have large standard deviations and low
mixing coefficients. These abnormal cases are considered as
out-of-distribution samples drawn far away from the training
distribution statistically and lead to performance drops. In a
previous work (Mangalam et al. 2020), a truncation trick is
used to restrict the distribution of samples. However, in the
GMM-based prediction model, it limits the distribution of
reasonable control points as well. To address this issue, we
devise a GMM pruning which cuts off a lower half of the bi-
variate Gaussian based on predicted mixing coefficients as:

M
∗ =

⌊
M

2

⌋
, z∗ = argmax

z′⊂z,|z′|=M∗

∑
z′π⊂z′

z′π, (2)

where M∗ is the number of the selected mixture models.
Through the GMM pruning, potential control points can be
assigned to effectively feasible areas without any increase in
the number of learnable parameters.

Endpoint Sampling. The final endpoint ê is determined by
using the set of control points Ĉ, which is sampled through
the probabilistic process in Figure 3(b). While existing works
infer the final endpoint at once, our probabilistic model al-
lows them to be determined by combining social interactions
computed from each intermediate point. Because each con-
trol point represents a relative displacement from a previous
point, the absolute coordinates of a final endpoint can be
determined by adding all the control points to the last coordi-
nates of the observed sequence, as below:

ên = pnTobs
+

K∑
k=1

ĉnk . (3)

Following the previous study (Gupta et al. 2018), we sam-
ple the L=20 endpoints Ên={ênl |l, n ∈ N, 1 ≤ l ≤ L, 1 ≤
n ≤ N} which represent multi-modality, and feed them into
a trajectory refinement module in Section 3.4.

3.3 Multi-Relational Pedestrian Graph
Our model uses a GCN to manipulate a multi-relational graph.
The selection between GAT (Huang et al. 2019; Kosaraju et al.
2019; Yu et al. 2020; Shi et al. 2021a) and GCN (Mohamed
et al. 2020; Shi et al. 2022; Li et al. 2021) is an open issue in
modeling social relations. While the GCN has the advantage
of imposing physical constraints, conventional GCN-based
models use a single relation edge, which makes capturing
social relations limited. Due to this reason, the GCN-based
approaches have gained less interest than those of the GAT-
based approaches whose multi-head attention allows it. In
this work, we fully take advantage of the GCN framework by
overcoming the limitation through a multi-relational-based
kernel function to produce each relational adjacent matrix.

Following the multi-relation-based GCN methods success-
fully adopted in other research areas such as action recog-
nition and natural language processing (Marcheggiani and
Titov 2017; Li et al. 2019; Shi et al. 2019), we construct
a multi-relational weighted graph to predict pedestrian tra-
jectories. Unlike the previous work (Mohamed et al. 2020)
which has a graph considering only the relative distance
between pedestrians, our multi-relational graph includes dis-
tance, displacement, and their inverse terms. We define its
spatio-temporal feature update rule G = (V,R, E) as below:

H ′ = σ

[
CNN

( R∑
r=1

ÂrH
T Wr

)T
+H

]
, (4)

where R is the number of elements in a set of relations R =
{Distance,Displacement, 1/Distance, 1/Displacement}, Âr

is the normalized term of Ar = {ai,j,r∈ R|i, j, r ∈ N, 1 ≤
i, j≤N, 1≤r≤R}, and Wr is a learnable weight matrix. In
the pedestrian graph, there are both spatial relations between
pedestrians and temporal relations for the consecutive tem-
poral sequences of each of them. Following prior studies on
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Figure 4: An example of trajectory refinement. (a) Endpoint
candidates are classified into the positive and negative set.
(b) Additionally, guided endpoints are randomly sampled. (c)
The initial trajectory is predicted by linearly interpolating
between the observed trajectory and the endpoints. (d) After
that, the trajectory is refined by adding a correction vector
field in the initial trajectory.

spatio-temporal data (Yan, Xiong, and Lin 2018; Mohamed
et al. 2020), we perform both spatial and temporal aggrega-
tion on all nodes, with the MRGCN and CNN, respectively.

We observe that a model which only considers either the
distance or the displacement sometimes suffers because it
avoids either companions or persons who are walking behind
their back. In contrast, our multi-relational graph deals with
obstacles, stop and go motion, and group following in very
challenging situations.

3.4 Initial Trajectory Refinement
Our refinement method proceeds with three steps: guided
endpoint sampling, initial trajectory prediction, and graph
trajectory refinement.

Guided Endpoint Sampling. To jointly train the control
point prediction module and trajectory refinement module,
we need to decouple the two modules. Since a predicted
endpoint is not always close to a ground truth position, we
define a rule to limit the predicted endpoints at training time.

We use not only a ground-truth endpoint, but also all the
predicted endpoints close to the ground truth. Specially, as
shown in Figure 4(a), we divide the predicted endpoints into
a positive set Υ+ and a negative set Υ− as below:

Υn+ = {ênl |∥ênl − en∥ ≤ Γ}
Υn− = {ênl |∥ênl − en∥ > Γ}

for ∀l ∈{1, ..., L}, Γ =
∥pnTobs

− pn1∥
Tobs × γ

,

(5)

where γ is a scale indicator that adaptively adjusts the
averaged displacement of each pedestrian. We only back-
propagate gradients for the positive sets using a valid maskΨ:

[Ψ]n,l = ψn
l =

{
1 if ênl ∈ Υn+,

0 otherwise.
(6)

During the initial training phase, the number of positive
sets might be extremely small because the endpoint candi-

dates are not yet converged. To address this issue, we addi-
tionally sample the L positive endpoints within the range Γ
of the ground-truth, called guided endpoints in Figure 4(b).

Initial Trajectory Prediction. The purpose of establishing
an initial trajectory based on the guided endpoints is to make
our trajectory refinement module tractable. The simplest way
to do this is to connect these control points through linear
interpolation. However, we observe that the use of a set of
control points in the initial trajectory prediction acts as a hard
constraint, even though it is helpful to infer accurate destina-
tions of pedestrians, as will be demonstrated in Section 4.3.

Therefore, we first generate a single initial trajectory
S̃Tobs+1:Tpred

for one endpoint without any control point in
Figure 4(c). To do this, we linearly interpolate between the
last frame of observations pnTobs

and the endpoint ênl as below:

p̃nt,l =p
n
Tobs

+
ênl − pnTobs

Tpred − Tobs
× (t− Tobs)

S̃Tobs+1:Tpred,l = {p̃nt,l}
for ∀t ∈ {Tobs + 1, ..., Tpred},

∀l ∈ {1, ..., L}, ∀n ∈ {1, ..., N}.

(7)

Graph Trajectory Refinement. As a next step, we present
a novel refinement module to yield an accurate trajectory
from the observed trajectory S1:Tobs

and the initial trajectory
S̃Tobs+1:Tpred

. By concatenating the two trajectories along
with the time axis, we can aggregate the social interactions
for all time frames using the MRGCN. As shown in Fig-
ure 4(d), the correction vector field fnt is computed and the
final refined trajectory can be obtained as below:

p̂nt,l = p̃nt,l + fnt,l

ŜTobs+1:Tpred,l = {p̂nt,l} ∪ Ê
for ∀t ∈ {Tobs + 1, ..., Tpred − 1},

∀l ∈ {1, ..., L}, ∀n ∈ {1, ..., N}.

(8)

Unlike existing methods (Mohamed et al. 2020; Mangalam
et al. 2020; Shi et al. 2021a; Liu, Yan, and Alahi 2021; Chen
et al. 2021a) which use social interactions based only on
observations, our refinement module allows a more complex
social relation because our MRGCN captures such relations
even with the interpolated points and the endpoint.

3.5 Implementation Details
Loss Function. We maximize an expectation to train the
control point prediction module. We sum the probabilistic
density functions of all the predicted control point distribu-
tions and pedestrians. The loss function Θw is defined as:

Θw =
N∑

n=1

K∑
k=1

−log

 M∑
m=1

π̂n
m,k

exp
(
− (cn

k−µ̂n
m,k)

2

2(σ̂n
m,k)

2

)
√
2π σ̂n

m,k

 (9)

In addition, we minimize the trajectory refinement loss Θr.
The loss is based on a mean square error (MSE) of an average
displacement between a refined trajectory and a ground truth
trajectory, and is formulated as below:

Θr =

N∑
n=1

2L∑
l=1

Tpred−1∑
t=Tobs+1

ψn
l

[(
xnt,l − x̂nt,l

)2
+
(
ynt,l − ŷnt,l

)2] (10)
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Model Linear
Regression

Social-
LSTM

Social-
GAN

SR-
LSTM† STGAT IDL RSBG STAR† Reciprocal

Learning
Social-

STGCNN PECNet†

Year - 2016 2018 2019 2019 2019 2020 2020 2020 2020 2020
ETH 1.33 / 2.94 1.09 / 2.35 0.87 / 1.62 1.01 / 1.93 0.65 / 1.12 0.59 / 1.30 0.80 / 1.53 0.78 / 1.47 0.69 / 1.24 0.64 / 1.11 0.65 / 1.13

HOTEL 0.39 / 0.72 0.79 / 1.76 0.67 / 1.37 0.35 / 0.72 0.35 / 0.66 0.46 / 0.83 0.33 / 0.64 0.33 / 0.83 0.43 / 0.87 0.49 / 0.85 0.22 / 0.38
UNIV 0.82 / 1.59 0.67 / 1.40 0.76 / 1.52 0.66 / 1.38 0.52 / 1.10 0.51 / 1.27 0.59 / 1.25 0.35 / 0.72 0.53 / 1.17 0.44 / 0.79 0.35 / 0.57

ZARA1 0.62 / 1.21 0.47 / 1.00 0.35 / 0.68 0.56 / 1.23 0.34 / 0.69 0.22 / 0.49 0.40 / 0.86 0.27 / 0.58 0.28 / 0.61 0.34 / 0.53 0.25 / 0.45
ZARA2 0.77 / 1.48 0.56 / 1.17 0.42 / 0.84 0.44 / 0.90 0.29 / 0.60 0.23 / 0.55 0.30 / 0.65 0.23 / 0.52 0.28 / 0.59 0.30 / 0.48 0.18 / 0.31

AVG 0.79 / 1.59 0.72 / 1.54 0.61 / 1.21 0.60 / 1.23 0.43 / 0.83 0.40 / 0.89 0.48 / 0.99 0.39 / 0.82 0.44 / 0.90 0.44 / 0.75 0.33 / 0.57

Model Trajectron
++†

Causal-
STGAT

NCE-
STGCNN TPNMS Causal-

STGCNN SGCN S-DPF LBEBM† DMRGCN STT Graph-TERN

Year 2020 2021 2021 2021 2021 2021 2021 2021 2021 2022 -
ETH 0.61 / 1.03 0.60 / 0.98 0.66 / 1.22 0.52 / 0.89 0.64 / 1.00 0.63 / 1.03 0.66 / 0.92 0.62 / 1.16 0.60 / 1.09 0.54 / 1.10 0.42 / 0.58

HOTEL 0.20 / 0.28 0.30 / 0.54 0.44 / 0.68 0.22 / 0.39 0.38 / 0.45 0.32 / 0.55 0.34 / 0.50 0.19 / 0.35 0.21 / 0.30 0.24 / 0.46 0.14 / 0.23
UNIV 0.30 / 0.55 0.52 / 1.10 0.47 / 0.88 0.55 / 1.13 0.49 / 0.81 0.37 / 0.70 0.50 / 0.69 0.37 / 0.67 0.35 / 0.63 0.57 / 1.15 0.26 / 0.45

ZARA1 0.24 / 0.41 0.32 / 0.64 0.33 / 0.52 0.35 / 0.70 0.34 / 0.53 0.29 / 0.53 0.34 / 0.59 0.23 / 0.43 0.29 / 0.47 0.45 / 0.94 0.21 / 0.37
ZARA2 0.18 / 0.32 0.28 / 0.58 0.29 / 0.48 0.27 / 0.56 0.32 / 0.49 0.25 / 0.45 0.32 / 0.45 0.19 / 0.36 0.25 / 0.41 0.36 / 0.77 0.17 / 0.29

AVG 0.31 / 0.52 0.40 / 0.77 0.44 / 0.76 0.38 / 0.73 0.43 / 0.66 0.37 / 0.65 0.43 / 0.63 0.32 / 0.59 0.34 / 0.58 0.43 / 0.88 0.24 / 0.38

Table 1: Comparison of our Graph-TERN with other state-of-the-art methods on ETH/UCY dataset (ADE/FDE, Unit: meter).
The evaluation results are directly referred from (Shi et al. 2021a; Liu, Yan, and Alahi 2021; Chen et al. 2021a; Liang et al. 2021).
The mark † means that the common data-loader in (Gupta et al. 2018) are used. Bold: Best, Underline: Second best.

Finally, the loss function Θ of the entire network is defined
as a weighted sum of the control point loss and the refinement
loss: Θ = Θw + λΘr, where λ is a scale factor between the
control point prediction error and the trajectory refinement
error, and is empirically set to λ = 1

Training Procedure. Our end-to-end network consists of
one multi-relational GCN layer followed by eight CNN layers.
DropEdge (Rong et al. 2020) with 0.8 rate is used for the
GCN layer, and PReLU activation is used for all layers. Data
augmentation schemes like random flip, rotation, and scaling
are performed during the training phase. We train our model
using a SGD optimizer with a batch size of 128 and learning
rate of 1e− 4 for 512 epochs, which usually takes one day
on a machine with an NVIDIA 2080Ti GPU.

4 Experiments
We conduct extensive experiments on various benchmark
datasets. For strictly fair comparison with state-of-the-art
models and our ablation study, we follow a standard eval-
uation protocol in (Gupta et al. 2018). In this experiments,
we have tried our best to obtain the best results of compet-
itive methods with the codes that are released publicly in a
common pipeline, proposed by (Gupta et al. 2018).

4.1 Datasets
We evaluate our Graph-TERN using four real-world pub-
lic datasets: ETH (Pellegrini et al. 2009), UCY (Lerner,
Chrysanthou, and Lischinski 2007), Stanford Drone Dataset
(SDD) (Robicquet et al. 2016), and Train Station dataset (Yi,
Li, and Wang 2015). In ETH and UCY datasets, there are
five different scenes (ETH, HOTEL, UNIV, ZARA1, and
ZARA2) with various complex social interactions such as
collision avoidance, group movement, and people stopping.
SDD contains 20 scenes captured by a drone of top-down
views around university environments. SDD consists of vari-
ous objects exhibiting non-linear behaviors such as turning

Figure 5: Visualization of prediction results. We compare
Graph-TERN, SGCN and PECNet, whose results are repro-
duced with the pre-trained network. To aid visualization,
trajectories with the best ADE on 20 samples are reported.

around and people stopping. The most crowded Train Sta-
tion dataset contains up to 332 people simultaneously, and
there are 10 entry/exit areas without any location information
about them. We follow the standard evaluation strategy as
used in (Alahi et al. 2016; Gupta et al. 2018; Kosaraju et al.
2019; Mohamed et al. 2020; Mangalam et al. 2020).

Evaluation Metrics. Following the standard evaluation
strategy (Alahi et al. 2016; Gupta et al. 2018), all datasets are
downsampled to 2.5 fps. The observation frames are Tobs=8
(3.2s) and the prediction frames are Tpred−Tobs=12 (4.8s).
In our evaluations, we use common quantitative measures
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Model DESIRE Social-GAN STGAT SoPhie Social-STGCNN EvolveGraph P2TIRL Trajectron++ PECNet
Year 2017 2018 2019 2019 2020 2020 2020 2020 2020

Samples 5 20 20 20 5 20 20 20 5 20
ADE 19.25 27.23 18.80 16.27 20.60 13.90 12.58 11.40 12.79 9.96
FDE 34.05 41.44 31.30 29.38 33.10 22.90 22.07 20.12 25.98 15.88

Model SimAug MG-GAN DMRGCN SGCN LBEBM Graph-TERN
Year 2020 2021 2021 2021 2021 -

Samples 20 20 5 20 5 20 5 20 5 20
ADE 10.27 13.60 17.57 14.31 14.62 11.67 13.58 9.03 12.35 8.43
FDE 19.71 25.80 32.24 24.78 26.17 19.10 26.57 15.97 23.32 14.26

Table 2: Comparison of our Graph-TERN with other state-of-the-art methods on SDD (Unit: pixel). We report evaluation results
for both L = 5 and L = 20. The evaluation results are directly referred from (Mangalam et al. 2020; Li et al. 2020; Dendorfer,
Elflein, and Leal-Taixé 2021; Shi et al. 2021a). Bold: Best, Underline: Second best.

Model Social-GAN STGAT PECNet Trajectron++
Year 2018 2019 2020 2020

ADE (meter) 0.39 0.40 0.46 0.33
ADE (pixel) 15.82 15.60 16.58 12.75
FDE (meter) 0.80 0.83 0.76 0.73
FDE (pixel) 32.50 31.90 28.38 24.23

Model Social-STGCNN DMRGCN SGCN Graph-TERN
Year 2020 2021 2021 -

ADE (meter) 0.37 0.37 0.30 0.27
ADE (pixel) 14.03 12.70 11.20 9.52
FDE (meter) 0.60 0.65 0.54 0.46
FDE (pixel) 22.87 21.01 20.66 16.91

Table 3: Comparison of our Graph-TERN with other state-of-
the-art methods on Train Station dataset (Unit: meter, pixel).
Evaluation results are reproduced with authors’ provided
source codes. Bold: Best, Underline: Second best.

to determine the accuracy of the pedestrian trajectory, the
average displacement error metric (ADE), and the final dis-
placement error metric (FDE). We select the best prediction
from among L=20 samples, following prior works.

4.2 Comparison with State-of-the-Art
We compare our Graph-TERN with the following state-of-
the-art methods: Social-LSTM (Alahi et al. 2016), Social-
GAN (Gupta et al. 2018), SR-LSTM (Zhang et al. 2019),
STGAT (Huang et al. 2019), IDL (Li 2019), RSBG (Sun,
Jiang, and Lu 2020), STAR (Yu et al. 2020), Reciprocal Learn-
ing (Sun, Zhao, and He 2020), Social-STGCNN (Mohamed
et al. 2020), PECNet (Mangalam et al. 2020), Trajec-
tron++ (Salzmann et al. 2020), Causal (Chen et al. 2021a),
NCE (Liu, Yan, and Alahi 2021), TPNMS (Liang et al.
2021), SGCN (Shi et al. 2021a), S-DPF (Shi et al. 2021b),
LBEBM (Pang et al. 2021), DMRGCN (Bae and Jeon 2021),
STT (Monti et al. 2022), DESIRE (Lee et al. 2017), So-
Phie (Sadeghian et al. 2019), EvolveGraph (Li et al. 2020),
P2TIRL (Deo and Trivedi 2020), SimAug (Liang, Jiang, and
Hauptmann 2020), and MG-GAN (Dendorfer, Elflein, and
Leal-Taixé 2021).

The results on the ETH/UCY dataset are reported in Ta-
ble 1, whose examples are displayed in Figure 5. Our Graph-
TERN achieves the best ADE and FDE for all scenes. In-

Figure 6: Visualization of multi-modal predictions with
L = 20 samples on SDD. Our Graph-TERN predicts vari-
ous plausible trajectories such as turning left, crossing the
road, and collision avoidance.

Figure 7: (a) An example of Train Station dataset. (b), (c) and
(d) Enlarged images from (a) to visualize prediction results
with the best ADE of 20 samples. We compare our Graph-
TERN with the second-best and the third-best methods in the
experiment on ETH/UCY dataset: PECNet and SGCN.

terestingly, the performance gaps between Graph-TERN
and the second best work are notable on ETH(∼ 37%),
HOTEL(∼24%) and UNIV(∼16%). In ETH and HOTEL,
there are many people who abruptly stop walking. Graph-
TERN handles this case well by learning the probability of
people stopping in the control point prediction as shown
in Figure 3(b). For UNIV set with very crowded scenes, our
multi-relational GCN synergizes well with the initial trajec-
tory prediction and the refinement module by considering
complex social relations. This infers accurate multimodal and
stop-and-go predictions based on the well-estimated group
movements in Figure 5.

In Table 2, our Graph-TERN also shows the best perfor-
mance overall among all the comparison methods on SDD,
whose examples are displayed in Figure 6. The performance
gap between Graph-TERN and the second best method is
large for L=5, indicating that Graph-TERN provides more
accurate goal-directed paths with fewer samples. Remarkably,

6161



K
ETH & UCY SDD

(meter)
Train

StationETH HOTEL UNIV ZARA1ZARA2 AVG
1 0.83 0.32 0.50 0.46 0.41 0.503 0.776 0.481
2 0.77 0.25 0.50 0.43 0.39 0.468 0.771 0.471
3 0.71 0.23 0.51 0.39 0.33 0.433 0.771 0.462
4 0.71 0.25 0.52 0.45 0.39 0.464 0.805 0.508
6 0.83 0.25 0.56 0.45 0.40 0.500 0.826 0.570
12 0.94 0.25 0.64 0.53 0.45 0.561 0.875 0.626

Table 4: Ablation study on the number of control points in
FDE. Bold: Best, Underline: Second best.

A Set of Control Points
Prediction (FDE)

Initial Trajectory
Refinement (ADE)

ETH &
UCY

SSD
(meter)

Train
Station

ETH &
UCY

SSD
(meter)

Train
Station

w/o GCN 0.472 0.834 0.553 0.276 0.477 0.284
GCN 0.476 0.795 0.522 0.275 0.443 0.274

w/o inv. 0.463 0.787 0.517 0.270 0.442 0.274
MRGCN 0.433 0.771 0.462 0.255 0.433 0.265

w/ Pruning 0.385 0.701 0.462 0.240 0.414 0.265

Table 5: Ablation study on the effectiveness of a MRGCN
and GMM pruning. The initial trajectory refinement results
are based on those of MRGCN in a set of control points
prediction. Bold: Best, Underline: Second best.

Figure 6(a) includes a result that predicts all possible direc-
tions at the intersection, but in Figure 6(b,c), the path is not
predicted where a collision is expected. This means that our
set of control points successfully performs the disconnected
traversable manifold prediction task using intermediate social
interactions, compared to existing endpoint methodologies.

In Table 3, there is a significant performance gap between
our Graph-TERN and others for the Train Station dataset.
Interestingly, our control points-conditioned method captures
the crowd interaction streaming to the exits in Figure 7. In
contrast, the state-of-the-art methods have difficulty model-
ing, with no intermediate relation aggregation at the endpoint
prediction.

4.3 Ablation Study
We conduct extensive ablation studies of all benchmark
scenes in the metric system to examine the scene-agnostic
effectiveness of each component of our Graph-TERN.

Number of Control Points. We examine our Graph-TERN
performance with respect to the number of sections K. Ta-
ble 4 shows that the averaged FDE is minimal around K= 3
and K= 4. We note that when using K= 3 and K= 4, we
observe that Graph-TERN models a case of pedestrians who
suddenly stop walking with a probabilistic distribution, espe-
cially in the ETH set. This leads to a moderate performance
improvement. Because Graph-TERN with K= 4 shows the
best performance with only ETH, we set to K= 3.

Social Interactions. We demonstrate the effectiveness of
a multi-relational GCN. We compare three cases: without a
GCN, with a single relational GCN (Mohamed et al. 2020)
and with a multi-relational GCN, whose results are reported

ETH & UCY SDD
(meter)

Train
StationETH HOTEL UNIV ZARA1ZARA2 AVG

Dir 0.48 0.26 0.30 0.26 0.23 0.306 0.462 0.272
Con 0.60 0.21 0.38 0.29 0.26 0.348 0.493 0.297
Lin 0.42 0.14 0.26 0.21 0.17 0.240 0.414 0.265

w/o GE 0.45 0.14 0.26 0.21 0.17 0.246 0.426 0.266

Table 6: Ablation study on initialization methods for the
refinement module. Dir, Con, Lin, and GE denote a direct
inference of intermediate points without any refinement, a
connection between control points, a connection between a
last observed frame and a predicted endpoint, and a guided
endpoint sampling, respectively. ADE results are reported.
Bold: Best, Underline: Second best.

in Table 5. We apply the multi-relational GCN to a set of con-
trol points prediction and trajectory refinement. As expected,
capturing complex social relations with the multi-relational
GCN provides better performances in FDE for control point
predictions and ADE for refinement. One interesting find-
ing is that adding inverse terms to the multi-relational GCN
achieves the best prediction results. Since different chan-
nels in the multi-relational GCN have independent spatial
aggregation kernels, various types of spatial aggregations
are available when the number of relations is increased by
the inverse terms. Additionally, the GMM pruning is also
helpful for accurate destination prediction by preventing out-
of-distribution samples.

Initial Trajectory. As discussed in Section 3.4, the tra-
jectory refinement requires an initialization step. This can
be provided in the form of an initial trajectory. The initial
trajectories are obtained from (1) connections between con-
trol points and the predicted endpoint and (2) a connection
between the last observed frame and a predicted endpoint.
We report the evaluation results according to these initializa-
tions as well as the direct inference of intermediate points.
Table 6 shows that the connection between the last observed
frame and a predicted endpoint provides the best initializa-
tion. In other words, Graph-TERN appears to learn best when
it finds the relationships between graph nodes starting with an
unbiased initialization. In contrast, the connection between
control points and a predicted endpoint acts as a hard con-
straint in our refinement modules. Additionally, the guided
endpoints sampling increases the robustness of the trajectory
refinement module with the slight performance gain.

5 Conclusion
We present a set of control points prediction and a refine-
ment network for pedestrian trajectory prediction. The con-
trol point prediction allows the accurate computation of the
final destinations of pedestrians and the refinement provides
a socially acceptable trajectory. By incorporating a multi-
relational GCN, our model achieves state-of-the-art results
by modeling complex social interactions in real-world scenes.

Directions exist for improving Graph-TERN. One is to
integrate scene semantics into the graph nodes of our multi-
relational GCN. Another direction is to employ contextual
geometry knowledge in the control point prediction.
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