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Abstract

We study the problem of training a Reinforcement Learning
(RL) agent that is collaborative with humans without using
human data. Although such agents can be obtained through
self-play training, they can suffer significantly from the dis-
tributional shift when paired with unencountered partners,
such as humans. In this paper, we propose Maximum En-
tropy Population-based training (MEP) to mitigate such dis-
tributional shift. In MEP, agents in the population are trained
with our derived Population Entropy bonus to promote the
pairwise diversity between agents and the individual diversity
of agents themselves. After obtaining this diversified popula-
tion, a common best agent is trained by paring with agents in
this population via prioritized sampling, where the prioritiza-
tion is dynamically adjusted based on the training progress.
We demonstrate the effectiveness of our method MEP, with
comparison to Self-Play PPO (SP), Population-Based Train-
ing (PBT), Trajectory Diversity (TrajeDi), and Fictitious Co-
Play (FCP) in both matrix game and Overcooked game en-
vironments, with partners being human proxy models and
real humans. A supplementary video showing experimental
results is available at https://youtu.be/Xh-FKD0AAKE.

Introduction
Deep Reinforcement Learning (RL) has gained many suc-
cesses against humans in competitive games, such as
Go (Silver et al. 2017), Dota (OpenAI 2019), and Star-
Craft (Vinyals et al. 2019). However, it remains a challenge
to build AI agents that can coordinate and collaborate with
humans that the agents have not encountered during train-
ing (Kleiman-Weiner et al. 2016; Lerer and Peysakhovich
2017; Carroll et al. 2019; Shum et al. 2019; Hu et al. 2020;
Knott et al. 2021). This challenging problem, namely zero-
shot human-AI coordination, is particularly important for
real-world applications, such as cooperative games (Carroll
et al. 2019), communicative agents (Foerster et al. 2016),
self-driving vehicles (Resnick et al. 2018), and assistant
robots (Akkaya et al. 2019), because it removes the oner-
ous and expensive step of involving human or human data
in AI training. Thus, studying this problem could potentially
make our ultimate goal of building AI systems that can as-
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sist humans and augment our capabilities (Engelbart 1962;
Carter and Nielsen 2017) more achievable.

An efficient scheme for training AI agents in collaborative
or competitive settings is through self-play reinforcement
learning (Tesauro 1994; Silver et al. 2017). Due to its train-
ing paradigm, self-play-trained agents are very specialized
since they only encounter their own policies during training
and assume their partners will behave in a particular way.
Therefore, those agents can suffer significantly from distri-
butional shift when paired with humans. For example, in the
Overcooked game, the self-play-trained agents only use a
specific pot and ignore the other pots while humans use all
pots. As a consequence, the AI agent ends up waiting unpro-
ductively for the human to deliver a soup from the specific
pot, even though the human has instead decided to fill up the
other pots (Carroll et al. 2019).

In this paper, we propose a robust and efficient approach
Maximum Entropy Population-based training (MEP), to
train agents for zero-shot human-AI coordination based on
the advances in maximum entropy RL (Haarnoja et al.
2018b), diversity (Eysenbach et al. 2019), and Multi-agent
RL (Lowe et al. 2017; Foerster et al. 2018). To encourage
the diversity and explorability of policies of the individual
agent in the population, we utilize the maximum entropy ob-
jectives (Ziebart et al. 2008; Toussaint 2009; Ziebart 2010;
Rawlik, Toussaint, and Vijayakumar 2013; Fox, Pakman,
and Tishby 2015; Haarnoja et al. 2017, 2018b; Zhao, Sun,
and Tresp 2019) for the individual policies. To acquire di-
verse and distinguishable behaviors (Eysenbach et al. 2019)
between agents in the population, we further utilize the av-
erage Kullback–Leibler (KL) divergence between all agent
pairs in the population to promote pairwise diversity. We
define this combination of individual diversity and pairwise
diversity as Population Diversity (PD) and derive a safe and
computationally efficient surrogate objective Population En-
tropy (PE), which is the lower bound of the original PD ob-
jective with linear runtime complexity. Analogous to max-
imum entropy RL training, each agent in the population is
rewarded to maximize the centralized population entropy.
With this diverse population, we train a best response agent
by pairing it with the agents sampled from this population
with a prioritization scheme based on the difficulty to collab-
orate with (Schaul et al. 2016; Vinyals et al. 2019; Han et al.
2020). By doing so, this newly trained AI agent encounters
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a diverse set of strategies and could have better generaliza-
tion (Pan and Yang 2009; Tobin et al. 2017; Akkaya et al.
2019).

The contributions of this paper are three-fold. First, based
on the novel population diversity objective that considers
both individual diversity and pairwise diversity for agents
in the population, we derive a safe and computationally ef-
ficient surrogate objective, the population entropy, which is
the lower bound of the population diversity objective. Sec-
ondly, we propose the maximum entropy population-based
training framework, which comprises training a diverse pop-
ulation and then training a robust AI agent using this popu-
lation. Last but not least, we evaluate our method and other
state-of-the-art methods on the Overcooked game environ-
ment (Ghost Town Games 2016), with both human proxy
models and real humans.

Preliminaries
Markov Decision Process: A two-player Markov De-
cision Process (MDP) is defined by a tuple M =
〈S, {A(i)},P, γ, R〉 (Boutilier 1996), where S is a set of
states; A(i) is a set of the i-th agent’s actions, where i ∈
[1, 2]; P is the transition dynamics that maps the current
state and all agents’ actions to the next state; γ is the dis-
count factor; R is the reward function. The i-th agent’s pol-
icy is π(i). A trajectory is denoted by τ . The shared ob-
jective is to maximize the expected sum rewards, which is
Eτ [

∑
tR(st, at)], where at = (a

(1)
t , a

(2)
t ). We can extend

the objective to infinite horizon problems by the discount
factor γ to ensure that the sum of expected rewards is finite.
In the perspective of a single agent, the other agent can be
treated as a part of the environment. In this case, we can re-
duce the process to the partially observable MDP (POMDP)
for that agent.

AI Agent, Population, and Human: In the case of
human-AI coordination, we have a two-player MDP, in
which one player is human, and the other is AI. Throughout
this paper, we use the phrase AI agent to explicitly denote
the agent that plays the AI role in human-AI coordination.
The population of agents is used to train the AI agent to
make it capable of cooperating with different partner agents.
The human policy is represented as π(H) and a model of the
human policy is π̂(H). The AI agent is denoted as π(A).

Environment: We use the Overcooked environment (Car-
roll et al. 2019) as the human-AI coordination testbed, see
Figure 2. In the Overcooked game, it naturally requires co-
ordination and collaboration between the two players to have
a high score. The players are tasked to cook soups.

Maximum Entropy RL: Standard reinforcement
learning maximizes the expected sum of rewards
Eτ [

∑
tR(st, at)], At the beginning of learning, al-

most all actions have equal probability. After some training,
some actions have a higher probability in the direction
of accumulating more rewards. Subsequently, the entropy
of the policy is reduced over time during training (Mnih
et al. 2016). while maximum entropy RL augments the
standard RL objective with the expected entropy of the pol-
icy (Ziebart 2010; Haarnoja et al. 2018b), which incentives

the agent to select the non-dominate actions. The maximum
entropy RL objective is defined as:

J(π) =
∑
t

E(st,at)∼π [R(st, at) + αH(π( · |st))] , (1)

where parameter α adjusts the relative importance of the
entropy bonus against the reward. The maximum entropy
RL objective has several advantages. First, the policy favors
more exploration and mitigates the issue of early conver-
gence (Haarnoja et al. 2017; Schulman, Chen, and Abbeel
2017). Secondly, the policy can capture multiple modes of
near-optimal behaviors and has better robustness (Haarnoja
et al. 2018a, 2019).

Method
In this section, we first define the Population Diversity
objective, which includes average individual policy en-
tropy and average pairwise difference among policies. Sec-
ondly, we derive its safe and computationally efficient
lower bound, Population Entropy, as the surrogate objec-
tive for optimization. Thirdly, we illustrate the Maximum
Entropy Population-based training framework, which com-
prises training a maximum entropy population and training
a robust AI agent via prioritized sampling.

Population Diversity
Motivated by maximum entropy RL, we want to make the
policies in the population exploratory and diverse. First, by
utilizing the maximum entropy bonus, we encourage each
policy itself to be exploratory and multi-modal. Secondly, to
encourage the policies {π(1), π(2), ..., π(n)} in the popula-
tion to be complementary and mutually different, we utilize
the KL divergence of each policy pair in the population as
part of our objective. Formally, we define the Population Di-
versity (PD) as a combination of the average entropy of each
agent’s policy and the average KL-divergence between each
agent pair in the population. Mathematically,

PD({π(1), π(2), ..., π(n)}, st) :=
1

n

n∑
i=1

H(π(i)( · |st)) (2)

+
1

n2

n∑
i=1

n∑
j=1

DKL(π(i)( · |st), π(j)( · |st)),

where KL-divergence (DKL) and entropy (H) are defined as
follows:
DKL(π(i)( · |st), π(j)( · |st)) = (3)∑

a∈A
π(i)(at|st) log

π(i)(at|st)
π(j)(at|st)

, (4)

H(π(i)( · |st)) = −
∑
a∈A

π(i)(at|st) log π(i)(at|st). (5)

Although the PD objective not only captures a single agent’s
explorability but also encourages agents’ policies to be mu-
tually distinct, evaluating this objective requires a quadratic
runtime complexity of O(n2), where n is the population
size. Besides, as the KL-divergence is unbounded, optimiz-
ing this objective as part of the reward function may lead to
convergence issues.

6146



POPULATION

Sample an agent  
from the population

Update policy to maximize 
the task and entropy reward

AGENT POP. ENTROPY

Evaluate each policy 
in the population 

Figure 1: Maximum Entropy Population: We train each
agent in the population to maximize its task reward as well
as the population entropy reward to attain a maximum en-
tropy population.

Population Entropy
To improve the stability and the runtime complexity of the
PD objective, we derive a bounded and efficient surrogate
objective Population Entropy (PE) for optimization, which is
defined as the entropy of the mean policies of the population.
Mathematically,

PE({π(1), π(2), ..., π(n)}, st) := H(π̄( · |st)), (6)

where π̄(at|st) :=
1

n

n∑
i=1

π(i)(at|st).

PE serves as a lower bound of the PD objective.
Theorem 1. Let the population diversity be defined as
Equation (2). Let the population entropy be defined as Equa-
tion (6). Then, we have

PD({π(1), π(2), ..., π(n)}, st) (7)

≥ PE({π(1), π(2), ..., π(n)}, st), (8)

where n is the population size. Proof. See Appendix A. �
The PE objective serves as a lower bound for the PD

objective, which requires only a linear runtime complexity
O(n). Moreover, when defined on categorical distribution,
the PE objective is bounded, which makes it desirable to be
optimized as part of the reward function. Therefore, we use
the derived PE objective for optimization.

Training a Maximum Entropy Population
With the PE objective, we can train a population of agents,
which can cooperate well with each other with mutually
distinct strategies. Therefore, similar to the objective in
maximum-entropy RL, we define the objective for MEP
training as follows:

J(π̄) =
∑
t

E(st,at)∼π̄ [R(st, at) + αH(π̄( · |st))] , (9)

where π̄ is the mean policy of the population and α deter-
mines the relative weight of the population entropy term
with respect to the task reward. As π̄(at|st) can be writ-
ten as 1

n

∑n
i=1 π

(i)(at|st), to optimize Equation (9), we can

uniformly sample agents from the population to maximize
the augmented reward function R(st, at) − α log π̄(at|st).
The task reward is related to the agent and its partner agent,
which is a copied version of itself playing the partner role
in our case. When the centralized PE reward is calculated, it
considers all the agents in the population. We summarize the
method of training a maximum entropy population in Algo-
rithm 1 and Figure 1.

Algorithm 1: Maximum Entropy Population
while not converged do

Sample agent from population:
π(i) ∼ {π(1), π(2), ..., π(n)}

for t← 1 to steps per episode do
Sample action at ∼ π(i)(at|st).
Step environment st+1 ∼ p(st+1 | st, at).
Calculate the population entropy reward and
combine it with the task reward:
r = r(st, at)− α log(π̄(at|st))
Update policy π(i) to maximize Eτ [r].

After having the maximum entropy population, we utilize
this diverse set of agents to train a robust AI agent that can
be readily paired with any player, including real human. The
intuition behind MEP is that the AI agent should be more ro-
bust when paired with a group of diversified partners during
training than trained only via only self-play. In the extreme
case, when the AI agent can coordinate well with an infinite
set of different partners, it can also collaborate well with the
human players. In a more realistic sense, the more diverse
the population is, the more likely the population covers most
of the human behaviors in the training set. Subsequently, the
final AI agent should be less “panicked” when facing “ab-
normal” human actions.

Training a Robust Agent via Prioritized Sampling
With the maximum entropy population, training this robust
agent is still non-trivial. If we train the robust agent (A) by
pairing it with i-th agent uniformly sampled from the popu-
lation, the resulting policy gradient is:

1

n

n∑
i=1

Eτ

[∑
t

∇θ log π
(A)
θ (a

(A)
t |st)

∑
t

R(st, a
(A)
t , a

(i)
t )

]
,

where n is the population size. This ”maximize average”
paradigm may lead to an agent (A) that exploits the easy-
to-collaborate partners as pairing with them will inevitably
lead to much higher return, and therefore, ignores the hard-
to-collaborate partners, which is orthogonal to our intention
of training an robust agent. However, motivated by Vinyals
et al. (Vinyals et al. 2019), we can mitigate this issue by
skewing the sampling distribution as follows:

p(π(i)) ∝ 1/Eτ

[∑
t

R(st, a
(A)
t , a

(i)
t )

]
,

We assign a higher priority to the agents that are rela-
tively hard to collaborate with. By doing so, we change the
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Figure 2: Overcooked environment: From left to right, the layouts are Cramped Room, Asymmetric Advantages, Coordination
Ring, Forced Coordination, and Counter Circuit.

”maximize average” paradigm to a smooth approximation
of ”maximize minimal” paradigm to mitigate the issue of
over exploitation of easy-to-collaborate partners. In the ex-
treme case, at each optimization step, if we always choose
the hardest agent in the population to train the AI agent, we
optimize a performance lower bound of the cooperation be-
tween the AI agent and any agent in the population. Mathe-
matically,

π(A) = arg max min
i∈{1,...,n}

J(π(A), π(i)), (10)

where J(π(A), π(i)) denotes the expected return achieved by
π(A) and π(i) collaborating with each other. For more de-
tail on the performance lower bound, Equation (10), see Ap-
pendixi B. We derive the performance connection between
two pairs of agents, (π(A), π(i)) and (π(A), π(j)), when the
partner agent π(i) in the first pair is ε-close to the other part-
ner agent π(j) in the second pair, see Appendix C. If the
population we used for training is diverse and representative
enough such that we can find an agent that is ε-close to the
human player’s policy, then we have a performance lower
bound of human-AI coordination.

In practice, we follow the rank-based approach as pro-
posed by Schaul et al. (Schaul et al. 2016) in consideration
for stability. The probability of the i-th agent to be sampled
is:

p(π(i)) =
rank

(
1/Eτ

[∑
tR(st, a

(A)
t , a

(i)
t )
])β

∑n
j=1 rank

(
1/Eτ

[∑
tR(st, a

(A)
t , a

(j)
t )
])β ,

where rank(·) is the ranking function ranging from 1 to n
and β is a hyper-parameter for adjusting the strength of the
prioritization.

Experiments
Environment: To evaluate the proposed method, we first
use a toy environment, the matrix game (Lupu et al.
2021), see Figure 3, and then use the Overcooked environ-
ment (Carroll et al. 2019), see Figure 2. The Overcooked
game naturally requires human-AI coordination to achieve a
high score. The players are tasked to cook the onion soups as
fast as possible. The relevant objects are onions, plates, and
soups. Players are required to place three onions in a pot,
cook them for 20 timesteps, put the cooked soup on a plate,
and serve the soup. Afterward, the players receive a reward
of 20. The six actions are up, down, left, right, no-operation,

and interact. There are five different layouts, see Figure 2,
and each exhibits a unique challenge.

Experiments: First, we train the population using the
PE bonus and investigate the effect of the entropy weight
α. Secondly, we use the learned maximum entropy pop-
ulation to train the AI agent with the learning progress-
based prioritized sampling and report the performance. In
the ablation study, we show the effectiveness of both pop-
ulation entropy and prioritized sampling. We also show the
comparison between MEP and Maximum Population Diver-
sity (MPD), which maximizes the population diversity ob-
jective, see Section . We compare our method with other
methods, including Self-Play (SP) Proximal Policy Opti-
mization (Schulman et al. 2017; Carroll et al. 2019), Pop-
ulation Based Training (PBT) (Jaderberg et al. 2017; Car-
roll et al. 2019), Trajectory Diversity (TrajeDi) (Lupu et al.
2021), Fictitious Co-Play (FCP) (Strouse et al. 2021), and
MPD. To evaluate these methods, we use the protocol pro-
posed by Carroll et al. (Carroll et al. 2019), in which a hu-
man proxy model, HProxy , is used for evaluation. The hu-
man proxy model is trained through behavior cloning (Bain
and Sammut 1999) on the collected human data. Further-
more, we conduct a user study using Amazon Mechani-
cal Turk (AMT), in which we deploy our models through
web interfaces and let real human players play with the AI
agents. The experimental details are shown in Appendix
D. Our code is available at https://github.com/ruizhaogit/
maximum entropy population based training.

Question 1. How does MEP perform in toy environments?
In the single-step collaborative matrix game (Lupu et al.

2021), player 1 must select a row while player 2 chooses a
column independently. Both agents get the reward associ-
ated with the intersection of their choices at the end of the
game. We use the same evaluation protocol as proposed by
Lupu et al. (Lupu et al. 2021). As shown in Figure 3, MEP
converges faster than TrajeDi in both self-play return and
cross-play return. An extensive hyper-parameter search for
TrajeDi can be found in the figure of Appendix E.

Question 2. Does PE reward increase the entropy of the
population?

To check whether the PE reward increases the entropy of
the population, we investigate the effect of different values
of α and record the entropy of the population that corre-
sponds to the best reward during training in Table 1. As
shown in Table 1, the population entropy with α > 0 is gen-
erally greater than that with α = 0 and the overall trend is
the population entropy increases as α gets larger. This em-
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Figure 3: Performance comparison: Training and test performances in the matrix game. Shown are the results for Best Responses
(BRs) to MEP agents, BRs to TrajeDi populations, BRs to baseline populations, and individual agents.

α Cramped Rm. Asymm. Adv. Coord. Ring Forced Coord. Counter Circ.

0.000 0.971 1.120 0.878 0.970 0.988
0.001 1.031 1.051 0.907 0.858 1.152
0.005 0.949 1.075 0.901 0.889 1.038
0.010 1.057 1.139 0.840 1.079 1.151
0.020 1.029 1.074 0.947 1.093 1.171
0.030 1.134 1.203 1.028 0.957 1.715
0.040 1.194 1.353 1.122 1.460 1.791
0.050 1.127 1.364 0.996 1.703 1.791

Table 1: Population entropy with different α: In this table, α denotes the weight of the PE reward in Equation (9).

pirical finding verifies that PE reward effectively increases
the entropy of the population.

Question 3. What does an MEP population look like?
To have an intuition of what a maximum entropy pop-

ulation looks like, we show the behavior of the agents in
the supplementary video from 0:01 to 0:21. This video clip
presents the population trained without and with the PE re-
ward in the first and second row, respectively. In the first
row, the blue and green agents move in a synchronized way
most of the time, and the routines among the five agent pairs
are similar. However, in the second row of the video clip,
the agents’ behavior trained with population entropy reward
is more diverse. The movements of the blue agent and the
green agent are less synchronized, and their routines are less
predictable. For example, in the second agent pair, the blue
agent throws the onion into a random spot or passes the first
and second plates in a row, and in the fifth agent pair, the
green agent behaves in a highly unexpected way.

Question 4. How does MEP compare to other methods?
We pair each agent trained with SP, PBT, TrajeDi, FCP,

MPD, and MEP, with the human proxy model HProxy , and
evaluate the team performance in all the five layouts, as
shown in Figure 2. Following the evaluation protocol pro-
posed by Carroll et al. (Carroll et al. 2019), we use the
cumulative rewards over a horizon of 400 timesteps as the
proxy for coordination ability since good coordination be-
tween teammates is essential to achieve high scores in the
Overcooked game. For all the results, we report the average

reward per episode and the standard error across five dif-
ferent random seeds. As shown in Figure 4a, MEP outper-
forms other methods in all five layouts when paired with a
human proxy model. Additionally, according to the ablation
test shown in Figure 4b, both the population entropy reward
and the prioritized sampling are necessary components for
achieving the best performance.

We did a hyper-parameter search for TrajeDi on the dis-
counting factor γ, see the figure in Appendix E, and report
the best results, which use γ as 1.0 in Figure 4a. We also did
a hyper-parameter search for FCP on the population size.
By default, for TrajeDi, MPD, and MEP, we use a popu-
lation size of 5. However, we use a population size of 10
for FCP in Figure 4a. The performance comparison between
FCP with population size of 5 and 10 is shown in the figure
in Appendix E. As the results show, a larger population size
indeed improves the performance. However, MEP outper-
forms FCP with only half the population size, see Figure 4a.

Question 5. How does MEP perform with real humans?
For this human-AI coordination test, we use Amazon Me-

chanical Turk (AMT) and follow the same evaluation pro-
cedure proposed by Carroll et al. (Carroll et al. 2019). We
evaluate TrajeDi, FCP, and MEP-trained AI agents and mea-
sure their average episode reward when the agents are paired
with a real human player. We reuse the testing results of SP
and PBT from the human-AI evaluation on AMT carried out
by Carroll et al. (Carroll et al. 2019). These testing results
are compatible because the evaluation procedure is the same
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(b) Ablation tests

Figure 4: Performance comparison and ablation test: Average episode rewards over 400 timestep (1 min) trajectories for dif-
ferent methods, with standard error over 5 different random seeds, paired with the proxy human HProxy . Figure (a) shows the
performance comparison among MEP and other methods including SP, PBT, TrajeDi, FCP, and MPD. Figure (b) shows the
ablation tests, where we use MEPα=0 to denote MEP without PE reward and use MEPβ=0 to denote MEP without prioritized
sampling. For more detailed experimental results, please refer to the figures in Appendix E.

and uses a between-subjects design, meaning each user is
only paired with a single AI agent. The results are presented
in Figure 5. The chart in Figure 5 shows that, on average,
across all five layouts, MEP outperforms other methods, in-
cluding SP, PBT, FCP, and TrajeDi, and its performance is
on par with the Human-Human coordination performance.

Question 6. What does AI do when paired with humans?
Here, we show and analyze some qualitative behaviors

observed during the real human-AI coordination experi-
ments, which are shown in the supplementary video from
0:22 to 2:27. From 0:24 to 0:44, we observe that in the
Forced Coordination layout, the MEP-trained agent is more
robust and less likely to get stuck during coordination than
SP and PBT. Next, from 0:44 to 1:09, in the Asymmetric
Advantage layout, the SP-trained and the PBT-trained agents
only learned to put the onion into the pot and did not learn to
deliver the onion soup, while the MEP-trained agent learned

to put the onion into the pot and learned to deliver the onion
soup when its human partner is busy. Similarly, from 1:09 to
1:29, in the Cramped Room layout, the SP-trained and PBT-
trained agents only learned to use the plate to take the soup,
whereas the MEP-trained agent additionally learned to carry
the onion to the pot. Interestingly, from 1:29 to 1:56, in the
Coordination Ring layout, the SP-trained and PBT-trained
agent only learned to deliver the onion soup in one direc-
tion, while the MEP-trained agent learned to deliver the soup
clockwise and counterclockwise, depending on where its hu-
man partner stands. Last but not least, from 2:01 to 2:26, in
the Counter Circuit layout, the SP-trained and PBT-trained
agents only learned to pass the onion over the “counter”.

Related Work
Deep reinforcement learning has gained many successes
in competitive games, such as Go (Silver et al. 2017),
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Figure 5: Performance with real humans

Dota (OpenAI 2019), Quake (Jaderberg et al. 2019), and
StarCraft (Vinyals et al. 2019), where self-play (SP) and
population-based training (PBT) have been leveraged to im-
prove performance. However, the agents trained via SP or
PBT tend to learn overly specific policies in collaborative
environments (Carroll et al. 2019). Recent works (Lerer and
Peysakhovich 2018; Tucker, Zhou, and Shah 2020; Carroll
et al. 2019; Knott et al. 2021) tackle the collaboration prob-
lem using some behavioral data from the partner to select the
equilibrium of the existing agents (Lerer and Peysakhovich
2018; Tucker, Zhou, and Shah 2020) or build and incorpo-
rate a human model into the training process (Carroll et al.
2019; Knott et al. 2021). In this work, we consider the zero-
shot setting, where no behavioral data from the human part-
ner is available during training (Hu et al. 2020).

From a Bayesian perspective, when we do not have a
prior on what the human policies look like, we should train
the AI agent to be robust and capable of collaborating with
a diverse set of policies (Murphy 2012). One popular ap-
proach towards robust AI agents is through maximum en-
tropy reinforcement learning (Ziebart et al. 2008; Ziebart
2010; Fox, Pakman, and Tishby 2015; Haarnoja et al. 2017,
2018b), and many previous works leverage it as a means
of encouraging exploration (Schulman, Chen, and Abbeel
2017; Haarnoja et al. 2018b) or skill discovering (Eysenbach
et al. 2019; Zhao et al. 2021). However, obtaining a diversi-
fied population through entropy maximization is still sub-
jective to research. In Multi-agent Reinforcement Learning
(MARL), a group of agents is trained to achieve a common
goal by Centralized Training and Decentralized Execution
(CTDE) (Lowe et al. 2017; Foerster et al. 2018).

The idea of MEP shares a common intuition with domain
randomization, where some features of the environment are
changed randomly during training to make the policy robust
to that feature (Tobin et al. 2017; Peng et al. 2018; Tan et al.
2018; Akkaya et al. 2019; Tang et al. 2020). In general, MEP
can be seen as a domain randomization technique, where the
randomization is conducted over a set of partners’ policies.

A recent related work – TrajeDi (Lupu et al. 2021) has
a similar motivation and encourages the trajectories from
different agents in the population to be distinct. TrajeDi
directly optimizes the trajectory-level Jensen-Shannon di-
vergence between policies as part of the policy loss, while

our method trains the population with reward function aug-
mented by population entropy on the action level. However,
the variance of the evaluated gradient from TrajeDi could be
unbounded due to its trajectory-level importance sampling
part, while our formulation does not have importance sam-
pling terms. Another recent work – FCP (Strouse et al. 2021)
is closely related to our work. Strouse et al. (Strouse et al.
2021) show that with diversity induced by different check-
points and different random seeds, the agent can generalize
well in collaborative games. However, in our experiments,
we find out that FCP requires a relatively large population to
work well. Compared to FCP, MEP only uses half the popu-
lation and works better.

There are also other population diversity-based meth-
ods, such as Diversity via Determinants (DvD) (Parker-
Holder et al. 2020) and Diversity-Inducing Policy Gradi-
ent (DIPG) (Masood and Doshi-Velez 2019). DvD is based
on the determinant of the kernel matrix, and DIPG is de-
rived from Maximum Mean Discrepancy (MMD). These
two methods are formulated for the single-agent setting,
whereas MEP is designed for the multi-agent cooperative
setting. In games with non-transitive dynamics where strate-
gic cycles exist, e.g., Rock-Paper-Scissors, Policy-Space Re-
sponse Oracle (PSRO)-based methods (Balduzzi et al. 2019;
Perez-Nieves et al. 2021; Liu et al. 2021) provide solu-
tions to learn diverse behaviors. In general, MEP is comple-
mentary to these previous works and is applicable to many
human-AI coordination tasks.

Conclusion
This paper introduces Maximum Entropy Population-based
training (MEP), a deep reinforcement learning method for
robust human-AI coordination. With the derived popula-
tion entropy reward encouraging diversity in policies and
the learning progress-based prioritized sampling enhancing
generalization to unencountered policies, the MEP-trained
agents demonstrate more flexibility and robustness to vari-
ous human strategies. Our result, which bridges maximum
entropy RL and PBT, suggests that entropy maximization
can be a promising avenue for achieving diversity and ro-
bustness in reinforcement learning. Combing MEP with
other MARL algorithms could be meaningful directions for
future work.
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