
Learning to Select Pivotal Samples for Meta Re-weighting

Yinjun Wu, Adam Stein, Jacob Gardner, Mayur Naik
University of Pennsylvania

wuyinjun@seas.upenn.edu, steinad@seas.upenn.edu, jacobrg@seas.upenn.edu, mhnaik@cis.upenn.edu

Abstract

Sample re-weighting strategies provide a promising mecha-
nism to deal with imperfect training data in machine learning,
such as noisily labeled or class-imbalanced data. One such
strategy involves formulating a bi-level optimization problem
called the meta re-weighting problem, whose goal is to opti-
mize performance on a small set of perfect pivotal samples,
called meta samples. Many approaches have been proposed
to efficiently solve this problem. However, all of them assume
that a perfect meta sample set is already provided while we
observe that the selections of meta sample set is performance-
critical. In this paper, we study how to learn to identify such
a meta sample set from a large, imperfect training set, that
is subsequently cleaned and used to optimize performance in
the meta re-weighting setting. We propose a learning frame-
work which reduces the meta samples selection problem to
a weighted K-means clustering problem through rigorously
theoretical analysis. We propose two clustering methods
within our learning framework, Representation-based clus-
tering method (RBC) and Gradient-based clustering method
(GBC), for balancing performance and computational effi-
ciency. Empirical studies demonstrate the performance ad-
vantage of our methods over various baseline methods.

Introduction
Recently, with the advent of the data-centric AI era (Mi-
randa 2021; Polyzotis and Zaharia 2021; Hajij et al. 2021),
there is an increasing concern about the quality of data for
training neural network models. How to construct and main-
tain a high-quality data set is extremely challenging due to
the existence of various defects in real-life data, e.g., im-
perfect labels or imbalanced distributions across classes. To
tackle these issues, various techniques have been explored.
One such example is the sample re-weighting strategy (Shu
et al. 2019; Ren et al. 2018; Hu et al. 2019; Jiang et al. 2018;
Chang, Learned-Miller, and McCallum 2017), which targets
jointly learning to obtain re-weighted training samples and
training neural nets upon them.

One promising strategy for learning to re-weight train-
ing samples is to leverage the framework of meta learning
(Hospedales et al. 2021; Andrychowicz et al. 2016; Thrun
and Pratt 2012) by formulating this problem as a bi-level

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

optimization problem (Shu et al. 2019; Ren et al. 2018;
Hu et al. 2019). In this approach, the weights of training
samples are learned so that the performance of the models
learned on the re-weighted training samples is maximized
on a small set of perfect samples—referred to as meta sam-
ples. Existing works mainly focus on designing computa-
tionally efficient algorithms for solving this bi-level opti-
mization problem. For example, (Shu et al. 2019) propose
a meta re-weighting algorithm which alternates between up-
dates to the model parameters and the sample weights. These
algorithms, however, rely on the assumption that the meta
sample set is given, and they construct this set by random
sampling in their empirical studies. However, as the toy ex-
ample in Figure 1 shows, randomly selected meta samples
may perform worse than carefully selected ones by using
our methods (62.9% vs. 87.1% on test accuracy), which we
further verify in Section “Experiments”.

In this paper, we study how to learn to identify a set of
meta samples from a large, imperfect training set such that
the meta re-weighting performance is optimized. Specifi-
cally, we propose a framework which reduces the problem
of selecting such meta samples to a weighted K-means clus-
tering problem through rigorous theoretical analysis. This
derivation basically transforms the formula for iteratively
updating sample weights from the meta re-weighting algo-
rithm into a weighted K-means clustering objective func-
tion. We can show that optimizing this objective function can
aid in effectively distinguishing high-quality training sam-
ples from low-quality ones by giving them more confident
sample weights (i.e. weights close to 0 or 1). This objec-
tive function, however, requires the gradients of each indi-
vidual training sample as input, which is computationally
expensive. To facilitate efficient evaluation of this objec-
tive function, we propose two methods, i.e. Representation-
based clustering method (RBC) and Gradient-based cluster-
ing method (GBC), which balance performance with com-
putational efficiency. Specifically, by assuming that the gra-
dients of the bottom layers of the neural nets are insignifi-
cant, RBC only utilizes the gradient of the last layer, which
is efficiently calculated through feed-forward passes. In con-
trast, GBC samples model parameters such that the estima-
tion of the objective function in the above K-means problem
is unbiased. Due to the necessity of explicitly (but partially)
computing sample-wise gradients, GBC is slower than RBC,

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

6128

RBC (73.3% Acc.) GBC (92.0% Acc.) Random (56.3% Acc.)

Figure 1: We produce a toy two-dimensional dataset by drawing 1000 samples from a mixture of four Gaussian distributions
over two variables where the distributions are centered at the four vertices of the 2-dimensional hypercube. The upper two
distributions are labeled green while the lower two are labeled red and 1% of the labels are flipped to introduce a small amount
of noise to the ground truth. We visualize all the samples with their ground-truth labels in this figure. This toy dataset is then
divided into 600 training, 240 testing, and 160 validation samples using a random partition, and a randomly selected 60% of the
training labels are flipped. To learn a robust model (which is a neural network with two hidden layers in this example) on this
noisy training set, we employ the meta-reweighting algorithm with 6 cleaned meta samples. We then show the selected meta
samples (outlined with stars) and the learned decision boundaries (shaded regions) from our methods and the random selection
method. The expected classifier, i.e., the learned classifier (black dotted line) on the “clean” training set is also visualized. By
examining the learned classifier from these methods, we see that the one learned by random selections deviates farther from the
expected classifier, thus leading to worse prediction performance than our methods (56.3% vs. 92.0%).

but can lead to better model performance in most cases.
We further explore whether our methods select reason-

able meta samples for re-weighting noisily labeled data and
class-imbalanced data by conducting experiments on re-
weighting MNIST, CIFAR, and Imagenet-10 datasets in the
presence of noisy labels or imbalanced class distribution.
The results show that with the same meta re-weighting algo-
rithm, our methods outperform other sample selection strate-
gies in most cases.

Related Work
Sample re-weighting The problem of re-weighting train-
ing samples for a neural network model has been exten-
sively studied in the literature. Sample re-weighting can be
beneficial for constructing robust neural network models in
the presence of many defects in training data, such as cor-
rupted labels (Han et al. 2018; Ren et al. 2018; Shu et al.
2019), biased distributions (Khan et al. 2017; Dong, Gong,
and Zhu 2017), low cardinalities (Hu et al. 2019) and adver-
sarial attacks (Holtz, Weng, and Mishne 2021). Other than
solving this problem within the meta-learning framework
(e.g., (Shu et al. 2019; Ren et al. 2018; Hu et al. 2019)),
various strategies have been proposed for deriving sample
weights. For example, in (Wang, Kucukelbir, and Blei 2017),
the sample weights are modeled as a Bayesian latent vari-
able and inferred through probabilistic models. In (Jiang
et al. 2018), a mentor network is designed to derive the sam-
ple weights such that the target model does not overfit on
samples with noisy labels, which falls within the curriculum
learning (Bengio et al. 2009) framework. In (Kumar, Packer,
and Koller 2010), the weights of training samples are de-
termined by their training loss during the training process.
However, as (Shu et al. 2019) suggests, these re-weighting

techniques all perform worse than the meta re-weighting al-
gorithm in the presence of label noise and distribution im-
balance in training data.
Data efficiency As mentioned in Section “Introduction”,
it is critical to obtain large amounts of high-quality training
samples for deep neural nets. However, this can be expensive
and time consuming since labeling typically requires non-
trivial work from human annotators, especially in scientific
domains (see e.g, (Karimi et al. 2020; Irvin et al. 2019)).
High labeling cost is thus a strong motivator for studies on
various label efficiency techniques, e.g., active learning (see
a survey in (Ren et al. 2021) and some recent works (Mirza-
soleiman, Bilmes, and Leskovec 2020)), semi-supervised
learning (see (Van Engelen and Hoos 2020)), and weakly-
supervised learning (see Snorkel (Ratner et al. 2017)) in the
past few years. All of these studies aim at minimizing hu-
man labeling effort while maintaining relatively high model
performance. Note that for the meta re-weighting problem,
the construction of perfect meta samples also requires hu-
man labeling effort when label noise exists. Therefore, our
framework shares the same spirit as the traditional label ef-
ficiency research.
Data valuation In the literature, other than active learn-
ing, there exists many techniques to quantify the impor-
tance of individual samples, e.g., influence function (Koh
and Liang 2017) and its variants (Wu, Weimer, and David-
son 2021), Glister (Killamsetty et al. 2021), HOST-CP (Das
et al. 2021), TracIn (Pruthi et al. 2020), DVRL (Yoon, Arik,
and Pfister 2020) and Data Shapley value (Ghorbani and Zou
2019). However, among these methods, Data Shapley value
(Ghorbani and Zou 2019) is very computationally expensive
while others rely on the assumption that a set of “clean” val-
idation samples (or meta samples) are given, which is thus

6129

not suitable for our framework (we have more detailed dis-
cussions on Data Shapley value and its extensions in Ap-
pendix “Appendix: more related work”). We therefore do
not include these solutions as baseline methods.

Background: The Meta Re-weighting Method
In this section, we present some necessary details on the
meta re-weighting method from (Shu et al. 2019).

Suppose the meta re-weighting method is conducted on
a large imperfect training set, Dtrain = {(xj , yj)}Nj=1 and a
small perfect meta set Dm = {(xm,i, ym,i)}Mi=1. Imagine that
we want to learn a model parameterized by Θ, and the loss
evaluated on a training sample (xj , yj) and a meta sample
(xm,i, ym,i) is denoted as fj(Θ) and fm,i(Θ) respectively.
We further denote the weight of each training sample j as wj
(between 0 and 1). Following (Shu et al. 2019), the meta re-
weighting method jointly learns the weights W = {wj}Nj=1

and the model parameter Θ by solving the following bi-level
optimization problem:

min
W

1

M

∑M

i=1
fm,i(Θ

∗(W)),

s.t. Θ∗(W) = argminΘ

1

N

∑N

j=1
wjfj(Θ),

(1)

in which Θ∗(W) denotes the learned model parameters on
the training set weighted by W. This problem can be effi-
ciently solved by the meta re-weighting method proposed by
(Shu et al. 2019), which can be abstracted with the following
formulas 1:

Meta re-weighting:

Θ̂(Wt) = Θt −
αt

N

∑N

j=1
wj,t∇Θfj(Θ)|Θ=Θt

wj,t+1 = wj,t −
ηt
M

∑M

i=1
∇wjfm,i(Θ̂(Wt))|W=Wt

Θt+1 = Θt −
αt

N
·
∑N

j=1
wj,t+1∇Θfj(Θ)|Θ=Θt

(2)

(3)

(4)

The above formulas show how to update the model pa-
rameter and sample weights at the tth iteration. Among
these formulas, Equation (2) tries to update the model
parameter Θt given the current sample weights Wt =
[w1,t, w2,t, . . . , wN,t], which is then employed for updating
the sample weights in Equation (3). Afterwards, in Equa-
tion (4), the updated sample weights, Wt+1, are inserted into
Equation (2) to obtain the model parameters for the next it-
eration, i.e., Θt+1. This process is then repeated until the
convergence.

1Note that these formulas are slightly different from the ones
in (Shu et al. 2019) since the sample weights in (Shu et al. 2019)
are produced by another neural net. But its learning algorithm is
also applicable to the case where the sample weights are updated
directly. We therefore start from this simple case. Further note that
(Ren et al. 2018) and (Hu et al. 2019) solve Equation (1) in a sim-
ilar manner. Therefore, although we develop our methods mostly
based on (Shu et al. 2019), they are also potentially applicable to
the solutions in (Ren et al. 2018) and (Hu et al. 2019). We therefore
discuss how it can be extended to (Ren et al. 2018), in Appendix
“Generalization of our methods for (Ren et al. 2018)”

Method
Unlike (Shu et al. 2019; Hu et al. 2019; Ren et al. 2018)
where the meta set Dm is assumed to be given, our goal is to
select this set from Dtrain. Once this meta set is selected and
possibly cleaned by humans (when noisy labels exist), the
meta re-weighting algorithm can be used. We hope that the
resulting model performance is optimized with respect to the
sample selection strategy. We observe that one critical prop-
erty of such Dm is that it needs to produce “significant” cu-
mulative gradient updates (rather than near-zero gradient)
in Equation (3) for every training sample j(= 1, 2, . . . , N)
and every iteration t in the meta re-weighting algorithm.
This can thus guarantee that good training samples are ef-
ficiently up-weighted while bad training samples are effi-
ciently down-weighted. Therefore, our goal is to maximize
the magnitude of the sum of the gradient in Equation (3)
evaluated for each training sample j, across all iterations:

max
Dm

∣∣∣∣∑Θ̂(Wt)
1/M ·

∑M

i=1
∇wjfm,i(Θ̂(Wt))

∣∣∣∣ ,
for all j = (1, 2, . . . , N),

(5)

which we rewrite as follows according to (Shu et al. 2019)
(the constant coefficients are ignored below):

max
Dm

∣∣∣∣∣∣
∑

Θ̂(Wt),Θt

M∑
i=1

⟨∇Θfm,i(Θ)|Θ=Θ̂(Wt)
,∇Θfj(Θ)|Θ=Θt⟩

∣∣∣∣∣∣ ,
(6)

which thus represents the Frobenius inner product of the
gradient of the loss between the meta sample i and the train-
ing sample j. If the above inner product is large enough, the
weight of this sample will be significantly updated. Since we
want to maximize the updates of the weight of each training
sample, we sum up the above formula over all training sam-
ples, leading to:

max
Dm

N∑
j=1

∣∣∣∣∣∣
∑

Θ̂(Wt),Θt

M∑
i=1

⟨∇Θfm,i(Θ)|Θ=Θ̂(Wt)
,∇Θfj(Θ)|Θ=Θt⟩

∣∣∣∣∣∣,
which can be further approximated as follows by leverag-

ing the fact that Θ̂(Wt), is very close to Θt:

max
Dm

N∑
j=1

∣∣∣∣∣
M∑
i=1

∑
Θt

⟨∇Θfm,i(Θ)|Θ=Θt ,∇Θfj(Θ)|Θ=Θt⟩

∣∣∣∣∣ (7)

Equation (7) can be further rewritten as the following
Meta-Sample Search Objective (MSSO):

MSSO := Equation (7) = max
Dm

N∑
j=1

∣∣∣∣∣
M∑
i=1

⟨Gj , Gm,i⟩

∣∣∣∣∣ , (8)

in which, we define Gj =
[
G

(1)
j , . . . , G

(t)
j , . . .

]
and Gm,i =[

G
(1)
m,i, . . . , G

(t)
m,i, . . .

]
as block matrices formed by concate-

nating the gradients, G(t)
m,i := ∇Θfm,i(Θ)|Θ=Θt and G

(t)
j :=

∇Θfj(Θ)|Θ=Θt
, from each iteration into one matrix.

Note that the meta sample set, Dm, needs to be selected
from the training set, Dtrain. Thus, explicitly solving MSSO
is computationally intractable since there are

(
N
M

)
possible

6130

selections of a meta set of size M . In what follows, we
present an approximation to MSSO with rigorous guaran-
tees, which can be effectively solved with a weighted K-
means clustering algorithm.

Approximating MSSO
We show that with reasonable assumptions, solving MSSO
is approximately equivalent to searching for a set of cluster
centroids, C = {Ci}Mi=1, i.e.,:

MSSO ≈ max
C

∑N

j=1

∣∣∣∑M

i=1
⟨Gj , Ci⟩

∣∣∣
which can be approximated by solving the following M -

clustering objective (MCO)

MSSO ≈ MCO := max
C

∑N

j=1

∑M

i=1
|⟨Gj , Ci⟩| , (9)

where MSSO is approximated by moving the absolute
value to the inside of the sum. The approximation above can
be justified by the following Theorem.
Theorem 1. Suppose that for each sample i, the positive
terms in the innermost sum of Equation (8) are dominant
over the negative terms or vice versa, i.e.:

|
∑

⟨Gj ,Ci⟩>0⟨Gj , Ci⟩|
|
∑

⟨Gj ,Ci⟩<0⟨Gj , Ci⟩|
> D ≫ 1,

or
|
∑

⟨Gj ,Ci⟩<0⟨Gj , Ci⟩|
|
∑

⟨Gj ,Ci⟩>0⟨Gj , Ci⟩|
> D ≫ 1, for all i,

then solving MCO is a D−1
D+1 -approximation to solving

MSSO, i.e., D−1
D+1 ≤ MSSO

MCO ≤ 1

The proof is included in Appendix “Proof of Theorem
1”. Intuitively, we can see that our approximation is per-
fect when each inner product in (8) is positive, and we have
less of a guarantee of the effectiveness when a cluster is less
homogeneous in the sign of the inner products between its
members and centroid. Indeed, we found that the assump-
tions in the above theorem hold in most cases (see Appendix
“Supplemental experiments”). Therefore, due to the close-
ness of MSSO and MCO, we focus on solving MCO rather
than MSSO.

Solving MCO
MCO resembles the K-means clustering objective, so it is
promising to solve it with the K-means clustering algorithm.
As the first step toward this, MCO is transformed to the fol-
lowing form:

MCO = max
C

N∑
j=1

∥Gj∥
M∑
i=1

∥Ci∥ · |cosine(Gj , Ci)|, (10)

which can be regarded as a weighted K-means clustering
objective function. Specifically, the norm of each Ci is used
for re-weighting the cosine similarity between each train-
ing sample j and each cluster centroid i, which is followed
by re-weighting the overall similarity of each training sam-
ple j to all cluster centroids with the norm of Gj . Further
details on how to tailor the vanilla K-means clustering al-
gorithm to solve MCO are presented in Appendix “Supple-
mental materials on the weighted K-means algorithm”.

After C = {Ci}Mi=1 is identified by this weighted K-means
algorithm, the samples closest to each cluster centroid are
returned as the selected meta samples, Dm

2.
Note that in Equation (9), collecting all Gj is very ex-

pensive. This is because j is over all training samples which
can be very large, and Gj depends on all Θt, i.e., the model
parameters at all iterations (see Equation (8)).

To address the above efficiency concerns, we firstly
propose two methods, i.e., Representation-based cluster-
ing method (RBC) and Gradient-based clustering method
(GBC) in Section “Representation-based clustering
method (RBC)” and Section “Gradient-based clustering
method (GBC)” respectively, for addressing the first con-
cern. We further discuss how to sample from all Θt(t =
1, 2, . . .) in Section “Sampling model parameters from
history” to handle the second concern.

Representation-based clustering method (RBC) RBC is
built upon the assumption that the gradient of the model pa-
rameters on the bottom layers (i.e. those layers closer to the
input) is less significant than the ones in the last layer. Due
to the vanishing gradient problem, this assumption usually
holds in practice. As a consequence, we only consider the
gradients from the last layer in Equation (9), leading to the
following approximations on Gj :

Gj = Aj(Θt)x̃j(Θt)
⊤, (11)

in which x̃j(Θt) represents the input to the last linear layer
in the neural network model produced by the training sample
j, while Aj(Θt) is defined as follows:

Aj(Θt) = softmax(Θ(−1)
t x̃j(Θt))− onehot(yj) (12)

in which Θ
(−1)
t represents the model parameters in the last

layer. The detailed derivation of Equation (11) is included in
Appendix “Derivation of Equation (11)”. Equation (11)-
(12) shows that to obtain Gj , only forward passes on the
models are needed, which makes this method very efficient.

Gradient-based clustering method (GBC) Unlike RBC,
GBC is applicable to general cases where the gradients gen-
erated by the bottom neural layers may be significant. To
facilitate efficient evaluations of MCO, we importance sam-
ple the network layers from the model, such that we can ob-
tain an unbiased estimation of Equation (9). Then Gj is con-
structed by concatenating the gradients calculated in those
sampled layers.

Specifically, first of all, the underlined part of Equation (7)
(which is the essential part of Equation (9)) can be rewritten
in terms of a sum over the model parameters at each layer
l ∈ [1, 2, . . . , L], i.e.:

⟨∇Θfm,i(Θ)|Θ=Θt ,∇Θfj(Θ)|Θ=Θt⟩

=
[∑L

l=1
⟨∇Θ(l)fm,i(Θ)),∇Θ(l)fj(Θ))⟩

]
Θ=Θt

,
(13)

2We notice that other strategies, e.g., (Auvolat et al. 2015), can
be employed to solve MCO, which, however, do not perform well
and are thus ignored.

6131

Figure 2: Overview of our methods, RBC and GBC. We use → (green colored arrow) and → (purple colored arrow) to denote
the data flow of RBC and GBC respectively. Specifically, at each sampled time step tk, for each input training sample (xj , yj),
RBC combines its feature vector from the input to the last layer of the model, x̃j , and the coefficient, Aj(Θtk) (defined in
Equation (12)) while GBC concatenate the gradients from the sampled layers in the model. We then concatenate the above
calculated results from all the time steps t1, t2, . . . to compose the input to weighted K-means clustering algorithm, Gj (see the
red dotted box), which is then used for determining the meta samples.

in which Θ(l) represents the model parameters at the lth

layer. Then the above formula could be rewritten as follows:
Equation (13)

= A ·

[
L∑

l=1

A(l)

A
⟨∇Θ(l)fm,i(Θ)√

A(l)
,
∇Θ(l)fj(Θ)√

A(l)
⟩

]
Θ=Θt

,
(14)

in which, A(l) = ∥ 1
N

∑N
j=1 ∇Θ(l)fj(Θ)∥2F and A =∑L

l=1 A
(l)

Then we can conduct importance sampling (with replace-
ment) on the L innermost sums in Equation (14) for several
times (say 5 times)3, in which the probability of selecting the
lth(l = 1, 2, . . . , L) term is A(l)/A. This leads to an unbi-
ased estimation of Equation (14) and significant speed-ups.

Sampling model parameters from history It is worth
noting that Θt is unknown before we obtain all meta sam-
ples (see Equation (2)-(4)), but it is essential for determining
the meta samples (see Equation (7)). Therefore, we propose
to cache the model parameter Θ̃t(t = 1, . . . , T) during the
training process without any available meta samples, which
is regarded as an approximation of Θt.

In addition, as mentioned above, Gj depends on the
model parameters from all the time steps, which is thus very
expensive to evaluate. We uniformly sample several time
steps, instead of using all Θ̃t, to get an unbiased estimation
of MCO.

In the end, we visually present both RBC and GBC
equipped with this sampling technique in Figure 2 and in-
clude their pseudo-code in Algorithm 3 in Appendix “De-
tails of the adapted K-means algorithm”.

Applications
We demonstrate the effectiveness of our methods for two
applications, i.e., re-weighting a training set with noisy la-

3we conduct the importance sampling once for all the samples
so that the dimension of Gj is the same among all the samples.
Although it is not rigorously correct, the empirical studies show
that this approximation could achieve good performance

bels and re-weighting an imbalanced training set. In what
follows, we discussed how to tailor RBC and GBC to these
two applications.

Re-weighting a Training Set with Noisy Labels
To re-weight a noisily labeled training set, we can select a
subset of meta samples from the training set and obtain their
clean labels from human annotators. Note that for RBC and
GBC, the evaluation of the gradients depend on the clean
labels of the meta samples while these clean labels are ob-
tained from human annotators after RBC or GBC is invoked.
To address this chicken or the egg issue, we observe that if
the loss function is the cross-entropy loss, then the sample-
wise gradient, ∇Θfj(Θ), can be broken into two parts, the
label-free part and the label-dependent part. Due to the un-
availability of the clean labels, we therefore only leverage
the label-free part as the input to RBC and GBC.

Although we only use the label-free part, in Appendix
“Analysis of the gradient with and without label-free
part” (see Theorem 1), we theoretically analyze under what
conditions the label-dependent part is insignificant to deter-
mining which cluster each training sample belongs to af-
ter the weighted k-means clustering algorithm is invoked.
Those conditions are satisfied by a large portion of the train-
ing samples through our empirical studies (see Appendix
“Supplemental experiments”), thus justifying the effec-
tiveness of discarding the label-dependent part.

Re-weighting a Class-Imbalanced Training Set
Unlike the case where the labels are noisy, we assume clean
labels in the class-imbalanced training set. As a conse-
quence, we evaluate the sample-wise gradient ∇Θfj(Θ) as
a whole rather than removing the label-dependent part from
it.

Experiments
We demonstrate the effectiveness of our methods for training
deep neural nets on image classification datasets, MNIST
(Deng 2012), CIFAR-10 (Krizhevsky, Hinton et al. 2009)

6132

86

88

90

92

94

96

98

Base model
TA-VAAL
Finetune
Craige
Random
Uncertain
Certain
RBC
GBC

20 40 60 80 90
25
50
75

Noise rate (%)

A
cc

ur
ac

y
(%

)

Figure 3: Test performance on MNIST dataset with varied
noisy rate

and CIFAR-100 (Krizhevsky, Hinton et al. 2009), and
Imagenet-10 (Russakovsky et al. 2015)4. By following (Shu
et al. 2019) and (Ren et al. 2018), we consider the occur-
rence of noisy labels and class imbalance respectively on
the training set. All the code is publicly available5.

Experimental Set-Up
For the MNIST dataset, we train a LeNet model (LeCun
et al. 1998) and for CIFAR-10, CIFAR-100 and Imagenet-
10 dataset, we train a ResNet-34 model (He et al. 2016). All
the hyper-paremters are reported in Appendix “Supplemen-
tal experiments”.

Noisy Label Experiments
We first study how our methods perform in the presence of
two types of synthetic label noise, i.e., uniform noise and
adversarial noise, and one type of real noise:
• uniform noise: all labels can be uniformly flipped at ran-

dom to any other label with probability p/100, in which p
is a percent specified by users. This has been explored in
(Shu et al. 2019) and (Ren et al. 2018);

• adversarial noise: the labels for a subset of samples, cho-
sen at random, are determinisitcally mapped to another la-
bel (e.g., selected samples with label 0 are all given label
1). This is meant to simulate an extreme case where the
labels are adversarially flipped and has been explored in
some prior works (e.g., (Li et al. 2022))

• real noise: We leverage the real human labeling errors
on CIFAR-10 and CIFAR-100 datasets provided by (Wei
et al. 2021).
We present the results with one fixed noise rate, p =

60, for synthetic labeling noise on MNIST, CIFAR and
Imagenet-10 and the effect of varied p is also explored on
the MNIST dataset (see Figure 3). Surprisingly, we found

4Imagenet-10 is a subset of ImageNet and produced by follow-
ing (Li et al. 2021)

5https://github.com/thuwuyinjun/meta sample selections

that 60% uniform noise only reduces the model accuracy on
MNIST and CIFAR-10 by a few percent and cleaning the
labeling noise in such settings only marginally improve the
performance. We therefore only report the results on MNIST
and CIFAR-10 with adversarial noise. We also present the
results with real labeling noise on CIFAR-100 but we ig-
nored the same experiments on CIFAR-10 since the real la-
beling noise also only slightly hurts the model performance.
Throughout this experiment, we compare RBC and GBC
against the following baseline methods:
• Random selection (Random): We uniformly at random

select meta samples from the training set;
• Fine-tuning: We fine-tune the model using only the se-

lected meta samples, selected by Random;
• Active learning: We select meta samples using 1) Un-

certainty based selection (Uncertain) (Lewis and Gale
1994) by selecting the most uncertain training samples, 2)
Certainty based selection (Certain) by selecting the most
certain training samples and 3) two state-of-the-art active
learning solutions, Task-Aware Variational Adversarial
Active Learning (TA-VAAL) (Kim et al. 2021) and craige
(craige) (Mirzasoleiman, Bilmes, and Leskovec 2020)

• RBC-k: We use the original K-means clustering algo-
rithm rather than the weighted version proposed in Section
“Solving MCO” to determine the meta samples in RBC.
Note that for both of our methods and the above baseline

methods, the labels of the selected meta samples are cleaned
by human annotators, which is simulated by replacing their
noisy labels with ground-truth labels. This thus justifies the
use of the perfectly labeled benchmark datasets (rather than
real datasets with unreliable labels). As a result, for fair com-
parison, our methods and the above baseline methods share
the same labeling budget, which is set as 20, 50, 200 and
50 for MNIST, CIFAR-10, CIFAR-100 and Imagenet-10 re-
spectively (which includes the labeled samples in the pre-
training phase). Recall that both RBC and GBC depend on
the model parameters from history. We therefore pre-train
the models without any clean labels as the warm-up phase.
Overall performance We present the test accuracy in Table
16 after running the meta re-weighting algorithm with meta
samples selected by different methods. As indicated by this
table, the clustering-based methods, RBC-k, RBC and GBC
can significantly outperform other methods in most cases
and the performance gains are up to 6% (see the perfor-
mance difference between GBC and Certain in column “ad-
versarial” of CIFAR-100 dataset). Furthermore, RBC con-
sistently outperforms RBC-K, which suggests the weighted
K-means algorithm is capable of identifying a better set of
meta samples than the original K-means algorithm. It is also
worth noting that with real labeling noise (see the column
”real” of CIFAR-100 dataset), both RBC and GBC can out-
perform all the baseline methods, which leads to at least
1.3% improvement with respect to the state-of-the-art active
learning methods (see the comparison between RBC, GBC
and craige in the column ”real” of CIFAR-100 dataset).

6We report the validation accuracy for Imagenet-10 since the
ground-truth labels of test samples are invisible

6133

Dataset MNIST CIFAR-10 CIFAR-100 Imagenet-10
Noise type adversarial adversarial uniform adversarial real uniform adversarial
Base model 51.74±1.52 40.24±0.39 43.63±2.30 27.15±0.40 49.33 72.22 38.00
Random 85.67±0.90 76.02±2.01 42.30±4.68 45.33±1.70 57.54 93.33 59.77
Certain 81.84±0.89 70.78±5.00 45.95±4.20 47.06±2.10 57.48 91.20 58.22
Uncertain 76.38±0.54 74.45±6.10 36.67±0.20 44.65±0.65 56.23 85.22 51.00
Fine-tuning 53.39±1.22 23.07±7.58 25.28±1.13 24.88±1.10 51.24 70.44 35.67
TA-VAAL 79.31±0.23 61.46±4.65 31.07±2.56 38.79±0.86 44.50 86.34 43.26
craige 92.84±0.14 78.55±1.03 39.85±1.23 44.61±1.21 57.92 88.90 61.00
RBC-K 93.78±0.61 75.71±1.22 49.32±0.35 49.51±0.43 59.24 91.33 54.67
RBC 93.00±1.01 79.20±0.64 49.56±0.53 50.60±1.51 59.25 94.22 63.67
GBC 94.26±0.24 80.88±1.46 50.88±1.90 53.14±1.33 59.25 94.00 63.67

Table 1: Test accuracy on MNIST, CIFAR-10 and CIFAR-100 dataset with synthetic noise (noise rate 60%) and real noise

Dataset CIFAR-10 CIFAR-100
BaseModel 61.45±0.60 28.14±0.57
Random 65.96±1.74 29.29±0.46
Uncertain 64.46±1.20 28.39±0.21
Certain 66.05±1.19 28.52±0.15
Fine-tuning 60.04±1.69 29.73±0.06
TA-VAAL 61.58±1.21 30.89±1.09
craige 66.60±0.89 29.56±1.46
RBC-K 65.96±1.02 30.77±1.23
RBC 68.18±1.58 31.78±1.10
GBC 67.37±1.51 33.87±0.66

Table 2: Test performance on imbalanced CIFAR-10 and
CIFAR-100 dataset with imbalanced factor 200

Random RBC GBC
0.922 0.958 0.949

Table 3: The AUC scores of the sample weights on MNIST
with noise rate 80%

Efficiency of RBC We also observe a trade-off between
performance and speed when comparing GBC and RBC.
According to Table 1, GBC performs better than RBC in
most cases while the former is slower than the latter (2.5
hours VS 3 mins) to construct Gj . Note that the running
time of RBC is negligible in comparison to the running time
of the meta re-weighting algorithm, which is around 4 mins
per epoch and there are hundreds of epochs in total.
Robustness against varied noise rate As indicated by Fig-
ure 3, both RBC and GBC outperform all the baseline meth-
ods across all the noise rates and the performance gains be-
come even larger with more samples being noisily labeled
(up to 2%). This indicates the robustness of our methods
against a varied level of label noise.

Class Imbalance Experiments
For evaluating our method on class imbalanced data, we
follow (Cui et al. 2019) to produce the long-tailed CIFAR
dataset. Specifically, we down-sample some classes so that
the ratio between the number of training samples in the
largest class and that in the smallest one (which is denoted
the imbalance factor) is large. In Table 2, we report the re-

sults with imbalance factor 200 on CIFAR-10 and CIFAR-
100 dataset. As shown in Table 2, our method, RBC, outper-
forms all the baseline methods for CIFAR-10 and CIFAR-
100 and the performance gain is up to 3.10%.
Studies on the learned sample weights Recall that our
methods depend on the assumption that larger updates to the
sample weights will more effectively result in the weights
of the noisy and clean samples approaching 0 and 1 respec-
tively. We therefore empirically inspect the sample weights
learned by Random, RBC and GBC. Specifically, we calcu-
late the AUC between the learned sample weights and the
cleanness of the sample labels (1 for clean while 0 for cor-
rupt). We report this quantity for MNIST with 80% noisy la-
bels in Table 3 for the entire training set. As Table 3 shows,
the AUC scores of RBC and GBC are higher than that of
Random, thus suggesting the capability for RBC and GBC
to better distinguish between clean and noisy samples.

Other Experimental Results
Due to the space limit, all other experimental results are pre-
sented in Appendix: “Supplemental experiments”, includ-
ing the experiments with the effect of varied number of meta
samples, the effect of the number of sampled gradients in
RBC and GBC (recall that both approximate Equation (10)
through sampling according to Section: “Solving MCO”),
and some qualitative studies.

Conclusion
In this work, we propose a clustering-based framework for
selecting pivotal samples to improve performance of meta
re-weighting in the presence of various defects on training
data. Based on our theoretical analysis, we show that select-
ing pivotal samples can be reduced to a weighted K-means
algorithm under reasonable assumptions. To efficiently eval-
uate this algorithm we propose two methods, RBC and GBC,
which can balance the computational efficiency and predic-
tion performance. Through empirical studies on noisily la-
beled and class-imbalanced image classification benchmark
datasets, we can demonstrate that our technique could se-
lect a better set of pivotal samples for meta re-weighting
algorithm than other sample selection techniques, thereby
resulting in better model performance.

6134

Acknowledgments
We thank our anonymous reviewers for valuable feed-
back. This research was supported by grants from DARPA
(#FA8750-19-2-0201) and NSF award (IIS-2145644).

References
Andrychowicz, M.; Denil, M.; Gomez, S.; Hoffman, M. W.;
Pfau, D.; Schaul, T.; Shillingford, B.; and De Freitas, N.
2016. Learning to learn by gradient descent by gradient de-
scent. Advances in neural information processing systems,
29.
Auvolat, A.; Chandar, S.; Vincent, P.; Larochelle, H.; and
Bengio, Y. 2015. Clustering is efficient for approxi-
mate maximum inner product search. arXiv preprint
arXiv:1507.05910.
Bengio, Y.; Louradour, J.; Collobert, R.; and Weston, J.
2009. Curriculum learning. In Proceedings of the 26th an-
nual international conference on machine learning, 41–48.
Chang, H.-S.; Learned-Miller, E.; and McCallum, A. 2017.
Active bias: Training more accurate neural networks by em-
phasizing high variance samples. Advances in Neural Infor-
mation Processing Systems, 30.
Cui, Y.; Jia, M.; Lin, T.-Y.; Song, Y.; and Belongie, S. 2019.
Class-balanced loss based on effective number of samples.
In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, 9268–9277.
Das, S.; Singh, A.; Chatterjee, S.; Bhattacharya, S.; and
Bhattacharya, S. 2021. Finding High-Value Training Data
Subset Through Differentiable Convex Programming. In
Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, 666–681. Springer.
Deng, L. 2012. The mnist database of handwritten digit im-
ages for machine learning research [best of the web]. IEEE
signal processing magazine, 29(6): 141–142.
Dong, Q.; Gong, S.; and Zhu, X. 2017. Class rectification
hard mining for imbalanced deep learning. In Proceedings
of the IEEE International Conference on Computer Vision,
1851–1860.
Ghorbani, A.; and Zou, J. 2019. Data shapley: Equitable val-
uation of data for machine learning. In International Con-
ference on Machine Learning, 2242–2251. PMLR.
Hajij, M.; Zamzmi, G.; Ramamurthy, K. N.; and Saenz,
A. G. 2021. Data-Centric AI Requires Rethinking Data No-
tion. arXiv preprint arXiv:2110.02491.
Han, B.; Yao, Q.; Yu, X.; Niu, G.; Xu, M.; Hu, W.; Tsang,
I.; and Sugiyama, M. 2018. Co-teaching: Robust training of
deep neural networks with extremely noisy labels. Advances
in neural information processing systems, 31.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep resid-
ual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, 770–778.
Holtz, C.; Weng, T.-W.; and Mishne, G. 2021. Learning
Sample Reweighting for Adversarial Robustness. https://
openreview.net/forum?id=7zc05Ua HOK. Accessed: 2023-
02-13.

Hospedales, T. M.; Antoniou, A.; Micaelli, P.; and Storkey,
A. J. 2021. Meta-Learning in Neural Networks: A Survey.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence.
Hu, Z.; Tan, B.; Salakhutdinov, R. R.; Mitchell, T. M.; and
Xing, E. P. 2019. Learning data manipulation for augmen-
tation and weighting. Advances in Neural Information Pro-
cessing Systems, 32.
Irvin, J.; Rajpurkar, P.; Ko, M.; Yu, Y.; Ciurea-Ilcus, S.;
Chute, C.; Marklund, H.; Haghgoo, B.; Ball, R.; Shpan-
skaya, K.; et al. 2019. Chexpert: A large chest radiograph
dataset with uncertainty labels and expert comparison. In
Proceedings of the AAAI conference on artificial intelli-
gence, volume 33, 590–597.
Jiang, L.; Zhou, Z.; Leung, T.; Li, L.-J.; and Fei-Fei, L. 2018.
Mentornet: Learning data-driven curriculum for very deep
neural networks on corrupted labels. In International Con-
ference on Machine Learning, 2304–2313. PMLR.
Karimi, D.; Dou, H.; Warfield, S. K.; and Gholipour, A.
2020. Deep learning with noisy labels: Exploring techniques
and remedies in medical image analysis. Medical Image
Analysis, 65: 101759.
Khan, S. H.; Hayat, M.; Bennamoun, M.; Sohel, F. A.; and
Togneri, R. 2017. Cost-sensitive learning of deep feature
representations from imbalanced data. IEEE transactions on
neural networks and learning systems, 29(8): 3573–3587.
Killamsetty, K.; Sivasubramanian, D.; Ramakrishnan, G.;
and Iyer, R. 2021. Glister: Generalization based data subset
selection for efficient and robust learning. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 35,
8110–8118.
Kim, K.; Park, D.; Kim, K. I.; and Chun, S. Y. 2021. Task-
aware variational adversarial active learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, 8166–8175.
Koh, P. W.; and Liang, P. 2017. Understanding black-box
predictions via influence functions. In International confer-
ence on machine learning, 1885–1894. PMLR.
Krizhevsky, A.; Hinton, G.; et al. 2009. Learning multiple
layers of features from tiny images. http://www.cs.utoronto.
ca/∼kriz/learning-features-2009-TR.pdf. Accessed: 2009-
04-08.
Kumar, M.; Packer, B.; and Koller, D. 2010. Self-paced
learning for latent variable models. Advances in neural in-
formation processing systems, 23.
LeCun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998.
Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 86(11): 2278–2324.
Lewis, D. D.; and Gale, W. A. 1994. A sequential algorithm
for training text classifiers. In SIGIR’94, 3–12. Springer.
Li, S.; Xia, X.; Ge, S.; and Liu, T. 2022. Selective-
supervised contrastive learning with noisy labels. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 316–325.
Li, Y.; Hu, P.; Liu, Z.; Peng, D.; Zhou, J. T.; and Peng, X.
2021. Contrastive clustering. In Proceedings of the AAAI

6135

Conference on Artificial Intelligence, volume 35, 8547–
8555.
Miranda, L. J. 2021. Towards data-centric machine learning:
a short review. Ljvmiranda921. Github. Io.
Mirzasoleiman, B.; Bilmes, J.; and Leskovec, J. 2020. Core-
sets for data-efficient training of machine learning models.
In International Conference on Machine Learning, 6950–
6960. PMLR.
Polyzotis, N.; and Zaharia, M. 2021. What can Data-Centric
AI Learn from Data and ML Engineering? arXiv preprint
arXiv:2112.06439.
Pruthi, G.; Liu, F.; Kale, S.; and Sundararajan, M. 2020.
Estimating training data influence by tracing gradient de-
scent. Advances in Neural Information Processing Systems,
33: 19920–19930.
Ratner, A. J.; Bach, S. H.; Ehrenberg, H. R.; and Ré, C.
2017. Snorkel: Fast training set generation for information
extraction. In Proceedings of the 2017 ACM international
conference on management of data, 1683–1686.
Ren, M.; Zeng, W.; Yang, B.; and Urtasun, R. 2018. Learn-
ing to reweight examples for robust deep learning. In In-
ternational conference on machine learning, 4334–4343.
PMLR.
Ren, P.; Xiao, Y.; Chang, X.; Huang, P.-Y.; Li, Z.; Gupta,
B. B.; Chen, X.; and Wang, X. 2021. A survey of deep active
learning. ACM Computing Surveys (CSUR), 54(9): 1–40.
Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.;
Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.;
et al. 2015. Imagenet large scale visual recognition chal-
lenge. International journal of computer vision, 115(3):
211–252.
Shu, J.; Xie, Q.; Yi, L.; Zhao, Q.; Zhou, S.; Xu, Z.; and
Meng, D. 2019. Meta-weight-net: Learning an explicit map-
ping for sample weighting. Advances in neural information
processing systems, 32.
Thrun, S.; and Pratt, L. 2012. Learning to learn. Springer
Science & Business Media.
Van Engelen, J. E.; and Hoos, H. H. 2020. A survey on semi-
supervised learning. Machine Learning, 109(2): 373–440.
Wang, Y.; Kucukelbir, A.; and Blei, D. M. 2017. Ro-
bust probabilistic modeling with bayesian data reweighting.
In International Conference on Machine Learning, 3646–
3655. PMLR.
Wei, J.; Zhu, Z.; Cheng, H.; Liu, T.; Niu, G.; and Liu, Y.
2021. Learning with Noisy Labels Revisited: A Study Us-
ing Real-World Human Annotations. In International Con-
ference on Learning Representations.
Wu, Y.; Weimer, J.; and Davidson, S. B. 2021. CHEF:
a cheap and fast pipeline for iteratively cleaning label un-
certainties. Proceedings of the VLDB Endowment, 14(11):
2410–2418.
Yoon, J.; Arik, S.; and Pfister, T. 2020. Data valuation us-
ing reinforcement learning. In International Conference on
Machine Learning, 10842–10851. PMLR.

6136

