
Collective Intelligence in Human-AI Teams: A Bayesian Theory of Mind Approach

Samuel Westby1, Christoph Riedl2,
1 Network Science Institute, Northeastern University, Boston, MA

2 Khoury College of Computer Sciences, Northeastern University, Boston, MA
westby.s@northeastern.edu, c.riedl@northeastern.edu

Abstract

We develop a network of Bayesian agents that collectively
model the mental states of teammates from the observed com-
munication. Using a generative computational approach to
cognition, we make two contributions. First, we show that
our agent could generate interventions that improve the col-
lective intelligence of a human-AI team beyond what humans
alone would achieve. Second, we develop a real-time mea-
sure of human’s theory of mind ability and test theories about
human cognition. We use data collected from an online ex-
periment in which 145 individuals in 29 human-only teams
of five communicate through a chat-based system to solve a
cognitive task. We find that humans (a) struggle to fully in-
tegrate information from teammates into their decisions, es-
pecially when communication load is high, and (b) have cog-
nitive biases which lead them to underweight certain useful,
but ambiguous, information. Our theory of mind ability mea-
sure predicts both individual- and team-level performance.
Observing teams’ first 25% of messages explains about 8%
of the variation in final team performance, a 170% improve-
ment compared to the current state of the art.

Introduction
The reliance on teamwork in organizations (Wuchty, Jones,
and Uzzi 2007), coupled with remarkable recent progress
in artificial intelligence, have supercharged the vision to de-
velop collaborative Human-AI teams (Malone and Bernstein
2015; O’Neill et al. 2020). Human-AI teams promise to
overcome human biases and information processing limita-
tions, reaching performance higher than human-only teams
could (Brynjolfsson, Rock, and Syverson 2018). Despite
some recent advances (e.g., Bansal et al. 2019b; Pynadath
et al. 2022; Seraj et al. 2022) there remain significant dif-
ficulties in developing agents that interact with multiple,
heterogeneous humans working on cognitive tasks engaged
in cooperative communication in an ad-hoc team. Here, we
draw on research of cognitive processes to develop Human-
AI teams and explain collaborative decision making.

To communicate efficiently, humans infer the beliefs,
opinions, knowledge, and related states of mind of other
people (Nickerson 1999; Call and Tomasello 2008). This is
referred to as social perceptiveness or theory of mind (ToM;
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Premack and Woodruff 1978). Recent research on collec-
tive intelligence, has provided a wide range of empirical
evidence suggesting that ToM (and related processes gov-
erning collective memory, attention, and reasoning) is a sig-
nificant predictor of human collective intelligence (Woolley
et al. 2010; Riedl et al. 2021; Woolley et al. 2022; Engel
et al. 2014). Indeed, ToM is especially beneficial for inter-
dependent cognitive tasks that benefit when teams leverage
their members’ expertise (Lewis 2003). Some work sug-
gests that ToM is the mechanism that allows collectives to
use more performance-relevant information from their envi-
ronment than a single individual without such connections
could, for example, by facilitating a balance between diver-
sity and cognitive efficiency (Riedl and Woolley 2017; Hong
and Page 2004). As human civilization shifts further toward
knowledge work (Autor 2014) where the most value is real-
ized if members fully use and integrate their unique exper-
tise, this ability is increasingly important.

Recent work has started to develop a formal account of
collective intelligence to explain the relationship between
individual interaction and collective performance using (ap-
proximate or variational) Bayesian inference (or free energy;
Friston 2010, 2013; Heins et al. 2022). The free energy prin-
ciple is a mathematical framework for multiscale behavioral
processes that suggests a system of self-similar agents self-
organizes by minimizing variational free energy in its ex-
changes with the environment (Fig. 1a; Friston, Kilner, and
Harrison 2006). Recent extensions have applied the frame-
work to explain human communication (Vasil et al. 2020). A
key advantage of this approach is that free energy minimiza-
tion can be translated into a generative, agent-based process
theory (Friston et al. 2017; Kaufmann, Gupta, and Taylor
2021). This generative theory provides a computational ap-
proach to cognition (Tenenbaum et al. 2011; Griffiths 2015)
that allows us to simultaneously (a) build agents for Human-
AI teams that are highly explainable but also (b) test theo-
ries about human cognitive processes and measure human
theory of mind ability in real time. This promises to advance
our understanding of a key process of human collective in-
telligence. The current state of the art to measure theory of
mind—the Reading the Mind in the Eyes test (Baron-Cohen
et al. 2001)—is a static, indirect, survey-based instrument,
which typically explains about 3% of the variation (Riedl
et al. 2021).
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Figure 1: Framework of human-AI teaming with Theory of Mind (ToM). a) Nested layers of ToM agents. Agents model ego
networks of the individual they shadow. b) Every human team member is paired with an AI agent. Humans send messages to
others through a shared environment. The ToM agent infers beliefs for both own ideas (Ego Model), and ideas of others (one
Alter Model per network neighbor). Ego Model is updated with initial information and new knowledge generated by the human
through self actualization. Alter Models are updated based on incoming messages from teammates through partner actualization.
Agents combine information from the ego and alter models with weighting determined α denoting ToM ability.

In this paper, we develop a Bayesian theory of mind agent
that can form ad-hoc mental models about its teammates,
based exclusively on observations drawn from human com-
munication (Fig. 1b). We use data collected from a large,
IRB approved human-subject experiment in which 145 in-
dividuals in 29 teams of five, randomly assigned to dif-
ferent social networks controlling the team’s communica-
tion topology, communicate through a chat-based system to
solve a Hidden Profile task (Stasser and Titus 1985). We then
simulate artificial teams in which each human is shadowed
by an agent. The agent observes the same incoming and out-
going messages as the human did in the experiment. Mod-
eling human behavior with our generative AI model allows
us to test whether people do indeed form mental models of
what their teammates know, how effectively they do so, and
whether this ability is predictive of team performance. In a
last step, we perform a counterfactual simulation to demon-
strate how our Bayesian agent could trigger effective inter-
ventions that would increase Human-AI team performance
over the observed human-only teams.

Our work provides a framework that expands theory of
mind (and collective intelligence more broadly) from a static
construct to a dynamical one that may vary according to
situational factors, for example, due to changes in arousal,
anxiety, and motivation with dynamically changing task re-
quirements, time pressure, and recognition (Qin et al. 2022;
Balietti and Riedl 2021). We contribute to a body of research
that has so far mostly used toy models—often using only a
single agent—with an application to real data from multi-
human communication (Vasil et al. 2020; Kaufmann, Gupta,
and Taylor 2021; Albarracin et al. 2022; Heins et al. 2022).

Our work generates important cognitive insights into how
humans communicate and reason to uncover hidden profiles.
In summary, we make four main contributions.
1. We develop a networked Bayesian agent that models be-

liefs using human-human communication. We apply the
agent to data from a human team experiment and demon-
strate how the agent can monitor theory of mind in real
time, predict both correct and human answers, and inter-
vene to raise human performance.

2. We find the model accurately captures the decisions
made by humans, varying in predictable ways with ex-
perimental stimuli like network position and task dif-
ficulty. Comparing model fits with simpler “lesioned”
ToM models shows the value contributed by each com-
ponent.

3. We develop two real-time measures for human theory of
mind ability. The first, based on observed human com-
munication and decisions, explains 51% variation in final
team performance. The second, based on communication
alone, explains 8% variation in final team performance
after observing just the first quarter of communication, a
170% improvement compared to the current state of the
art, the Reading the Mind in the Eyes test. Simulations of
artificial human-AI teams suggest a significant 4% per-
formance increase from AI triggered interventions.

4. We contribute to cognitive theory by presenting empiri-
cal evidence that cognitive biases explain the shortfall of
human performance, such as a tendency to under-weight
ambiguous information and failure to fully integrate in-
formation provided by others. We explain temporal pat-
terns showing that high functioning teams send the most
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useful information early before converging on common
beliefs.

Related Work
Human-Agent teaming. A long history of Human-Agent
teaming has evolved alongside technological developments.
Early examples such as Vannevar Bush’s Memex (Bush et al.
1945) demonstrate a longstanding fascination with augment-
ing human performance. Recently, work has specialized in
many sub-fields including understanding mental models and
related constructs like team situational awareness (Chen and
Barnes 2014; Converse, Cannon-Bowers, and Salas 1993;
Glikson and Woolley 2020). For example, effective Human-
AI interaction has been shown to rely critically on the ability
to form mental models about what AI teammates are doing
(Bansal et al. 2019b; Paleja et al. 2021; Bansal et al. 2019a;
Gero et al. 2020; Alipour et al. 2021).

Significantly less work has focused on how AI can form
“mental models” of humans. Fügener et al. (2022) highlight
this disparity by identifying situations where humans hav-
ing mental models of the AI are not helpful, while AI hav-
ing “mental models” of humans are. Given the challenges of
designing multi-agent systems, human-AI teaming work has
often focused on studying pairs of one agent and one human
(e.g., Bansal et al. 2019a,b; Baker, Saxe, and Tenenbaum
2011; Fügener et al. 2022; Alipour et al. 2021). Further-
more, past work has often side-stepped challenges posed by
language-based communication by constraining the scope to
spatial or highly stylized tasks (Kaufmann, Gupta, and Tay-
lor 2021; Baker et al. 2017; Khalvati et al. 2019). Others
use Wizard of Oz techniques (Schelble et al. 2022; Hohen-
stein et al. 2022) to facilitate communication-based human-
AI teaming interaction. To build an autonomous AI team-
mate that improves human-only team performance, one must
build agents that overcome these obstacles. This becomes
more challenging in a team of unfamiliar teammates, with-
out a priori knowledge, while learning dynamically from
language-based communication (Stone et al. 2010).

Multi-agent Bayesian models Multi-agent Bayesian
models have been used to study coordination (Khalvati et al.
2019; Wu et al. 2021), opinion dynamics (Albarracin et al.
2022), efficient information fusion (Pavlin et al. 2010), and
theory of mind (Baker et al. 2017). This can be modeled as a
partially observable Markov decision process (POMDP) for
each agent where the states are the set of other agents’ be-
liefs and observations are dependent on other agents’ actions
(Smith, Friston, and Whyte 2022).

Hidden Profile & Human Subject Data
A primary advantage of teams over lone individuals when
solving complex problems is their ability to expand the pool
of available information, thereby enabling teams to reach
higher quality solutions (Mesmer-Magnus and DeChurch
2009). The Hidden Profile task (Stasser and Titus 1985) is
a research task designed to mimic this decision-making sce-
nario in which individuals hold private knowledge (Stone
et al. 2010). In the task, some information is commonly
held among all team members while each individual is also

endowed with unique private information. Subjects do not
know what information is shared or private. Information
sharing is the central process through which teammates col-
lectively solve the task (Mesmer-Magnus and DeChurch
2009); conversely, failing to share all available information
causes them to come to incorrect conclusions. Despite the
importance of information sharing for team performance,
past research has shown teams often deviate from the op-
timal use of information (Stasser and Titus 1985). Discus-
sions tend to reinforce information held in common, rather
than share information held uniquely by one team member
(Nickerson 1999). One reason for this is that individuals im-
pute their own knowledge on others and hence assume that
private information is already shared (Nickerson 1999).

This gives rise to the “hidden profile” and directly points
to avenues in which AI may improve team performance:
identifying which information is uniquely held by each
teammate and encouraging them to share it. Specifically, an
agent may detect if their own mental model diverges from
the inferred mental model of another (“I know something
that I believe you don’t know”) indicating a window of op-
portunity for an effective intervention. It also provides the
basis for our measure of theory of mind ability. Individuals
who form more precise mental models of their teammates
(and who impute less of their own knowledge on others) will
be more efficient communicators who share more useful in-
formation in a more targeted manner.

We use data from an IRB approved online experiment
conducted on the Volunteer Science platform (Radford et al.
2016) in which 145 individuals in 29 human-only teams of
five solved a Hidden Profile task (data and code available at
https://github.com/riedlc/HumanAITeamsAndCI). The task
is framed as a crime investigation: the team needs to pool
clues to answer questions about the target, culprit, and time
of an art heist. There are six clues for each question. When
combined, the correct answer out of five possible options is
obvious. One randomly selected clue is given to every team-
mate (the public clue) and each individual receives one of
the remaining five clues (the private clue, also randomly se-
lected). Teams were randomly assigned to a communication
topology using all 21 possible connected five node graphs
(e.g., star, ring, chain; see Fig. 1a for one example). Teams
then communicate via text-based chat where each message
is sent to all neighboring teammates. After a five minute dis-
cussion phase, each individual submits answers for the cul-
prit’s identity, the target, and the day of the art heist. Sub-
jects were recruited from Amazon Mechanical Turk (Pao-
lacci, Chandler, and Ipeirotis 2010) and paid a $0.75 flat fee
for participation as well as a $0.25 performance bonus for
each correct answer. The entire task took about seven min-
utes to complete. Subjects are blind to the network topology
they have been assigned to as well as the total number of
individuals on their team. For simplicity of exposition and
analysis, we rely only on the culprit dimension of the task.
We compute individual performance as {0, 1} depending on
whether the culprit guess is correct and team performance
as the average individual performance (majority voting does
not substantively change results). On average, individuals
received 3.1 (SD 1.9) chat messages from each partner.
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To make initial clues and communication machine inter-
pretable, we manually code the content as strong no (SN),
maybe no (MN), maybe yes (MY), and strong yes (SY) for
each of the five answer options (the inferred states). This
creates a set of 20 possible observations. We translate mes-
sages into likelihoods for the inferred states using fixed val-
ues, either estimated from the data using maximum like-
lihood estimation (MLE) from a grid search or using un-
trained intuitive values. For example, the message,“it might
be #4”, would be coded as maybe yes with a likelihood of 1.4
for #3, leaving the likelihoods for the states not mentioned
in the message unaffected. Ambiguous statements and mes-
sages related to team coordination were coded as “neutral”
and dropped from the analysis. Notice that agents form be-
liefs solely based on the observed human communication,
even if humans make certain statements about wrong facts
(e.g., “strong yes #4” when the correct answer is #3), or am-
biguous statements about correct facts. Agents can thus form
wrong beliefs (Albarracin et al. 2022).

Bayesian Multi-Agent Model
We create a networked Bayesian agent for each individual.
Each agent “shadows” one human, observing the same mes-
sages (both are inside the same Markov blanket; Fig. 1a)
and infers human beliefs and derive the answer to the Hid-
den Profile task. That is, our Bayesian system is a model
of beliefs about hidden states of their environment. Ideally,
the state inferred after the communication phase is identi-
cal to the correct answer to the Hidden Profile task. The re-
sulting model has five parameters: four information weights
SN, MN, MY, SY determining the likelihood distribution of
observations under inferred beliefs, and the theory of mind
ability αD which modulates the relative weighting of the self
vs. partner beliefs which we describe in more detail below.

Mental Models. We use Bayesian inference to infer a pos-
terior distribution p(s | o) over states s (five answer options),
from a set of observations o (messages sent between play-
ers in the recorded chat). Since there are five discrete states,
we can compute posteriors directly without the need to ap-
proximate them. More complicated environments may re-
quire the use of approximate inference methods like free en-
ergy/active inference (Friston, Kilner, and Harrison 2006).

Agents are comprised of one Ego Model and one Alter
Model for each neighbor (Fig. 1b). That is, the model fol-
lows a multi-agent paradigm with independent mental mod-
els nested within an agent. All models hold a posterior distri-
bution of inferred states, but differ in how they are initialized
and updated. Ego Models are initialized with priors derived
from the public and private clues assigned to the player (pa-
per stack icons in Fig. 1b) and updated with outgoing mes-
sages from a player (self actualization). Alter Models are
initialized with uniform priors and updated with incoming
messages of the corresponding (partner actualization).

Mental models are updated by accounting for the surprise
of the observation. Surprise-weighting thus encodes a pref-
erence for posteriors with low surprise. That is, the effect of
new observations is diminished relative to the Ego or Alter
model’s existing posterior using
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Figure 2: Bayesian model of Theory of Mind. Agent 1, shad-
owing Player 1, models all teammates in Player 1’s ego net-
work (Markov blanket). In Agent 1’s generative model, Al-
ter3 corresponds to Agent 1’s beliefs of Player 3’s beliefs.
At time t Player 3 says, “It might be #4”, which is coded as
a MY for answer 4. Given this new observation, Agent 1 uses
Equation 1 to update its beliefs about Player 3’s beliefs.

pi(s | oi1:t) ∝ pi(s | oi1:t−1)pi(o
i
t|s)

surprise︷ ︸︸ ︷
− log pi(s|oi1:t−1) (1)

where s is a state and oit is an observation (message) sent by
player i at time t. The likelihood is raised to the negative log
of the previous time step’s posterior.

Agent. The agent is the hierarchical coordinator and ag-
gregator of its mental models. The ToM ability parameter
αD modulates the relative weight with which the agent com-
bines its Ego and Alter models. We conceptualize αD as the
ability to accurately infer beliefs of other agents and pay at-
tention to them (Apperly and Butterfill 2009). It represents
the relative weighting between the agent’s own Ego Model
and its Alter Models. When αD = 0, the Alter posterior is
uniform and has no effect and the final prediction is based
only on the Ego Model. When αD = 1, the Alter Models are
weighted equally to the Ego Model. Agent i aggregates its
mental models into a final posterior distribution using

pi(s | Mi) ∝ pi
(
s | oi

) ∏
m∈Mi
m̸=i

pm (s | om)
αD (2)

where Mi is Agent i’s set of mental models and pm (s | om)
is posterior of state s for the mental model of player m over
om, the set of i’s observations of m.

Alternative Models. To test whether the full representa-
tional capacity of theory of mind with both self-actualization
and partner-actualization loops are necessary to understand
human mental states, we formulate two alternative models
that “lesion” one or both of the updating loops. This allows
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Performance Human-Agent Model Comparison
(% Correct) Agreement LogLik (Likelihood Ratio test) αD

Human 66.2%
Random 19.6 ± 3.1% 20.0 ± 3.0% -231.759
Prior only 48.8 ± 3.1% 46.6 ± 2.9% -215.906 vs. Random p < 0.0001
ToM (self-actualization only, MLE) 63.6 ± 1.8% 73.0 ± 1.9% -146.372 vs. Prior-only p < 0.0001 0
ToM (partner-actualization only, MLE) 76.7 ± 1.0% 66.3 ± 1.0% -133.653 vs. Self-only p < 0.0001 1
ToM (MLE) 72.8 ± 0.8% 75.1 ± 1.0% -106.640 vs. Partner-only p < 0.0001 0.95
ToM (max performance) 77.2 ± 0.8% 71.3 ± 0.9% -109.826 vs. MLE p = 0.012 0.95
ToM (max agreement) 71.8 ± 0.7% 79.7 ± 0.8% -118.464 vs. MLE p < 0.0001 0.45

With random intervention 79.0 ± 1.8% 70.8 ± 1.6% 0.95
With intervention 82.1 ± 0.7% 70.0 ± 0.6% vs. Rand. int. p < 0.0001 0.95

Table 1: Model evaluation results and comparison with human behavior. P-values based on likelihood ratio test. We calculate
standard deviations over 100 trials. Information weights (SN, MN, SY, MY) are learned from the data through a grid search: Prior
(0.05, 0.05, 2, 2), self-act. (0.05, 0.05, 1.5, 2), partner-act. (0.15, 1, 1.55, 2), MLE (0.1, 1, 1.45, 2), max perf. (0.35, 0.85, 1.95,
2), max agg. (0.05, 0.75, 1.25, 1.95). Interventions use the same parameters as max performance and t-test for comparison.

us to test whether it is possible to explain human inferences
about their teammates without appealing to a fully devel-
oped theory of mind. We compute p-values from likelihood
ratio tests comparing the models.

Results
Model Evaluation. We find strong support for the hypoth-
esis that humans use Bayesian inference to model the minds
of their teammates and communicate and make decisions ac-
cording to those models (Table 1). Compared to a model
using only prior information (the clues distributed in the
experiment), a model capturing humans’ ability to update
their own beliefs (self-actualization only) fits the data sig-
nificantly better. A model allowing humans to update beliefs
about their teammates (partner-actualization only) fits sig-
nificantly better still. Finally, a model including the capabil-
ity to update both own and partner beliefs has the highest
fit. Higher values for αD generally lead to more peaked pos-
terior distributions. This explains why the parameter values
that produce the highest likelihood differ slightly from those
of the highest accuracy (αMLE

D = 0.95 vs. αmaxacc
D = 0.45).

In summary, the comparative fit analysis provides reliable
evidence for the mutually inferred alignment of attention
(cf., mental states) among teammates.

Our model accurately captures the judgments of human
participants, varying in predictable ways with random ex-
perimental manipulation of task difficulty and the number
of communication partners. We measure the task difficulty
faced by each individual based on how much information
the individual can draw about the correct answer from the
two clues they initially received. This captures how diffi-
cult it is for an individual to guess the correct answer before
communicating with other players (this is a somewhat noisy
measure as it ignores team-level effects of the clue distribu-
tions). Not surprisingly, human performance decreases with
task difficulty, suggesting that humans suffer from cognitive
overload (Fig. 3a). Our agent achieves high accuracy pre-
dicting human’s incorrect answers under high task difficulty

(high true-negative rate).
Human performance varies with the number of communi-

cation partners (Fig. 3b). Given the nature of the task, access
to more communication partners should be beneficial as this
guarantees access to more information. Humans, however,
perform worse with more communication partners while our
ToM agent achieves its highest performance when placed
in the most central network position (agent is 20% better
than human with four partners). This suggests that humans
struggle to integrate information when communicating with
many teammates. This picture becomes even clearer when
contrasting this with ToM ability αD (Fig. 3c). Higher levels
of ToM ability αD have the highest benefit on performance
in central network positions, yet αD hardly matters when
connected to just a single teammate.

Analysis of Human Decision Biases. The ToM model
predicts with high accuracy instances in which humans pro-
vide the correct answer as well as those in which they pro-
vide the wrong answer (48% true-negative accuracy). Com-
paring the information weighting parameters for optimal
performance with those for the highest model fit with data
from the human subject experiment from the MLE esti-
mates, we can directly see why human performance falls
short. Humans pay not enough attention to information
ruling out alternatives (optimal information weighting for
strong no 0.25 vs. MLE fit 0.05). The difference is even
more pronounced for ambiguous information (optimal in-
formation weighting for maybe no 0.9 vs. MLE fit 0.05):
humans undervalue information that is ambiguous, yet cru-
cial in arriving at the correct answer. Because this informa-
tion is ambiguous, humans may attempt to make sense of it
by imputing their own understanding (i.e., resorting to their
own prior) instead of updating their beliefs in the direction of
the ambiguous message. A similar weighting difference for
maybe yes statements suggests that humans communicate
strong yes information in vague ways (maybe-ing their state-
ments) and could significantly improve their performance by
placing higher weight on such statements (or communicat-
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Figure 3: Human performance varies with task difficulty and number of communication partners. From left to right: a) Human
performance decreases with task difficulty and is outperformed by AI agent in most cases. b) Agent improves over human
performance especially when communicating with many teammates. c) Agents with many communication partners benefit
most from high ToM ability αD. (parameters: αD = 0.95, SN = 0.35;MN = 0.85;MY = 1.95;SY = 2).

ing them more forcefully).

Measuring Theory of Mind. We propose two measures
of human theory of mind ability: αD and αC . The first,
αD, is based on an individual’s ability to form and inte-
grate accurate mental models of others when making deci-
sions and corresponds directly to our model parameter that
governs the relative weighting of the Ego vs. Alter Models.
The second, αC , captures an individual’s ability to commu-
nicate the most useful information. We perform maximum
likelihood estimate using a grid search over the relevant pa-
rameter space (Balietti, Klein, and Riedl 2021). Then, we fix
the maximum likelihood estimate of the nuisance parameters
for information weighting (SN, MN, MY, SY) but consider
the marginal of all values of αD. Instead of then picking
the global best fitting value for the entire data set, we pick
the maximum likelihood estimate of αD separately for each
individual. That is, we use the model’s inner ToM working
to estimate which value of individual i′s αD produces the
highest likelihood of the observed decision. For the second
measure αC , we consider outgoing messages sent by each
individual and compute the expected surprise that this mes-
sage should produce for the recipient, relative to ego’s Alter
Model of the recipient. Notice that we compute this inter-
nally within the Markov blanket of an agent. We do not use
information about how surprising the message is for the re-
cipient but rather how useful the sender thinks it should be
relative to what they think the recipient knows. Intuitively,
individuals who possess a high theory of mind ability, will
be better at sending the right message to the right person
compared to those with lower ToM ability. Both measures
capture social perceptiveness: how much attention an indi-
vidual pays to what others in the team know.

We find that individual-level ToM ability αD is a strong
predictor of individual-level performance (β = 0.59; p <
0.001;R2 = 0.26). Aggregating to the team level, we find
that average ToM ability αteam

D is a strong predictor of fi-
nal team performance (Fig. 4a). We find that the effect of
ToM ability is moderated by average betweenness central-
ity suggesting team performance increases most when high-
ToM ability αD individuals occupy high betweenness net-
work positions (β = 0.39; p = 0.04). The amount of com-

munication sent within a team, notably, is not a significant
predictor of team performance (β = −0.00; p = 0.265).

Turning to our analysis of theory of mind communication
ability αteam

C , we find that it is a strong predictor of team-
level performance (β = 0.47; p = 0.019). Given that we
can measure αC on the message level, it can serve as a real-
time measure of theory of mind. We find that after observing
only the first 25% of a team’s messages, αteam

C is a signifi-
cant predictor of final team performance (Fig. 4b). We ana-
lyze the temporal pattern in which high- vs. low-performing
teams communicate (Fig. 4c). High-performing teams send
messages with high information content (high surprise) early
during the team task but then send consolidating, low infor-
mation content messages at the end to facilitate convergence
(low surprise). We illustrate this in the example below (∗’s
indicate high surprise messages with novel content).

Human 1: It will not happen on Tuesday∗
Human 3: No Wednesday or Friday∗
Human 2: Monday or Thursday∗
Human 2: Did you get a no Thursday info?
Human 5: Yeah I got no Thursday∗
Human 3: I got no Thursday
Human 5: So it must be Monday

This suggests that team cognition is not static but in-
stead emerges dynamically and that high-performing teams
have the collective capacity to modulate shared cognition
dynamically to achieve both efficient information transfer
and convergence during different periods of the task. Low-
performing teams on the other hand fail to send high in-
formation content messages and also fail to achieve conver-
gence sending more surprising messages late during the task.
This pattern illustrates that high information content alone
is not desirable. Instead, convergence and joint attention to
team consensus are crucial (Woolley et al. 2022).

The current standard to predict social perceptiveness is
the Reading the Mind in the Eyes (RME) test (Baron-Cohen
et al. 2001; Almaatouq et al. 2021). Using data from a large
meta analysis (Riedl et al. 2021) of 5,279 individuals in
1,356 groups, we find RME explains between 0% and 3% of
the variation in team performance (depending on the task).
Our αteam

C measure explains 8% after observing only 25% of
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Figure 4: Theory of Mind ability predicts team performance. a) Team average ToM αteam
D is a strong predictor of the final team

performance. b) Communication ToM αteam
D serves as a real-time measure of collective intelligence. Only about the first 25%

of team messages are necessary to make significant predictions of final team performance. c) High- and low-performing teams
have markedly different temporal patterns of ToM αC .

team communication, an improvement of about 170%. Our
proposed measure captures social perceptiveness passively
and in real time which can be used to interpret a team’s
current status and determine opportunities for interventions.
Furthermore, RME captures social perceptiveness of a sin-
gle individual, while our measure is group based. Our work
also extends previous measures of “information diversity”
(Riedl and Woolley 2017). It thus captures aspects of collec-
tive attention and memory (Gupta and Woolley 2020).

Human-Agent Team Performance. So far, our AI agent
was only passively shadowing its assigned human, reason-
ing about the mental states of that human and its connected
teammates. In this section, we extend this reasoning to allow
the agent to trigger interventions that could be deployed in
human-AI teams and quantify what performance improve-
ment this might yield. We perform a counterfactual sim-
ulation in which we allow each AI agent to identify and
send one message to each network neighbor. Each agent
compares its Ego Model against its Alter Models to iden-
tify divergence in inferred beliefs. Each agent then draws
from the set of messages it received during the team dis-
cussion and chooses a message to send to each neighbor.
To do this, the agent calculates the effect of sharing one of
its available messages on the Alter Models and shares the
message that results in the lowest KL divergence, defined
as DKL(Q ||P ) =

∑
i Q(i) ln Q(i)

P (i) , between the Ego and
Alteri posteriors over all five possible answer options. If no
message lowers the KL divergence, the agent shares no mes-
sage. This is summarized as taking the action aij for each
agent i and neighbor j where

aij = arg min
m∈o

DKL
(
pegoi(s | o) || palterj (s | o’,m)

)
(3)

m is selected from the set of messages o that agent i sent or
received, s is a vector of the five possible answers, and o’ is
the set of messages agent i received from agent j. To estab-
lish a baseline intervention, we let aij be a random message
in o∪{no message}. Here, performance improves to 79.0 ±
1.8% averaged over 100 trials. For the targeted intervention,
performance improves 4.9% to 82.1 ± 0.7% which is sig-
nificantly higher (t-test p < 0.0001) than the random inter-
vention. Notice that this intervention would not be possible

without our ToM-based multi-agent model. Without it, we
could not determine which message to send to which alter.

Discussion
We develop a framework that combines theory of mind,
Bayesian inference, and collective intelligence into a gener-
ative computational model. Our model accurately captures
the decisions made by human participants in a cognitive
decision-making experiment, varying in predictable ways
with experimental manipulation of task difficulty and net-
work position. Our results suggest that humans use Bayesian
inference and Theory of Mind to model their own beliefs and
those of their teammates and communicate and make deci-
sions according to those models. We provide empirical ev-
idence that humans do not do this perfectly but suffer from
cognitive biases. Nonetheless, our Bayesian agent is robust
and achieves high performance even when fed biased and
incorrect information, providing a pathway to implement
high-performing human-AI teams. Notably, our agent works
in ad hoc teams with heterogeneous partners without any
pretraining. In such human-AI teams, our AI could augment
humans’ limited cognitive memory, attention, and reasoning
abilities to increase collective intelligence.

We show empirical evidence that the collective dynam-
ics of Bayesian agents updating probabilities of hypotheses
using observations, collectively predict the performance at
the team level. This provides the basis for a real-time mea-
sure of theory of mind ability, and maybe even collective
intelligence more broadly (Heins et al. 2022). The better the
mental models of the team members align—the less surpris-
ing observations drawn from communication become—the
higher the team’s collective intelligence. Our implementa-
tion of direct surprise weighting could be extended with a
fuller implementation of the free energy principle that would
allow agents to learn asymmetric beliefs about the reliability
of their partners’ signals. Taken together, this is a framework
to capture the emergence of collective memory, attention,
and reasoning in real time (Luria 1973; Gupta and Woolley
2020).
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