
SwiftAvatar: Efficient Auto-Creation of Parameterized Stylized Character
on Arbitrary Avatar Engines

Shizun Wang1*, Weihong Zeng2*, Xu Wang2, Hao Yang2, Li Chen2, Chuang Zhang1,
Ming Wu1†, Yi Yuan2, Yunzhao Zeng2, Min Zheng2, Jing Liu2

1 Beijing University of Posts and Telecommunications
2 Douyin Vision

{wangshizun, zhangchuang, wuming}@bupt.edu.cn
{zengweihong, wangxu.ailab, yang.hao, chenli.phd, yuanyi.cv, zengyunzhao, zhengmin.666, jing.liu}@bytedance.com

Abstract

The creation of a parameterized stylized character involves
careful selection of numerous parameters, also known as the
“avatar vectors” that can be interpreted by the avatar engine.
Existing unsupervised avatar vector estimation methods that
auto-create avatars for users, however, often fail to work be-
cause of the domain gap between realistic faces and stylized
avatar images. To this end, we propose SwiftAvatar, a novel
avatar auto-creation framework that is evidently superior to
previous works. SwiftAvatar introduces dual-domain genera-
tors to create pairs of realistic faces and avatar images using
shared latent codes. The latent codes can then be bridged with
the avatar vectors as pairs, by performing GAN inversion on
the avatar images rendered from the engine using avatar vec-
tors. Through this way, we are able to synthesize paired data
in high-quality as many as possible, consisting of avatar vec-
tors and their corresponding realistic faces. We also propose
semantic augmentation to improve the diversity of synthesis.
Finally, a light-weight avatar vector estimator is trained on
the synthetic pairs to implement efficient auto-creation. Our
experiments demonstrate the effectiveness and efficiency of
SwiftAvatar on two different avatar engines. The superiority
and advantageous flexibility of SwiftAvatar are also verified
in both subjective and objective evaluations.

1 Introduction
The emerging of the Metaverse concept is alongside with
the wide usage of virtual avatars, embodiment of Metaverse
users in various styles, which are popular in modern digi-
tal lives such as socialization, e-shopping and gaming. Even
though many avatar platforms, such as Zepeto, BitMoji and
ReadyPlayerMe, have enabled users to create their own styl-
ized avatars by specifying avatar vectors that can be inter-
preted by their avatar engines, the manual creation process
is tiresome and time consuming, especially when the engine
provides with a large set of options making up a long avatar
vector. Besides, the avatar vectors to specify usually con-
sists of parameters in both continuous forms (to control fa-
cial shape, eye spacing, etc.) and discrete forms (to control
hair styles, wearings etc.), all requiring careful selection and
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cautious adjustment to achieve a satisfactory result. There-
fore, it is valuable to study how to automatically create a
stylized avatar that best matches the user’s input selfie.

A straightforward way to realize avatar auto-creation is
using supervised learning: a network is trained on labeled
data to predict avatar vectors based on real face inputs. How-
ever, this requires large amount of data collection and man-
ual labeling, which is laborious, expensive, and is not gen-
eralizable across engines. Because the definition of avatar
vectors and assets vary from engine to engine, data labeled
for one engine can not be used to train on other engines.

Several unsupervised learning methods have been pro-
posed to address avatar auto-creation without using any la-
beled data, including Tied Output Synthesis (TOS) (Wolf,
Taigman, and Polyak 2017) and the Face-to-Parameter (F2P)
series (Shi et al. 2019, 2020). The main idea of these works
can be abstracted by Fig. 2-a. In order to achieve an avatar
vector that renders avatar image as similar to the input face
as possible, these methods impose constraints on the image-
level. They suffer from issues as follows: 1) The image-level
similarity constraints they establish are designed for realis-
tic avatar images, not applicable to stylized avatar images
that have domain gap with real face images. 2) Leverag-
ing the image-level supervision requires that the avatar ren-
dering process is differentiable. So they usually introduce
an imitator network that imitates the behavior of the non-
differentiable avatar engine. However, the un-avoidable de-
viation of imitators from the original avatar engine, as il-
lustrated by Fig. 2-a, degrades the accuracy of the similarity
measure. 3) Some approaches like F2P (Shi et al. 2019) need
iterative optimization to guarantee the quality of estimated
avatar vectors, which is time-consuming in inference.

To address these issues, we propose SwiftAvatar, a novel
avatar auto-creation framework shown by Figure. 2-b). Un-
like previous works that use similarity constraints to find the
avatar vector whose rendered image best matches a given
face, the core idea of our framework is cross-domain data
synthesis. SwiftAvatar is able to synthesize pairs of avatar
vectors and corresponding realistic faces in high fidelity as
many as possible. They are used to train a light-weight esti-
mator that directly predicts avatar vectors from input selfie.
Specifically, the SwiftAvatar framework consists of three
components: dual-domain generators, a pipeline for cross-
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a) Input                      b) TikTok avatar              c) Alter avatar a) Input                      b) TikTok avatar               c) Alter avatar

Figure 1: a) Given user’s front-facing selfie images, SwiftAvatar is able to auto-create corresponding stylized avatars on any
arbitrary avatar engine, for example, b) the TikTok avatar engine 1, or c) the Alter avatar engine 2.

domain paired data production, and an avatar estimator.
The dual-domain generators comprise a realistic genera-

tor and an avatar generator, both adopting an architecture
from SemanticStyleGAN (Shi et al. 2022). The realistic gen-
erator is pretrained on real faces, but the avatar generator
is transfer-learned on engine-rendered avatar images with
color consistency constraints. So that given a same latent
code, the two generators could generate a realistic face im-
age and an avatar image that naturally look similar. Data
synthesis relies on the dual-domain generators. The produc-
tion of synthetic data starts from randomly sampled avatar
vectors. They are sent to the avatar engine to render avatar
images, which are then inverted into latent codes through the
avatar generator. Finally, the latent codes are fed into the re-
alistic generator to get realistic face images corresponding to
the sampled avatar vectors. Moreover, we introduce seman-
tic augmentation to expand the diversity of produced data by
adding local perturbation to latent code. With the synthetic
data, we can then train an avatar estimator on them. The
avatar estimator is light-weight and efficient at inference.
Given user selfie image, it accomplish the auto-creation by
directly predicting an avatar vector that matches the input.

Our experiments involve both objective and subjective
evaluations, comparing SwiftAvatar with previous methods
in different aspects. SwiftAvatar achieves advantageous re-
sults over all existing methods in creating avatars fidelity
to the input images. Moreover, experiments on two diverse
avatar engines verify the strong generality of SwiftAvatar.
Qualitative results illustrated in Fig. 1, show that SwiftA-
vatar can generate reasonable avatars for both engines given
input faces. In summary, our contributions are as follows:

• A novel framework, SwiftAvatar, is proposed that can au-
tomatically create a stylized avatar given a user selfie im-
age. It can be swiftly applied to any arbitrary avatar en-
gines without extra assumptions (e.g. differentiable ren-

1https://newsroom.tiktok.com/en-us/express-yourself-through-
tiktok-avatars

2https://github.com/facemoji/alter-core

dering capability) on that engine.
• SwiftAvatar presents a novel pipeline that produces

paired data across domains. It involves dual-domain gen-
erators to address the domain gap between realistic faces
and stylized avatars. A novel semantic augmentation is
also devised to improve the diversity of data synthesis.

• Experiments show that SwiftAvatar outperforms previ-
ous methods in terms of both quality and efficiency. Re-
sults on two different avatar engines also verify the strong
generalizability of SwiftAvatar.

2 Related Work
3D Face Reconstruction Many progresses on 3D face re-
construction (Tuan Tran et al. 2017; Dou, Shah, and Kakadi-
aris 2017) cannot be achieved without 3D morphable mod-
els (3DMM) (Blanz and Vetter 1999) and its variants like
BFM (Gerig et al. 2018) and FLAME (Li et al. 2017), where
the geometry and texture of a photorealistic 3D face are pa-
rameterized as a vector through linear transform. Recent re-
searches also explore representing 3D faces in other formats
like dense landmarks (Feng et al. 2018b) or position maps
(Feng et al. 2018a). However, stylized avatar auto-creation
is not 3D face reconstruction. They differ in two folds: 1)
3D face reconstruction methods aim to recover realistic 3D
faces, not stylized characters; 2) Most avatar engines utilize
avatar vectors to render stylized 3D characters according to
manually designed assets. Estimating avatar vectors is much
more difficult than reconstructing 3DMM coefficients, since
the graphics rendering of avatar engines are usually black-
box and non-differentiable.

GAN and GAN Inversion The rapid growth of generative
networks, such as GANs (Goodfellow et al. 2014; Karras
et al. 2017) and VAEs (Kingma and Welling 2013; Razavi,
Van den Oord, and Vinyals 2019), inspires methods to use
latent codes that can implicitly parameterize face images
through a pre-trained generator. Among the pre-trained gen-
erators, the most popular one is the generator of the Style-
GAN (Karras, Laine, and Aila 2019; Karras et al. 2020),
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Figure 2: Conceptual comparison of previous and our methods. a) Previous methods try to solve unknown avatar vectors under
image-level constraints, which requires to train a differentiable engine imitator to participate the optimization. b) While our
method can use origin avatar engine and cross-domain generation to synthesize paired data (image-label), and then a model is
trained based on the synthetic dataset.

known for its impressive capability in generating high qual-
ity face images. In order to leverage the pre-trained Style-
GAN generator in editing existing face images, GAN in-
version (Zhu et al. 2020) is required to compute the latent
code whose StyleGAN output best matches a given face im-
age. Existing GAN inversion methods estimate latent codes
using either iterative optimization (Abdal, Qin, and Wonka
2020) or training a feed-forward encoder (Richardson et al.
2021) using VGG perceptual loss (Johnson, Alahi, and Fei-
Fei 2016), LPIPS loss (Zhang et al. 2018) or face identity
loss (Deng et al. 2019). Though GAN inversion can not be
directly applied to estimate the avatar vectors due to the
hand-crafted nature of avatar engines, SwiftAvatar leverages
GAN inversion in its data production pipleline to build the
correspondence between avatar vectors and latent codes.

Portrait Stylization Recent literatures on portrait styliza-
tion also benefit a lot from pre-trained StyleGANs. On one
hand, finetuning the pre-trained StyleGAN generator pro-
vides with an agile approach for synthesizing faces of new
styles (Song et al. 2021; Back 2021). On the other hand,
freezing low-level layers of the generator during finetuning
helps preserving structural information (e.g. face attributes)
between face images generated from the original generator
(realistic domain) and the finetuned generator (stylized do-
main), when they are using similar latent codes (Back 2021;
Huang, Liao, and Kwong 2021). Though this cross-domain
latent code sharing strategy cannot be directly applied on
avatar engines, we discover that it has a strong potential in
cross-domain data synthesis. In specific, we design the data
production pipeline of SwiftAvatar to leverage a pre-trained
SemanticStyleGAN (Shi et al. 2022). It adopts a composi-
tional generator architecture, disentangling the latent space
into different semantic areas separately, and could provide
more precise local controls on synthesized face images.

Stylized Avatar Auto-Creation Auto-creating avatars for
individual users has become an important capability to the
entertainment industry.To ensure quality, commercial solu-
tion usually involve a large amount of manual annotations,
something this paper seeks to avoid. Among the published
approaches that avoid manual annotations, some (Shi et al.
2019, 2020) are designed for realistic avatars only, which

share the same domain with the real face images, it is easy
to define whether they match or not. Therefore, these meth-
ods can utilize straightforward in-domain supervisions to
improve fidelity of creation, such as the image-level L1/L2
losses, face parsing loss, or the face identity loss (Deng et al.
2019). Creating stylized avatars from real faces, on the con-
trary, is more difficult than creating realistic avatars. There
are only few works toward this direction. Tied Output Syn-
thesis (TOS) (Wolf, Taigman, and Polyak 2017) devises a
encoder-decoder structure, that eliminates the domain gap
by sharing one encoder across two domains. The contem-
poraneous work AgileAvatar (Sang et al. 2022) formulates
a cascaded framework which progressively bridges the do-
main gap. To address the non-differentiable issue of avatar
engines, all these methods need to train an imitator network
to imitate the engines’ rendering procedure. While the qual-
ity of the images generated by the imitator is relatively poor.
Besides, they all impose explicit constraints on images from
different domains, resulting in suboptimal matches because
of the domain gap. By contrast, our SwiftAvatar framework
employs original avatar engine to generate high-quality im-
ages and utilizes dual-domain generators to overcome the
domain gap.

3 Methodology
In this section, we present our unsupervised framework for
stylized avatar’s auto-creation, as shown in Fig.3. It aims
at estimating avatar vector p for input real face image x,
then the estimated p can be used to render the corresponding
stylized avatar y by avatar engine E. Our solution is split
into three parts: dual-domain generators in Sec. 3.1, paired
data production in Sec. 3.2, and avatar estimator in Sec. 3.3.
Dual-domain generators address the domain gap problem by
generating realistic faces and stylized avatars with shared la-
tent codes. Then, paired data production focuses on how to
generate paired data consisting of avatar vectors and realis-
tic faces. Finally, avatar estimator estimates desired avatar
vectors similar to input real face images.

3.1 Dual-Domain Generators
The dual-domain generators consist of a realistic generator
Greal and an avatar generator Gavatar to achieve cross-domain
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Figure 3: Overview of our method. a) Dual-domain generators consist of a fixed realistic generator and a transfer-learned
avatar generator. They can generate corresponding realistic and avatar images when given the same latent codes. b) Paired data
production starts from randomly sampled avatar vectors, which are sent to the avatar engine to render avatar images. These
images are then inverted into latent codes through GAN inversion, and the latent codes are fed into the realistic generator to
get realistic face images corresponding to the sampled avatar vectors. c) Supervised by the paired data, the avatar estimator can
predict avatar vectors when given an real face input, then the avatar can be rendered by avatar engine.

image generation. Given the same latent code, they can si-
multaneously synthesize paired images of both realistic face
and stylized avatar while preserving the same attributes (e.g.
skin color, hair style). To impose an extra facial consistency
constraint between the realistic and the avatar domains, we
adopt SemanticStyleGAN(Shi et al. 2022) as the architec-
ture of two generators owing to its extra semantic segmenta-
tion output.

Cross-Domain Generation Pretrained SemanticStyle-
GAN on CelebAMask-HQ (Lee et al. 2020) is directly used
as realistic generator Greal, and also used to initialize the
weight of Gavatar. We perform transfer learning on Gavatar:
using only limited number of avatar images Y to finetune
avatar generator Gavatar. Y are rendered from avatar engine
using randomly sampled avatar vectors. The finetune proce-
dure follows the settings in SemanticStyleGAN, which us-
ing the loss of StyleGAN2 (Karras et al. 2020):

LStyleGAN2 = Ladv + λR1LR1 + λpathLpath (1)

where λR1, λpath are the constant weights of R1 regular-
ization (Mescheder, Geiger, and Nowozin 2018) and path
length regularization (Karras et al. 2020) separately. Adver-
sarial loss Ladv adopts non-saturating logistic loss (Good-
fellow et al. 2014) and it forces Gavatar to generate images
similar to avatar image dataset Y . R1 regularization LR1 is
employed to improve the training stability and reduce the
number of artifacts. And path length regularization Lpath

leads to more reliable and consistently behaving models.

Facial Consistency Although directly fine-tuning Seman-
ticStyleGAN can generate structurally similar paired data of
avatar image and realistic face, the colors of each region
are not well matched. Since SemanticStyleGAN learns the
joint modeling of image and semantic segmentation. Such
design can simultaneously synthesize face images and their

semantic segmentation results. We utilize the semantic seg-
mentation output and introduce a color matching loss for
cross-domain facial color consistency. Specifically, we ex-
tract specified pixels from same semantic areas in generated
paired images, and match the mean color of them. ms(I)
is the mean color of the region s in the image I , and we
mainly consider matching the color in hair and skin areas:
s ∈ {hair, skin}. The color matching loss is:

Lcolor =
∑
s

∥ms(Greal(z))−ms(Gavatar(z))∥2 (2)

Overall, the final finetuning loss Ltotal for Gavatar is for-
mulated as:

Ltotal = LStyleGAN2 + λcolorLcolor (3)

An example is shown in Figure. 4, when given a shared
latent code, the dual-domain generators can generate a pair
of images: a realistic face and a stylized avatar. They are
similar in facial structure and color composition, yet belong
to two different domains.

3.2 Paired Data Production
Paired data production pipeline focuses on synthesizing
paired avatar vectors and realistic face images, as is illus-
trated in Figure. 3. We sample a number of random avatar
vectors as labels P , which are used by the graphics engine
to generate corresponding avatar images Y . Then, for every
avatar image y, we pass it through GAN inversion to get its
latent code w. We adopt optimization-based GAN inversion
for its better performance:

w∗ = argmin
w

Linvert(y, w) (4)

where w∗ represents our target latent code. For faster
convergence, latent codes are initialized with mean value
wmean, and optimized by gradient descent. We use LPIPS
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a) Real image              b) Real seg.             c) Avatar image          d) Avatar seg.

Figure 4: Generated results of our dual-domain generators.
When providing randomly sampled latent codes, we can ob-
tain a) and b), realistic faces and their semantic segmenta-
tion results. Simultaneously, we can obtain c) and d), styl-
ized avatar images and their semantic segmentation results.

loss (Zhang et al. 2018) to measure perceptual similarity, and
mean squared error (MSE) loss between original images and
reconstructed avatar images to measure reconstruction sim-
ilarity. Besides, MSE loss between wmean and w is set as
latent regularization to ensure better generation results. The
loss function is formulated as:

Linvert = λp LPIPS(y,Gavatar(w))+

λi ∥y −Gavatar(w)∥2 + λl ∥w − wmean∥2 (5)

where λp, λi, λl are constants to balance three loss terms.
After obtaining desired latent code w, it is fed into the re-
alistic generator Greal to generate a realistic face x which is
similar to original avatar image y in identification:

x = Greal(w) (6)

In this way, we can generate paired data (p, x) used for
later avatar vector estimation training process. An example
illustration of paired data is shown in Figure. 5.

Semantic Augmentation The sampled avatar vectors, as
well as their rendered avatar faces suffer from the lack of
diversity, due to the limited amount of assets available for
avatar engines. Take the “hair style” attribute for example,
in most stylized avatar engines, different hair styles are de-
termined by selecting from different hair meshes all prede-
fined in the engine. The limited number of predefined mesh
assets restricts the capability of avatar engines to match a
real-world user face, whose hair styles would be countless.
To enrich the diversity of generated realistic faces in data
production, we take advantage of the compositional gener-
ation ability of our dual-domain generators which are im-
plemented as SemanticStyleGANs, and design the seman-
tic augmentation. In SemanticStyleGAN, each semantic part
is modulated individually with corresponding local latent
codes. Such property enables us to manipulate only specific
regions of the synthetic images while keeping other regions
unchanged. In implementation, we add random noises to
part of latent code corresponding to these ambiguous avatar

a) Rendered image       b) avatar recon.             c) Real recon.         d) Semantic aug.

Figure 5: Examples of produced paired data. a) Engine ren-
dered avatar images. b) Reconstructed avatar images. c)
Generated realistic images. d) Semantic augmented images.

vectors (e.g. hair type). Semantic augmentation can be de-
scribed as:

wk → (1− λaug)wk + λaugn (7)
where λaug is a hyper-parameter to adjust semantic aug-
mentation tensity, wk is the local part of latent code to be
augmented, and n represents for random noise. A semantic
augmentation example is shown in Figure. 5, where hair and
background region are changed.

3.3 Avatar Estimator
Once the aforementioned synthetic paired dataset is pro-
duced, we can train an avatar estimator to predict avatar vec-
tors, which contain continuous and discrete parameters. We
choose ResNet-18 (He et al. 2016) pretrained on ImageNet
(Deng et al. 2009) as our backbone. We remove its last fully
connected layers and add multiple separate MLP heads for
different parameter estimation. All continuous parameters
form a target vector to be predicted in one head, supervised
by L1 loss. Every discrete parameter estimation is carried
out with a standalone head. Because both generation and se-
mantic augmentation would inevitably introduce noises to
discrete labels, we choose symmetric cross-entropy (SCE)
loss (Wang et al. 2019), which has been proven robust to
noises, for the optimization of discrete tasks. The total loss
of avatar estimator is:

Lestimator = λd SCE(p̂id, p
i
d) + λc |p̂c − pc| (8)

where λd and λc are hyper-parameters to balance two loss
terms. p̂id, p̂c are the prediction results of i-th discrete head
and continuous head respectively. And pid, pc are their cor-
responding ground-truth.

4 Experiments
Experimental Data To verify the effectiveness of our
method, we conduct experiments on two stylized avatar en-
gines: the TikTok engine and the Alter engine. The TikTok
engine contains resourceful discrete and continuous avatar
parameters, so we generate 50000 avatar vectors and cor-
responding rendered images. The Alter engine is an open-
source avatar engine and only contains discrete avatar pa-
rameters which has fewer assets than the TikTok engine,
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Figure 6: Visual comparison with other methods on TikTok engine and Alter engine. a) Given input images, b) our method
creates stylized avatars that look similar to input images. c) Baseline method without considering the domain gap problem in
stylized avatars. d) F2P (Shi et al. 2019), an image-level constraint method intending to create semi-realistic avatars, is not
suitable to create stylized avatars. e) F2P v2 (Shi et al. 2020), a fast and robust version of F2P. f) Manually created avatars by
professional designers, which can be regarded as ground truth.

so we just generate 10000 avatar vectors and correspond-
ing rendered images. The detailed information of both avatar
engines can be found in supplementary materials. These
avatar images and avatar vectors are used for finetuning
avatar generator and producing paired data. For evaluation,
we choose 116 images from FFHQ dataset (Karras, Laine,
and Aila 2019), which consists of diverse kinds of face
shapes, hairstyles, etc. We invite designers to manually gen-
erate avatar vectors for these 116 images as ground truth.

Implementation Details We implement our methods us-
ing PyTorch 1.10 library and perform all experiments on
NVIDIA V100 GPUs. When finetuning the avatar genera-
tor Gavatar, we use the same optimizer settings as in Seman-
ticStyleGAN. Batch size is set to 16, style mixing probabil-
ity (Karras, Laine, and Aila 2019) is set to 0.3. λR1, λpath

are set to 10 and 0.5 separately. Lazy regularization (Karras
et al. 2020) is applied every 16 mini-batches for discrimi-
nator (R1 regularization) and every 4 mini-batches for gen-
erator (path length regularization). All the images used for
generators are aligned and resized to resolution 512 × 512.
The optimization-based GAN inversion approach employs
Adam (Kingma and Ba 2014) optimizer in the paired data
production stage, and the learning rate initially follows co-

sine annealing with 0.1. We optimize 200 steps for all latent
codes, and λi, λp, λl are set to 0.1, 1 and 1, respectively.
The mean latent code wmean is the average among 104 ran-
domly generated latent codes from avatar generator Gavatar
in W space, and serve as the initialization. Notably, directly
optimizing the latent code could be problematic since some
avatar assets are transparent, e.g. glasses. Thus, we use a
modified version w̃mean for latent code initialization (See
supplementary materials for details). For semantic augmen-
tation, we generate 10 augmented images for each latent
code, using randomly generated noise in W space. We set
λaug to 1 for the background to improve the model robust-
ness of background variance, and also set λaug to 0.3, 0.06
for the hair part and glasses part to expand data diversity. In
the avatar estimator training stage, the input images of avatar
estimator are resized to 224 × 224. We use the Adam opti-
mizer with batch size 256 to train 100 epochs. The learning
rate is set to 1e− 3, and decayed by half per 30 epochs. For
the experiments on TikTok engine, there are 1 continuous
head and 8 discrete heads inside the avatar estimator, so we
set λc and λd to 1 and 10 separately. For the experiments on
Alter engine, the avatar estimator contains 6 discrete heads
and the training loss only contains discrete loss.
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Method TikTok engine ↓ Alter engine ↓ Speed ↑
Baseline 0.5033 0.3962 ∼ 102 Hz
F2P 0.3562 0.3040 ∼ 1 Hz
F2P v2 0.4466 0.2825 ∼ 102 Hz
Ours 0.3110 0.2405 ∼ 102 Hz

Table 1: Quantitative Evaluation. We compare our method
with three other methods on TikTok engine and Alter en-
gine. Lower distance represents results are more similar to
manual-creation. We test speed on NVIDIA V100.

4.1 Comparison with Other Methods
We compare our method with other methods, including
Baseline, F2P (Shi et al. 2019), F2P v2 (Shi et al. 2020)
on both their auto-creation similarity and inference speed.
Baseline method is setup as ignoring the domain gap prob-
lem, where the avatar estimator is trained on (y, p) paired
data, that is, trained on rendered avatar images instead of
real face images. Figure. 6 shows a comparison of rendered
stylized avatars among different methods corresponding to
their predicted avatar vectors. As can be seen, our method
can better address the domain gap problem and create styl-
ized avatars with high similarity with input real faces and
approximate the quality of manual method from designers.
For more results, please refer to supplementary materials.

4.2 Quantitative Evaluation
Although the avatar auto-creation has no standard answer,
we generally regard the avatar manually created by profes-
sional designers as the ground truth, and quantitatively eval-
uate at image level. We calculate the perceptual distance
(LPIPS) (Huang, Liao, and Kwong 2021) between auto-
created avatar and manual-created avatar to simulate human
observation. The lower distance indicates the avatar is bet-
ter matched to input image. The results are presented in Ta-
ble. 1, from which we can see our method significantly out-
performs others. Since our method only needs one forward
propagation, our inference speed is also competitive, which
can be applied in real-time applications.

4.3 Human Rating
We invited 50 volunteers to subjectively evaluate all algo-
rithms of 50 images from evaluation dataset on both graphics
engine. Given the input real face images and stylized avatars
generated from our and other methods, the volunteers were
requested to pick the best matching avatar for each input real
face. The methods were presented in random order, and the
volunteers were given an unlimited time to choose. The hu-
man rating results are shown in Table. 2. 59.11% of the an-
swers on TikTok engine and 63.68% on the Alter engine se-
lected our method as the best matching results, showing the
superiority of our method compared with others.

4.4 Ablation Study
We conduct the ablation experiments in terms of domain
adaptation and semantic augmentation to verify their impor-

Method Ours baseline F2P F2P v2

TikTok 59.11% 5.66% 30.86% 4.37%
Alter 63.68% 18.94% 8.65% 8.73%

Table 2: Human subjective rating on two engines. Our
method earns the most choices when asked to choose the
avatar which matches the human image.

Method TikTok engine ↓ Alter engine ↓
baseline 0.5033 0.3962
+ domain adaptation 0.3401 0.3123
+ semantic aug 0.3110 0.2405

Table 3: Ablation study on two engines. Lower distance in-
dicates better matching results to manual-creation.

tance in our framework. We adopt the same evaluation met-
ric described in Sec. 4.2. The ablation starts from Baseline
method, where the avatar estimator is trained on rendered
avatar images and avatar vectors pair. Then on the basis of
baseline method, we add domain adaptation and semantic
augmentation in turn. Table. 3 shows their quantitative re-
sults on different engines. The domain adaptation greatly
alleviates the domain gap problem in stylized avatar auto-
creation, establishes a bridge of connecting real faces and
stylized avatars. The semantic augmentation brings notice-
able improvement for our method due to its expansion of
diversity to samples.

5 Limitations and Future Work
There are two main limitations we observed in the ex-
periments. First, our method occasionally predicts wrong
color influenced by environmental lighting. This problem
might be resolved by considering lighting condition into
our pipeline. Second, in paired data production, avatar vec-
tor sampling distribution directly influences the training
data quality. Simply random sampling could produce some
strange images and may cause long-tail problem (e.g. gen-
der, age). In the future, we will perform attribute analysis,
and introduce reasonable sampling priors to address syn-
thetic data distribution problem.

6 Conclusion
In summary, we present a novel unsupervised framework for
auto-creation of stylized avatars. We design the dual-domain
generators to address the domain gap between the real im-
ages and stylized avatars. Then following the paired data
production pipeline, high-quality paired data are produced,
which is used for training the avatar estimator. Finally styl-
ized avatars are created by conducting efficient avatar vector
estimation. Compared with previous methods, our method
is more concise in training stage and more efficient in in-
ference stage. Results on quantitative evaluation and human
rating demonstrate the superiority of our method. Also, the
success of applying on two different avatar graphics engines
demonstrates the generality of our method.
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