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Abstract

Existing methods on facial expression recognition (FER) are
mainly trained in the setting when multi-class data is avail-
able. However, to detect the alien expressions that are ab-
sent during training, this type of methods cannot work. To
address this problem, we develop a Hierarchical Spatial One
Class Facial Expression Recognition Network (HS-OCFER)
which can construct the decision boundary of a given expres-
sion class (called normal class) by training on only one-class
data. Specifically, HS-OCFER consists of three novel compo-
nents. First, hierarchical bottleneck modules are proposed to
enrich the representation power of the model and extract de-
tailed feature hierarchy from different levels. Second, multi-
scale spatial regularization with facial geometric information
is employed to guide the feature extraction towards emotional
facial representations and prevent the model from overfit-
ting extraneous disturbing factors. Third, compact intra-class
variation is adopted to separate the normal class from alien
classes in the decision space. Extensive evaluations on 4 typ-
ical FER datasets from both laboratory and wild scenarios
show that our method consistently outperforms state-of-the-
art One-Class Classification (OCC) approaches.

Introduction

As more and more intelligent devices step into our daily
life, ubiquitous computing environments are gradually com-
ing into reality (Xi et al. 2022a). However, most existing
Human-Computer Interaction (HCI) works are designed to
understand and handle the explicit instructions of users,
while ignoring their internal psychological and emotional
states (Zeng et al. 2009). Such kinds of interactions lack
emotional intelligence and present great challenges for
building user-friendly HCI systems. This problem prompts
researchers to turn their attention to a powerful emotional
indicator, facial expression (FE), which makes it possible for
HCI to uncover the subtleties of the users’ affective behavior
and deal with their emotional changes. With the help of fa-
cial expression recognition (FER), HCI systems can gain the
ability to provide more warm and humanized service (Wen
et al. 2016; Xi et al. 2022b).
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Figure 1: When multi-class expression data is available dur-
ing training, ordinary FER methods can operate well. But
in real applications, multi-class data is not always available.
Under such a case, the FER system cannot be trained in the
ordinary fashion. Therefore, one-class classification meth-
ods are needed to draw a precise decision boundary of the
normal expression class so that the alien expression beyond
the boundary can be easily detected during inference.

Generally, the objective of FER is to extract and inter-
pret subtle FE-related representation from the input image
(Zhang and Tjondronegoro 2011). As shown in Fig. 1, FER
is often modeled as a multi-class classification task with ad-
equate multi-class training data in most of the recent works.
However, in some real application scenarios with a lack of
multi-class data, these FER methods do not always work.
This situation is quite common in the open world due to the
great costs and difficulties of the collection and annotation of
FE data. For example, panic disorder is an anxiety disorder
characterized by reoccurring unexpected intense fear. Psy-



chologists hope to monitor the course of this disease by au-
tomatically detecting the patient’s fearful expression during
the attack. Since the attacks of panic disorder are unexpected
and short in time, it is almost impossible to collect the fearful
expression from the patient during the model training. Thus,
the lack of fear data will directly lead ordinary multi-class
FER methods to not be trained normally.

The above-mentioned real scenarios require an FER sys-
tem that can be trained from the normal expression which is
easy to observe, and then detect the alien expression which
is hard to collect. This leads to a new task of One-Class
Classification (OCC) for FER. OCC is a machine learning
paradigm to detect the alien class that falls outside of the
training data. Though showing good performance in many
other vision tasks, existing OCC approaches do not seem
to fit well in the FER task. The main reason is that current
OCC methods tend to concentrate on the high-level seman-
tic extraction of the input image and neglect the hierarchical
spatial information in subtle facial representations, which
greatly limits their representation power and leads to the un-
derfitting problem in the complicated FER task.

In this paper, we study one class facial expression recog-
nition. Specifically, we design a novel method, termed HS-
OCEFER, to detect the alien expression with the help of hi-
erarchical and spatial facial information. First, we construct
the hierarchical bottleneck modules to enhance the repre-
sentation ability of the auto-encoder backbone and extract
rich latent features from various levels of the network. Com-
prised of low-level facial texture, middle-level muscle acti-
vation, and high-level semantic information, these features
provide critical information for the FER task. Second, we
propose to employ multi-scale spatial regularization by per-
forming facial landmark detection on the extracted repre-
sentation. This regularization term can be viewed as a con-
straint to guide the network towards emotional information
in subtle facial representations. Third, we adopt the intra-
class variation compacting in the decision space, which min-
imizes the volume of normal expression’s hypersphere. To
accommodate different tasks and features, we summarize
the hybrid loss function and propose a decision-level fusion
strategy for inference.

In summary, the contributions of this paper are threefold:

(1) We construct a novel method HS-OCFER to detect
alien expression that falls out of the training expression
class. It is innovative to propose the deep OCC method on
FER, as far as we know.

(2) To balance the network’s representation power appro-
priately between underfitting and overfitting, we propose hi-
erarchical feature extraction with multi-scale spatial regu-
larization and compacting intra-class variation. By jointly
optimizing the three parts, the network is well-guided to ex-
tract more detailed FE-related features that are momentous
for FER and construct a more precise decision boundary be-
tween the normal expression and alien expression.

(3) We conduct extensive experiments on 4 representative
FER datasets including the lab-controlled CFEE and KDEEF,
and in-the-wild ExpW and RAF-DB. The results demon-
strate the superiority of the proposed HS-OCFER method
compared to the state-of-the-art OCC approaches.
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Related Work

Facial Expression Recognition. As a complicated vision
task, the key to a well-performed FER method is supe-
rior representation learning ability with separable features
(Corneanu et al. 2016). To solve this problem, conventional
methods propose various algorithms to extract non-image
representation of the facial image, including Gabor feature
(Lyons et al. 1998), Local Binary Pattern (Shan, Gong, and
McOwan 2009), and Optical flow (Cohn et al. 1998). Re-
cently, more and more recognition methods are proposed
with the development of deep neural networks and collec-
tion of large-scale datasets (Fan et al. 2021, 2022). The deep
methods designed for FER includes DLP-CNN (Li, Deng,
and Du 2017), IL-CNN (Cai et al. 2018), SCN (Wang et al.
2020), ADDL (Ruan et al. 2020), MA-Net (Zhao, Liu, and
Wang 2021), and FDRL (Ruan et al. 2021). Deep methods
have achieved great improvement in ordinary FER task due
to their strong power of representation learning, especially
with various environmental factors in the wild.

One Class Classification. OCC, also known as novelty de-
tection, is an unsupervised learning task of detecting sam-
ples out of the distribution from training data. In OCC, the
model is trained on the data of only one class (named nor-
mal class) and ought to detect the samples that lie out of the
training samples (named alien class) during inference (Per-
era, Oza, and Patel 2021; Pimentel et al. 2014). Different
from well-researched multi-class classification, it is much
tougher for an OCC classifier to learn the distinction among
different classes and extract more discriminative features for
decision. There are generally two types of OCC methods:
non-deep and deep methods. Non-deep methods focus on
calculating the optimal margin of the training data and learn-
ing a data-enclosing region in the sample space (Scholkopf
et al. 1999; Tax and Duin 2004), which are proficient in han-
dling structured data of a relatively small scale but may get
stuck in the curse of dimensionality when coping with high-
dimensional images in the wild. Deep methods are proposed
to overcome this curse in an end-to-end manner, including
the discriminative (Oza and Patel 2019, 2018) and genera-
tive deep models (Zaheer et al. 2020; Sabokrou et al. 2018).

Problem Definition

Our goal is to build a FER model that is trained with the
expressions of only one class (called normal class) and can
detect the expressions from alien classes during inference.
Supposing c¢ is the normal expression class that can be ob-
served during training, and C = {co} U {c }_; is the set
of expression classes the model may encounter during infer-
ence, including K alien classes. Due to the fact that we do
not know how many expression classes will occur, K is set
as a scalar random variable. Let  and s denote the input ex-
pression image and spatial regularization data, with y as the
corresponding label. Given training data {x,,, 8, yn } 21,
we want to learn a feature extractor f(x;® f) to extract
deep features z from the input data, where © ; is the weight
parameter matrix of f. After that, an alien score function
S(zx, z;0g) is needed to infer its probability score to be



from the alien expression classes {ci }#_,, where O is the
weight parameter matrix of S. As most existing research, our
work focuses on the above feature extractor f and alien score
function S (Hu et al. 2020; Perera, Nallapati, and Xiang
2019; Ruff et al. 2018). To overcome the influence of thresh-
olding process and provide a calibration independent mea-
surement for the given alien score, Area Under the Curve
(AUC) of the Receiver Operating Characteristic is adopted
as the evaluation metric.

Our Model

In this section, we present the proposed model named Hi-
erarchical Spatial One Class Facial Expression Recognition
(HS-OCFER).

Model Overview

The main framework of our model is shown in Fig 2. Specif-
ically, the proposed HS-OCFER consists of three main com-
ponents. Firstly, we devise hierarchical bottleneck modules
to extract the detailed feature hierarchy from the input im-
age. By bridging the representation gap between the encoder
and decoder, the modules can relieve the pressure of under-
fitting and achieve better feature extraction. Secondly, we
employ multi-scale spatial regularization using FE-related
information to avoid the potential overfitting problem and fa-
cilitate the robustness of feature extraction in the real world.
Thirdly, we adopt compact intra-class variation on the hi-
erarchical decisive feature to construct a compact decision
space for OCC task. Finally, we conclude with a summarized
loss function for optimization and propose a decision-level
fusion inference algorithm to incorporate the evaluation of
hierarchical feature compactness and image reconstruction
quality. The whole framework is trained in an end-to-end
manner.

Hierarchical Feature Extraction

As a typical model for unsupervised feature extraction, auto-
encoder (AE) is frequently adopted in recent OCC works
(Ruff et al. 2018; Chen et al. 2021). Generally, AE con-
sists of an encoder network, a decoder network, and a much
smaller bottleneck layer in the middle. Benefiting from the
typical image reconstruction task and encoder-bottleneck-
decoder architecture, AE is capable of learning effective la-
tent representation in various OCC problems.

However, conventional AE model encounters a crucial
challenge of underfitting when utilized in the one-class FER
task, which accounts for its unpromising results in the ex-
periment. In conventional AE, the latent feature is only ex-
tracted from the top layer of the encoder network, which
emphasizes the high-level semantics while neglecting the
lower-level visual representations, like low-level facial tex-
ture and middle-level muscle activation. Recent research
has shown that these hierarchical representations are signifi-
cantly involved with the formation of facial expressions and
play an important role in FER (Du, Tao, and Martinez 2014;
Zhao, Liu, and Wang 2021). Causing such valuable infor-
mation to vanish through the network, the conventional bot-
tleneck layer inappropriately limits the representation power
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of the whole model and leads to the underfitting problem for
complicated representation learning tasks like FER.

To alleviate such an underfitting problem, we propose a
series of hierarchical bottleneck modules to preserve multi-
level hidden representations for better reconstruction and ex-
tract hierarchical latent features from different layers. As
shown in Fig. 2, these modules are introduced as shortcut
paths between the encoder and decoder in all hidden lev-
els, which takes the feature map of the hidden layer in the
encoder as its input and allows such intermediate informa-
tion to flow to the decoder without further encoding. Specif-
ically, the ¢-th (¢ = 1,---,l) hierarchical feature extrac-
tion module firstly reduces the channels of the input fea-
ture map through convolutional and ReLU layers and de-
rives its distilled abstract ¢»; = ReLU(Conv;(x;)) where
x; is the feature map of the i-th encoding layer. Afterward,
there are two paths split for different purposes. For one path,
further convolutional and max-pooling operations are con-
ducted on the abstract to obtain the hierarchical latent fea-
ture z; = Pooling(Conva(¢;)) in the i-th level. For the other
path, the abstract representation is detailed through another
convolutional layer and turns into a recovered feature map
x, = Convs(¢;) of the same size as x;. The recovered
is then fused with the output ;1 of the (¢ + 1)-th decoding
layer using element-wise sum and fed into the i-th decod-
ing layer. Similar to common AE, given the output image of
the decoder @, the goal of hierarchical feature extraction is

defined as:
ﬁv‘econ,s = Z ||.’1} - "iH%

(x,5,y)

)

Multi-scale Spatial Regularization

The extraction of hierarchical features strengthens the repre-
sentation power of the model, but brings another vital prob-
lem, i.e., overfitting. With the enriched latent feature comes
massive redundant information that is not related to the FER
task (e.g. various backgrounds, illumination changes, arbi-
trary pose variations), while subtle facial expression changes
can be easily neglected. Moreover, due to the highly varied
environment in the real world, the influence of surround-
ings may cause a lot of disturbance in the feature extrac-
tion. Therefore, directly applying the hierarchical recon-
struction feature with no spatial regularization will lead to
sub-optimal results due to those extraneous factors.

To solve such an overfitting problem, we propose to learn
robust multi-scale spatial regularization from the FE-related
information, e.g., facial landmark coordinates, which en-
codes rich spatial locations for FER task (Lv et al. 2019;
Gopalan, Bellamkonda, and Chaitanya 2018; Wang et al.
2020). Specifically, given the landmark coordinates of the
input image, the spatial regularization term is performed
by a subtask of facial landmark detection. As shown in in-
formed research, different convolutional layers in the net-
work are proficient in extracting the features on different
scales (Selvaraju et al. 2017). For example, the lower layers
tend to focus on small-scale textures, while the higher layers
usually reflect large-scale structures. Therefore, we obtain
the multi-scale spatial feature of the model by concatenat-
ing the feature hierarchies {z1, - -, z;} with the latent fea-
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Figure 2: Main framework of the proposed HS-OCFER, which comprises three main tasks including hierarchical feature ex-
traction, spatial information regularization, intra-class variation compacting.

ture zo in the conventional bottleneck layer. Then through
a fully-connected layer, the detection result of the landmark
coordinates can be derived as s. Following the protocol of
numerical coordinate regression, given the landmark ground
truth s, the goal of multi-scale spatial regularization can be

formulated as:
> ls—3l3

(x,8,9)

Lreg @

Compact Intra-class Variation

After extracting robust hierarchical features with multi-scale
spatial regularization, a key point for OCC problem is to
construct a separable decision space in which the images
of the normal expression can be easily distinguished from
the alien ones. Hence, in such space, different images of the
normal expression are expected to have a similar feature rep-
resentation and a collection of the features must be placed in
a compact hypersphere during training.

In adaptation to the one-class task, we construct a separa-
ble feature space with compact intra-class variation. Similar
to the spatial regularization, we concatenate the hierarchical
features from the bottleneck layers to form the decisive fea-
ture zq = (20, 21, -+, 2;). To limit the feature distribution
of the normal expression, we assume that zg ~ N (u, 0 1)
where p is a variable prototype center and o2- I is a constant
covariance matrix for the given normal class. In order to per-
form the parameter estimation of p, we have to minimize
the log-likelihood function of z,. From that, the Euclidean
distance between the decisive feature z; and the prototype
center p is proved to be the minimization target of compact
intra-class variation, i.e., the feature points of the normal ex-
pression class should be distributed in the neighborhood of
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their prototype pt. Using the Maximum Likelihood Estima-
tion method, the goal of compact intra-class variation is de-

fined as:
ﬁcompact = Z sz - uH%

(z,8,9)

3)

where p is a trainable parameter.

Model Optimization and Inference

Comprising the above three tasks, the overall optimization
target function of the proposed model can be briefly sum-
marized as

L= Erccons + A Ereg + v Ecompact (4)

where L;ccons i the image reconstruction loss, £, is the
spatial regularization 10ss, Lcompact 1S the compact variation
loss, with A and v as the weight parameters. By optimizing
the target function, the proposed model can appropriately
balance its representation power between underfitting and
overfitting with the help of hierarchical reconstruction in-
formation and spatial regularization, and utilize the power
to construct a competent decision space with compact intra-
class variation for one-class FER task.

During inference, we propose a decision-level fusion al-
gorithm to calculate the alien scores of the test samples
based on hierarchical feature compactness and image recon-
struction quality. Since the features of the normal samples
are compactly constricted by the compact variation loss dur-
ing training, it is supposed that the decisive feature points of
the normal expression tend to be located closer to the pro-
totype center of training samples than the alien ones. In a
similar way, the reconstructed images of the normal samples



are believed to have lower errors than the alien ones. There-
fore, given the input image =z, its centripetal distance to the
prestored feature prototype ¢ and reconstruction error to the
output image & are both considered great candidates for the
alien score function. For a more comprehensive evaluation
of the test sample, we adopt the weighted fusion method to
combine the decision information of the feature compact-
ness and reconstruction quality and generate the final alien
score as the model output.

Experiment Setup

In this section, we introduce the detailed experimental setup,
including the datasets, task setting, baselines, and imple-
mentation details.

Datasets

In the experiment, we utilize four typical and representa-
tive FER datasets as our benchmark, including laboratory-
controlled CFEE (Du, Tao, and Martinez 2014) and KDEF
(Lundqvist, Flykt, and Ohman 1998), and in-the-wild
ExpW (Zhang et al. 2018) and RAF-DB (Li and Deng 2019).
The scale of FER datasets is generally smaller than many
other computer vision tasks. This can be the difficulty of data
collection and annotation caused by the subjectivity and sub-
tleness of expressions. Furthermore, the distributions of FER
datasets are also highly varied due to different environmen-
tal factors like lighting. The inadequate samples and diverse
distribution cause great challenges for one-class FER.

Task Setting

All the aforementioned FER datasets have seven expression
classes, from which we follow the previous OCC works
(Perera, Nallapati, and Xiang 2019; Ruff et al. 2018; Hu
et al. 2020; Chen et al. 2021) and create seven setups in
the experiments respectively. For each of these four FER
datasets, we use the training set of each expression class in
turn as the normal class ¢ to train the cp-th model and then
test it on the full test set of all classes in which the rest of
the expression classes except ¢y are regarded as the alien
classes. In order to alleviate the impact of dataset partition-
ing, we randomly split each dataset into 5-folds and report
the average performance over 5 runs.

Baselines

To have comprehensive coverage of related works, we
choose the following non-deep and deep OCC methods as
the compared baselines. For non-deep methods, OCSVM
(Scholkopf et al. 1999) and SVDD (Tax and Duin 2004;
Zeng et al. 2006) are chosen as non-deep baselines. With
the usage of the kernel function, they can be extended into
the corresponding kernel methods as OCSVM-k and SVDD-
k. For deep methods, the state-of-the-art deep OCC meth-
ods can be divided into two categories: discriminative meth-
ods and generative methods. For discriminative methods, we
choose DSVDD (Ruff et al. 2018), HRN (Hu et al. 2020),
and MKD (Salehi et al. 2021) for comparison. For gener-
ative methods, we choose OCGAN (Perera, Nallapati, and
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Xiang 2019), OGNet (Zaheer et al. 2020), and IGD (Chen
et al. 2021) as baselines.

The detailed properties of all the baselines and our method
are summarized in Table 1. Specifically, Feature Hierarchy
is the feature extraction structure from different levels, and
Spatial Reg. denotes the regularization term of the spatial
information to avoid overfitting.

Feature Spatial ~ Compact

Method Backbone Hierarchy Reg. Space
OCSVM SVM X X X
OCSVM-k SVM X X X
SVDD SVM X X v
SVDD-k SVM X X v
DSVDD AE X X v
OCGAN GAN v X X
OGNet GAN v X X
HRN MLP X X X
MKD CNN v X X
IGD AE X X 4
Ours AE v v v

Table 1: The categorization of the comparison methods.

Implementation Details

We build our model using PyTorch library. Before training,
the location of facial regions and landmarks is loaded from
the original dataset. The images of the facial regions are then
cropped into the size of 224 x 224 pixels and pre-processed
using Li-norm global contrast normalization. During the
training process, we choose Adam as the main optimizer and
initialize its learning rate as 10~2, with an exponential decay
factor of 0.99. The number of training epochs is set as 200
and the mini-batch size is set as 128. The fusion weight pa-
rameter « is 0.01 for CFEE and KDEF and 0.005 for ExpW
and RAF-DB. All experiments are performed on NVIDIA
RTX 3070 GPU card. The code and supplementary materi-
als are provided at https://github.com/KyleL99/HS-OCFER.

Results and Analysis

In this section, we present the statistics and analysis of the
experiments. First, we evaluate the performance of the pro-
posed method as compared to state-of-the-art OCC base-
lines. Second, we conduct an ablation study to analyze the
profits of different components. Then we design experi-
ments of different ratios to explore the impact of imbalanced
datasets and verify the robustness of the proposed method.
Finally, we visualize the attention maps to further explain the
effectiveness of the proposed method. Owing to the space
constraints of the main paper, the detailed results on KDEF
and RAF-DB are presented in Supplementary Materials.

Comparison with State-of-the-arts

We present the results of all the comparison methods on
CFEE and ExpW in Table 2 and Table 3 respectively. Based
on the comparison results, it can be observed that:

(1) Compared with other one-class classification meth-
ods, our method obtains superior performances in all the 4



Method Neutral Happy Sad Angry Surprised Disgusted Fearful Mean
OCSVM 55.5540.41 59.3810.56 52.9040.29 53.1240.55 59.36+0.93 50.4240.22 47.97+1.00 54.10
OCSVM-k | 70.13+0.49 69.60+0.49 63.00+0.49 63.58+0.37 63.27+0.77 63.5140.18 55.5640.81 64.09
SVDD 53.9210.07 59.9210.33 54.671+0.55 51.2040.75 56.3110.56 59.47+0.61 51.52+40.62 55.29
SVDD-k 67.98+0.47 68.72+0.72 60.8240.04 61.82+0.86 63.30+1.00 62.2940.42 53.45+0.86 62.63
OCGAN 59.87+0.85 61.95+0.65 56.88+0.94 57.2410.21 53.9240.91 59.4210.94 50.7040.71 57.14
DSVDD 59.08+0.57 61.36+0.76 52.7940.47 56.63+0.51 57.4210.60 56.14+0.47 43.8140.53 55.32
OGNet 52.21i0A55 54‘40i0A51 53.99i0.41 53.36i0A57 53.61i0A84 51.68i0,77 51.45i127 52.96
HRN 54.2310.32 55.04+0.41 54.44 1. 54 55.09+0.30 54.04+0.47 54.4110.34 54.31+0.19 54.51
MKD 67.80+0.66 77.0210.48 59.1140.79 62.7210.58 61.9111 .27 66.4940.27 53.6810.67 64.82
IGD 66.2140.44 84.4510.36 56.54+0.70 57.30+0.63 62.65+0.88 61.75+0.60 56.8540.54 63.68
OllI‘S 74-22:}:071 87-70j:0_57 64.29:51‘60 64.36:&:127 79.47j:1.21 68.29;}:1&4 61.24:5:1‘37 71.37

Table 2: Average AUC_stp% over 5-fold cross-validation on lab-controlled CFEE

. The best method is emphasized in bold.

Method Neutral Happy Sad Angry Surprised Disgusted Fearful Mean
OCSVM 51.74+0.17 54.9910.24 49.7940.12 56.96+0.13 59.9240.36 51.08+0.49 57.7010.21 50.93
OCSVM-k | 52.36+0.15 56.67+0.18 51.28+0.27 48.5040.24 49.2910.16 50.35+0.29 48.0410.33 54.60
SVDD 52~77i0A16 57.80i0A19 51.05i0,29 45.71i0A14 44.59i0A12 49.63i0,33 44~21i0.50 49.39
SVDD-k 54.86+0.11 61.68+0.14 54.2110.38 58.5510.18 52.18+0.22 50.56+0.30 48.4310.40 54.35
OCGAN 56.3910.16 60.9710.18 51.78 4030  42.94410.13 42.6410.25 48.6210.23 37.6840.47 48.72
DSVDD 55.5140.08 59.37+0.31 53.13+0.31 55.1840.14 46.6140.32 48.9240.21 50.7810.49 52.79
OGNet 51.6710.26 51.7640.24 49.09140.19  47.3010.56 53.36+0.53 51.3510.62 49.09+0.99 50.52
HRN 48.65+0.07 54.90+0.10 52.04+0.18 48.6140.22 46.5140.12 48.08+0.20 47.6240.45 49.49
MKD 47.88+0.11 63.7840.17  49.3210.23 58.05+0.31 57.87+0.13 49.43+0.24 50.48£0.40 53.83
IGD 52.4810.04 62.70+0.15 53.78+0.18 59.02+0.21 54.47 10.09 50.29+0.30 52.57+0.46 55.05
Ours 56.67i029 64-88i0432 54-63i0A17 59.68i0A45 60.23i0.31 52-15i0A67 58.95i0A84 58.17

Table 3: Average AUCs1p% over 5-fold cross-validation on in-the-wild ExpW. The best method is emphasized in bold.

datasets, with performance improvement of 6.55% (CFEE),
3.12% (ExpW), 2.87% (KDEF), and 4.38% (RAF-DB) as
compared to the top baselines. The performance improve-
ments benefit from the advantages of the proposed HS-
OCFER. First, hierarchical feature extraction and multi-
scale spatial regularization can enhance the representation
power of the model and guide it to concentrate more on FE-
related facial regions. Second, compact intra-class variation
can improve the performance based on the more compact
spatial distribution of the given class’s feature in the decision
space. Furthermore, the decision-level fusion algorithm can
integrate the decisive information of both feature compact-
ness and reconstruction quality into a more comprehensive
evaluation during inference.

(2) As for the non-deep baselines, the performance on
two types of FER datasets shows a huge difference. In
laboratory-controlled CFEE and KDEEF, non-deep methods
generally function well. However, in in-the-wild ExpW and
RAF-DB, non-deep methods do not show competitive per-
formance, which is believed to be caused by the relatively
larger intra-class variation of the normal expression in the
real world. As mentioned in Related Work, that is exactly
the weakness of non-deep methods.

(3) As for the deep baselines, there is one common phe-
nomenon. The top deep baseline methods achieve better per-
formance on in-the-wild ExpW and RAF-DB due to their
relatively stronger representation ability and the larger scale
of data. Specifically, overall IGD and MKD are the strongest
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baselines, which work stably on all the four datasets and
reach the second-best performance on most datasets. How-
ever, the prominent deficiency of them lies in that they do
not employ FE-related spatial information to filter out the
extraneous disturbance. The rest of deep baselines do not
show a good result due to a lack of data distribution fitting
and intra-class variation controlling.

(4) Neither of the baselines can reach the best perfor-
mance on 4 datasets consistently. As introduced in Datasets,
there is a huge distinction between these two types of
datasets which represent totally different collection condi-
tions and environments. It is a great challenge for a method
to achieve good robustness and performance on all datasets.

Ablation Study

The proposed HS-OCFER method contains three novel
components: hierarchical feature extraction, multi-scale spa-
tial regularization, and compact intra-class variation. We
conduct an ablation study to further verify their effective-
ness. Since the spatial regularization term is based on the
multi-scale features extracted from the hierarchical mod-
ules, it cannot be separated from hierarchical feature extrac-
tion. Therefore, we testify all the six possible combinations
of three components, as shown in Table 4. Besides, in or-
der to verify the strength of the proposed decision-level fu-
sion inference algorithm, we conduct additional experiments
on different decision rules based on the well-trained HS-
OCFER network, as shown in Table 5.



Feature Spatial ~ Compact

Hierarchy Reg. Space CFEE ExpW
X X X 51.4110.60 53.4610.40
4 X X 51.28+0.26 53.8010.66
X X v 57.541056 54.2840.52
v v X 56.2210.42  55.30+0.55
v X v 65.2640.88 956.17+0.78
v v v 71.37+0.28 58.17410.14

Table 4: Average AUC_sp % of different components.

Inference Rule CFEE ExpW

Reconstruction Quality Only ~ 69.0440.42 57.4310.65
Feature Compactness Only 70421060  57.8210.66
Decision-level Fusion 71.374028 58174014

Table 5: Average AUC_s1p % of different inference rules.

As the results show, we have the following observations:
(1) The basic model and that with only hierarchical feature
extraction are the worst methods in all cases. (2) Simply
adding compact intra-class variation performs better than the
basic model. Besides, continuing to add hierarchical feature
extraction and multi-scale spatial regularization can further
improve the performance of the model. This demonstrates
the necessity of taking these two components into consider-
ation when minimizing the volume of a data-enclosing hy-
persphere. (3) The decision-level fusion algorithm performs
better than using either of the reconstruction quality and fea-
ture compactness while using only reconstruction quality is
less prominent. (4) All three components contribute to OCC
for FER. The HS-OCFER method that jointly combines the
three components and employs the decision-level fusion al-
gorithm performs the best in all cases. These observations
demonstrate the effectiveness of the proposed method.

Different Ratio

In all of the above experiments, we set the instance number
ratio of the normal class and each alien class as 1 : 1 to fol-
low the mainstream OCC works (Zaheer et al. 2020). But in
real application scenarios with imbalanced data, the occur-
rence of alien expressions usually cannot be pre-determined.
To explore the impact of different ratios and get a brief eval-
uation of the robustness under various ratio settings, we plot
the performance comparison for different ratios from 1 : 10
to 10 : 1 in Fig. 3. It turns out that our model performs better
than other baseline methods robustly.

Visualization

To demonstrate the interpretability of our model, the heat
map generated by the Grad-Cam algorithm (Selvaraju et al.
2017) is used to visualize the significance of the spatial loca-
tions learned by the basic auto-encoder model and the pro-
posed HS-OCFER method. By comparing the regions that
are considered by different networks as being important for
predicting a class, we attempt to see how this network is
making good use of feature extraction. For a more intu-
itive demonstration of the remarkable FE-related regions, we
highlight the regions of the representative Action Units (AU)
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Figure 3: The performance for different ratios on CFEE.

A .

Disgusted Fearful
Figure 4: Visualization of the attention heatmap on some ex-
pression samples. From left to right in each group, there are:
the test image with highlighted emotional AUs, the corre-
sponding heatmap generated by the basic auto-encoder, and
the proposed HS-OCFER.

(Ekman and Friesen 1978) of the corresponding expression
class in each facial image. As shown in Figure 4, the pro-
posed HS-OCFER method notices more attentive and dis-
criminative regions that are related to FE, compared with
the basic model. For example, AU12 (lip corner puller) is
regarded as an exclusive action unit for happiness. In Figure
4, HS-OCFER focuses on the discriminative regions of this
AU while the basic model focuses on other facial regions.

Conclusion

In this paper, by constructing a novel OCC method named
HS-OCFER, we have shown that better one-class facial ex-
pression recognition can be achieved through joint learn-
ing with hierarchical feature extraction, multi-scale spatial
regularization, and compact intra-class variation. Due to
these three new components, the proposed HS-OCFER en-
hances its representation power of image reconstruction and
extracts FE-related hierarchical visual information in dif-
ferent hidden layers. Comprehensive experiments demon-
strate that the model consistently outperforms state-of-the-
art classifiers on multiple small-scale laboratory-controlled
and large-scale in-the-wild datasets.



Acknowledgments

The work was supported by the National Natural Sci-
ence Funds of China (No. 62076146, 62021002, 61977062,
62177046, U1801263, U20A6003).

References
Cai, J.; Meng, Z.; Khan, A. S.; Li, Z.; O’Reilly, J.; and Tong,
Y. 2018. Island loss for learning discriminative features in
facial expression recognition. In Proceedings of IEEE Inter-

national Conference on Automatic Face and Gesture Recog-
nition, 302-309.

Chen, Y.; Tian, Y.; Pang, G.; and Carneiro, G. 2021. Deep
One-Class Classification via Interpolated Gaussian Descrip-
tor. arXiv preprint arXiv:2101.10043.

Cohn, J. F.; Zlochower, A. J.; Lien, J. J.; and Kanade, T.
1998. Feature-point tracking by optical flow discriminates
subtle differences in facial expression. In Proceedings Third
IEEE International Conference on Automatic Face and Ges-
ture Recognition, 396—401. IEEE.

Corneanu, C. A.; Simé6n, M. O.; Cohn, J. F.; and Guerrero,
S. E. 2016. Survey on rgb, 3d, thermal, and multimodal ap-
proaches for facial expression recognition: History, trends,
and affect-related applications. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 38(8): 1548—-1568.

Du, S.; Tao, Y.; and Martinez, A. M. 2014. Compound fa-
cial expressions of emotion. Proceedings of the National
Academy of Sciences, 111(15): E1454-E1462.

Ekman, P.; and Friesen, W. V. 1978. Facial action coding
system. Environmental Psychology & Nonverbal Behavior.

Fan, Z.; Chen, T.; Wang, P.; and Wang, Z. 2022. CADTrans-
former: Panoptic Symbol Spotting Transformer for CAD
Drawings. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 10986—10996.
Fan, Z.; Zhu, L.; Li, H.; Chen, X.; Zhu, S.; and Tan, P.
2021. FloorPlanCAD: a large-scale CAD drawing dataset
for panoptic symbol spotting. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
10128-10137.

Gopalan, N.; Bellamkonda, S.; and Chaitanya, V. S. 2018.
Facial expression recognition using geometric landmark
points and convolutional neural networks. In 2018 Interna-
tional Conference on Inventive Research in Computing Ap-
plications (ICIRCA), 1149-1153. IEEE.

Hu, W.; Wang, M.; Qin, Q.; Ma, J.; and Liu, B. 2020. HRN:
A holistic approach to one class learning. Advances in Neu-
ral Information Processing Systems.

Li, S.; and Deng, W. 2019. Reliable crowdsourcing and deep
locality-preserving learning for unconstrained facial expres-
sion recognition. /[EEE Transactions on Image Processing,
28(1): 356-370.

Li, S.; Deng, W.; and Du, J. 2017. Reliable crowdsourcing
and deep locality-preserving learning for expression recog-
nition in the wild. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2852-2861.

Lundgqvist, D.; Flykt, A.; and Ohman, A. 1998. Karolinska
directed emotional faces. Cognition and Emotion.

6072

Lv, C.; Wu, Z.; Wang, X.; and Zhou, M. 2019. 3D facial ex-
pression modeling based on facial landmarks in single im-
age. Neurocomputing, 355: 155-167.

Lyons, M.; Akamatsu, S.; Kamachi, M.; and Gyoba, J. 1998.
Coding facial expressions with gabor wavelets. In Proceed-
ings Third IEEE international conference on automatic face
and gesture recognition, 200-205. IEEE.

Oza, P.; and Patel, V. M. 2018. One-class convolutional neu-
ral network. IEEE Signal Processing Letters, 26(2): 277—
281.

Oza, P.; and Patel, V. M. 2019. Active authentication us-
ing an autoencoder regularized cnn-based one-class classi-
fier. In Proceedings of IEEE International Conference on
Automatic Face and Gesture Recognition, 1-8.

Perera, P.; Nallapati, R.; and Xiang, B. 2019. Ocgan: One-
class novelty detection using gans with constrained latent
representations. In Proceedings of the IEEE Computer So-
ciety Conference on Computer Vision and Pattern Recogni-
tion, 2898-2906.

Perera, P.; Oza, P.; and Patel, V. M. 2021. One-class classi-
fication: A survey. arXiv preprint arXiv:2101.03064.

Pimentel, M. A.; Clifton, D. A.; Clifton, L.; and Tarassenko,
L. 2014. A review of novelty detection. Signal Processing,
99: 215-249.

Ruan, D.; Yan, Y.; Chen, S.; Xue, J.-H.; and Wang, H. 2020.
Deep disturbance-disentangled learning for facial expres-
sion recognition. In Proceedings of the 28th ACM Inter-
national Conference on Multimedia, 2833-2841.

Ruan, D.; Yan, Y.; Lai, S.; Chai, Z.; Shen, C.; and Wang,
H. 2021. Feature decomposition and reconstruction learning
for effective facial expression recognition. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 7660-7669.

Ruff, L.; Vandermeulen, R.; Goernitz, N.; Deecke, L.; Sid-
diqui, S. A.; Binder, A.; Miiller, E.; and Kloft, M. 2018.
Deep one-class classification. In International Conference
on Machine Learning, 4393-4402.

Sabokrou, M.; Khalooei, M.; Fathy, M.; and Adeli, E. 2018.
Adversarially learned one-class classifier for novelty detec-
tion. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 3379-3388.

Salehi, M.; Sadjadi, N.; Baselizadeh, S.; Rohban, M. H.; and
Rabiee, H. R. 2021. Multiresolution knowledge distillation
for anomaly detection. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
14902-14912.

Scholkopf, B.; Platt, J. C.; Shawe-Taylor, J.; Smola, A. J.;
and Williamson, R. C. 1999. Estimating the support of a
high-dimensional distribution. Technical Report MSR-T R-
99-87, Microsoft Research.

Selvaraju, R. R.; Cogswell, M.; Das, A.; Vedantam, R.;
Parikh, D.; and Batra, D. 2017. Grad-cam: Visual explana-
tions from deep networks via gradient-based localization. In
Proceedings of the IEEE International Conference on Com-
puter Vision, 618-626.



Shan, C.; Gong, S.; and McOwan, P. W. 2009. Facial ex-
pression recognition based on local binary patterns: A com-
prehensive study. Image and vision Computing, 27(6): 803—
816.

Tax, D. M.; and Duin, R. P. 2004. Support vector data de-
scription. Machine Learning, 54(1): 45-66.

Wang, K.; Peng, X.; Yang, J.; Lu, S.; and Qiao, Y. 2020.
Suppressing uncertainties for large-scale facial expression
recognition. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 6897-6906.
Wen, Y.; Zhang, K.; Li, Z.; and Qiao, Y. 2016. A discrim-
inative feature learning approach for deep face recognition.
In Proceedings of the European Conference on Computer
Vision, 499-515.

Xi, H.; Aussel, D.; Liu, W.; Waller, S. T.; and Rey, D.
2022a. Single-leader multi-follower games for the regula-
tion of two-sided mobility-as-a-service markets. European
Journal of Operational Research.

Xi, H.; He, L.; Zhang, Y.; and Wang, Z. 2022b. Differen-
tiable road pricing for environment-oriented electric vehicle
and gasoline vehicle users in the bi-objective transportation
network. Transportation Letters, 14(6): 660-674.

Zaheer, M. Z.; Lee, J.-h.; Astrid, M.; and Lee, S.-1. 2020.
Old is gold: Redefining the adversarially learned one-class
classifier training paradigm. In Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pat-
tern Recognition, 14183-14193.

Zeng, Z.; Fu, Y.; Roisman, G. I.; Wen, Z.; Hu, Y.; and
Huang, T. S. 2006. One-class classification for spontaneous
facial expression analysis. In Proceedings of IEEE Interna-

tional Conference on Automatic Face and Gesture Recogni-
tion, 281-286. IEEE.

Zeng, Z.; Pantic, M.; Roisman, G. I.; and Huang, T. S. 2009.
A survey of affect recognition methods: Audio, visual, and
spontaneous expressions. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 31(1): 39-58.

Zhang, L.; and Tjondronegoro, D. 2011. Facial expression
recognition using facial movement features. /IEEE Transac-
tions on Affective Computing, 2(4): 219-229.

Zhang, Z.; Luo, P.;; Loy, C. C.; and Tang, X. 2018. From
facial expression recognition to interpersonal relation pre-

diction. International Journal of Computer Vision, 126(5):
550-569.

Zhao, Z.; Liu, Q.; and Wang, S. 2021. Learning deep global
multi-scale and local attention features for facial expression

recognition in the wild. IEEE Transactions on Image Pro-
cessing, 30: 6544-6556.

6073



